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Introducing PoPy


Overview

PoPy (pronounced pop-eye, as in the sailor man) is new software to support population modelling of PK/PD (pharmacokinetic/pharmacodynamic) data using the Python Programming Language.

PoPy’s intuitive interface and automated visualization make it perfect for people who are new to PK/PD. For experienced analysts, PoPy contains all of the features that are required for modern PK/PD modelling:-


	Nonlinear mixed-effect models


	Bolus and infusion dosing regimens


	Inter-occasion variability


	Continuous and categorical likelihoods


	PK and PD models




PoPy consists of a powerful set of Command Line Tools and script files, to enable you to analyse a PK/PD data file quickly and efficiently, whilst minisimising errors due to an elegant and intuitive syntax.

PoPy makes it easy to fit models to data, but also has the ability to generate new data to test hypothetical scenarios.




Documentation Structure

See Table 1 for layout of this documentation:-


Table 1 PoPy Documentation Structure





	Section

	Contents





	Getting Started Guide

	Read this first to get familiar with PoPy



	Principles of Pharmacokinetics

	A summary of individual PK/PD models using PoPy syntax



	Population Models in PoPy

	A summary of population PK models using PoPy syntax



	PoPy Example Models

	Examples of using PoPy for PK/PD analysis



	PoPy for Nonmem Users

	Guidance for converting Nonmem examples to PoPy



	PoPy Reference Guide

	A comprehensive reference on PoPy tools and scripts



	Appendices

	Links to PK/PD terms used throughout this guide.









System Requirements

PoPy is currently available as a 64 bit Microsoft Windows binary. See  Table 2:-


Table 2 System Requirements for PoPy





	Operating System

	Microsoft Windows 7.0/8.0/10.0



	Disk Space Required

	1.5Gb



	Bit Size

	64



	Processor

	Intel Core i3 and better recommended



	Binary Installer Size

	~250Mb









Abbreviations


	FOCE

	first order conditional estimation



	IMP

	importance sampling



	ITS

	iterative two stage



	IV

	Intra-venous, i.e. injected directly into a vein



	JOE

	joint optimisation and estimation



	LAPLACE

	Laplace approximation



	OBJV

	objective function value



	ODEs

	ordinary differential equations



	PK/PD

	Pharmacokinetic/Pharmacodynamic



	SAEM

	stochastic approximation expectation maximisation



	TSLD

	Time since last dose



	VPC

	visual predictive check



	wrt

	With respect to - usually defines rate of change variable in an ordinary differential equation











          

      

      

    

  

    
      
          
            
  
Install PoPy


Downloading PoPy

First, download the latest binary from:-

https://product.popypkpd.com/releases/

To access the url above you need to Obtain a website account for the PoPy product site, then login using your email address and a password.

We currently provide a 64bit version of PoPy for Windows 7/8/10. The download file is approximately 250Mb which will take around 5 minutes to download using a broadband connection.


Note

If you have a previous version of PoPy installed, please Uninstall PoPy before installing the new version.






Installing PoPy

Double-click on the PoPy installer:-

popy-1.0.1-64bit-installer.exe





The installer places the software in a subdirectory called ‘PoPy’. We recommend PoPy is installed  in the root directory of the main drive, typically:-

c:\PoPy





A local user typically has write access to the c:\ drive but not to c:\Program Files unless the user is an administrator.

The installer will uncompress the PoPy files, just click on the .exe installer and follow the prompts. You will need approx 1.5Gb of disk space, and the install time may take 5 minutes or so depending on the speed of your computer.

The installer also creates a desktop shortcut and Windows start menu shortcut under the name ‘PoPy’, for the current user only.

The installer makes no changes to the Windows registry and does not require admin rights.


Multi User Installation

The installer sets up PoPy for the current user only. To share a PoPy installation with another user, simply add the PoPy directory to their system path, so they can access the ‘popy_env.bat’ batch file. Windows start menu shortcuts can also be created manually, if desired.






Checking your new PoPy Installation

PoPy runs from the command line, typically called command prompt under Windows 7-9 or PowerShell under Windows 10.  To access PoPy commands in the current command prompt, type:-

$ popy_env





This scripts sets up the environment variables so you can access PoPy commands. See Open a PoPy Command Prompt.

To verify that PoPy is installed, execute the command:-

$ popy_info





If PoPy has successfully installed, output similar to that below will appear, providing detailed information on the installation:-

INFO - In a PoPy Binary environment
INFO - popy_flavour=binary
INFO - popy_python_path=C:\PoPy\
INFO - popy_release=1.0.0
INFO - popy_version=academic
INFO - python_version=3.5.1
INFO - windows_version=('10', '10.0.17134', 'SP0', 'Multiprocessor Free')
INFO - machine_name=saruman
INFO - product_key=None
The product is running in trial mode
trial days remaining=3
INFO - should_run=True





The output above will vary depending on the PoPy Activation status of PoPy.

If you want to run more rigorous tests then see Validate PoPy.


Troubleshooting

If you have any problems with this installation process, and cannot find the answer on the Troubleshooting page, then email us at info@popypkpd.com.









          

      

      

    

  

    
      
          
            
  
Configure Editor

PoPy is script driven, so it is very important to have a suitable editor installed on your system.

We recommended that you use Notepad++ to edit PoPy text files.


Note

It is especially important that you follow the advice in Configure Notepad++ Tabs.




Notepad++

Notepad++ is a text editor that uses tabs and context highlighting, both of which are helpful when editing PoPy script files.


Install Notepad++

Download it from:-

https://notepad-plus-plus.org/download/

If you install the 64bit binary installer the default install directory is:-

C:\Program Files\Notepad++





But you may install Notepad++ at another location.




Configure Notepad++ Tabs

PoPy is written in Python, and Python does not like tabs. It is essential that you set this from within Notepad++:-

Settings->Preferences->Language->Replace by space





The default tab size is 4, which is a sensible choice.

Note this means that when you hit the tab key you will get 4 space characters instead of a tab character. To check that this is the case do:-

View->Show Symbol->Show white space and Tab





Then Notepad++ will give you a faint orange dot for a space character and an arrow for a tab.  You are advised to delete any tabs you have in your *.pyml files.

Note that it is still possible to introduce tabs into your text file accidentally using cut and paste.

Python using spaces instead of the more conventional curly brackets is an endearing (but perhaps controversial) language feature. See this blog post, for a fairly balanced discussion of the pros and cons of white spacing:-

https://jayconrod.com/posts/101/how-python-parses-white-space

However PoPy uses Python, so it is white space for us.




Configure Notepad++ Path

Note that to use Notepad++ with popy_edit you need to make sure your PoPy Config File contains this entry:-

text_editor_path: "C:/Program Files/Notepad++/notepad++.exe"





Which points to where you have installed Notepad++. Note with the path above set correctly you can now Open a PoPy Command Prompt and do:-

$ popy_edit my_script.pyml





The file ‘my_script.pyml’ should then open within Notepad++. See popy_edit.




Configure Notepad++ Colouring

It is highly advisable to load in the PoPy xml colouring file. You do this by opening Notepad++ and doing:-

Language->Define your language->Import..





Then selecting:-

c:\PoPy\conf\notepadplusplus_popy.xml





You should then be able to open any *.pyml file and see the variables coloured like this:-

DERIVATIVES: |
    # s[DEPOT,CENTRAL,PERI] = @dep_two_cmp_cl{dose:@bolus{amt:c[AMT]}}
    d[DEPOT] = @bolus{amt:c[AMT]} - m[KA]*s[DEPOT]
    d[CENTRAL] = (
        m[KA]*s[DEPOT] - s[CENTRAL]*m[CL]/m[V1]
        - s[CENTRAL]*m[Q]/m[V1]  + s[PERI]*m[Q]/m[V2]
    )
    d[PERI] = s[CENTRAL]*m[Q]/m[V1] - s[PERI]*m[Q]/m[V2]
PREDICTIONS: |
    p[DV_CENTRAL] = s[CENTRAL]/m[V1]
    var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
    c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)





As opposed to the default (plain) Notepad++ text display, like this:-

DERIVATIVES: |
    # s[DEPOT,CENTRAL,PERI] = @dep_two_cmp_cl{dose:@bolus{amt:c[AMT]}}
    d[DEPOT] = @bolus{amt:c[AMT]} - m[KA]*s[DEPOT]
    d[CENTRAL] = (
        m[KA]*s[DEPOT] - s[CENTRAL]*m[CL]/m[V1]
        - s[CENTRAL]*m[Q]/m[V1]  + s[PERI]*m[Q]/m[V2]
    )
    d[PERI] = s[CENTRAL]*m[Q]/m[V1] - s[PERI]*m[Q]/m[V2]
PREDICTIONS: |
    p[DV_CENTRAL] = s[CENTRAL]/m[V1]
    var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
    c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)





Note that it might be necessary to restart Notepad++ to get the colouring file to work.

We find that the variable colouring, makes model editing easier and less error prone. For example, if you misspell a section header e.g “DERVIATIVES”, then you will notice because the section header will not appear in bold.

The colouring file also just makes PK/PD models look nicer.









          

      

      

    

  

    
      
          
            
  
Fitting a Simple PopPK Model using PoPy

Here we are going to work with the simplest possible single compartment model and bolus dose, see Fig. 1:-


[image: ../../_images/compartment_diagram9.svg]Fig. 1 One compartment model with bolus dosing for Fit Script. Here c[AMT] is the amount of the bolus dose. m[KE] is the elimination rate and s[CENTRAL] is the current amount in the central compartment.



In this example, we will walk through fitting the one compartment model shown in Fig. 1 to a pre-existing data file using PoPy, explaining the commands, input files and output files at each step.


Note

See the Simple Fit Example obtained by the PoPy developers for this example, including input script and input data file.




Run the Fit Script

To fit a model in PoPy, you need a model file ending in .pyml and a data file in comma separated value format (.csv). See files in your PoPy ‘examples’ sub directory:-

c:\PoPy\examples\fit_example1.pyml
                 fit_example1_data.csv





Open a PoPy Command Prompt to setup the PoPy environment in this folder:-

c:\PoPy\examples\





With the PoPy environment enabled, open the script using:-

$ popy_edit fit_example1.pyml





then call popy_run on the Fit Script from the command line:-

$ popy_run fit_example1.pyml





While the script runs, you will see informative text regarding the progress of the fitting process.

You can observe the fitting process proceed through the text outputs in the command window. When completed, you can view the output using:-

$ popy_view fit_example1.pyml.html





Note the extra ‘.html’ extension in the above command. The command popy_view opens a local .html file in your web browser to summarise the result of the fitting.

You can compare your local html output with the pre-computed documentation output, see Simple Fit Example. You should expect some minor numerical differences when comparing results with the documentation. If you are concerned by any differences in results relative to the official PoPy documentation see Validate PoPy.




Summary of Fit Results

The results of running the fitting script are PoPy’s best estimate for the presumed unknown fixed effects variables:-

f[KE] = 0.096916
f[PNOISE] = 0.21687
f[KE_isv] = 0.016902





In PoPy fixed effects are denoted using the f[X] notation, where ‘X’ is the name of the fixed effect.

The purpose of a Fit Script is to optimise the fixed effects and random effects by maximizing the likelihood of observing the input data given the model structure defined in ‘fit_example1.pyml’. The input data in this case, is the c[DV_CENTRAL] column in ‘fit_example1_data.csv’, which contains 20 individuals each with 5 observations at random time points following a bolus dose event.

You can visually compare the PK curves using the initial f[X] and fitted f[X] outputs with the input data in Table 3.


Table 3 Model predictions vs original data points for first three individuals
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In the graphs above the blue dots represent the observed data points. The solid blue line represents the model predictions based on the final f[X] parameters and fitted r[X] values for each individual. The dashed blue lines represent the model predictions based on initial f[X] parameters and r[X] values set to zero.

Note in this model a bolus dose is received by all individuals at time 1.0. Then the amount of dose follows a first order exponential decay curve as the drug is eliminated from the body over time.

The graphs show how PoPy has optimized the f[X] and r[X] parameters to maximize the likelihood of the data under this model.




Syntax of Fit Script

This section explains the fitting script notation to represent the components of a mathematical model, such as fixed and random effects and the equation relating the parameters to the observed data.  In this section, we will look more closely at how the model file works.

The data file included in this example is simulated from a first order PK model of the same form described in ‘fit_example1.pyml’. The population structure is defined in the LEVEL_PARAMS section as follows:-

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[KE] ~ unif(0.001, 100) 0.05
            f[PNOISE] ~ unif(0.001, 100) 0.1
            f[KE_isv] ~ unif(0.001, 100) 0.1
        split_field: None
        split_dict: {}
    INDIV:
        params: |
            r[KE] ~ norm(0, f[KE_isv])
        split_field: ID
        split_dict: "*"





There are three GLOBAL fixed effects f[X] parameters to be estimated and one INDIV r[X] which can take a different value for each individual, sampled from the population distribution. There are 20 individuals in the data set, therefore this model is attempting to estimate 23 parameters in total (i.e 3 f[X] + 20 r[X]). The fixed effects are defined as follows:-

f[X] ~ unif(min_x, max_x) start_x





Here a uniform distribution is used to define a range of allowed values [min_x, max_x], as a kind of prior. Currently in PoPy, f[X] are restricted to having a ~unif() distribution prior.

Note, it is quite common to require PK/PD model parameters be non-negative, in order to make physical sense. The ‘start_x’ value is the initial value for f[X] used in the optimisation, which is usually an initial guess by the modeller. The r[X] are here sampled from a zero-mean, univariate normal distribution with a variance f[KE_isv] that is optimized for the population:-

r[KE] ~ norm(0, f[KE_isv])





Each individual has a unique set of r[X] values, because the random effects are defined at the INDIV level. Note the ‘split_field’ is set to ‘ID’ and the ‘split_dict’ is set to ‘*’. This has the effect of creating a single r[KE] sample for each identity in the data file. For more info on the syntax above see LEVEL_PARAMS.

The mapping from f[X] and r[X] to the m[X] for each individual is defined in the MODEL_PARAMS section:-

MODEL_PARAMS: |
    m[KE] = f[KE] * exp(r[KE])
    m[PNOISE] = f[PNOISE]
    m[ANOISE] = 0.001





This models the m[KE] elimination rate for each individual as a log normally distribution with a median value of f[KE] and variance parametrised by f[KE_isv]. There is a shared proportional noise parameter f[PNOISE] for all individuals. For more info on the syntax above see MODEL_PARAMS.

The DERIVATIVES section defines how the parameters and dosing history relate to the observed data.  In this case, we have simple bolus dosing and first-order elimination:-

DERIVATIVES: |
    d[CENTRAL] = @bolus{amt:c[AMT]} - m[KE]*s[CENTRAL]





The amount of the bolus dose is c[AMT], which is taken from the data file for each individual. In this example it is always 100 units and occurs at time point 1.0 for every individual. The m[KE] elimination rate parameter is first order with respect to s[CENTRAL]. Here s[CENTRAL] is the amount in the single compartment. For more info on the syntax above see DERIVATIVES.

For each row of the data set, c[X] values are compared with p[X] variables predicted by the model, as defined below:-

PREDICTIONS: |
    p[DV_CENTRAL] = s[CENTRAL]
    var = (p[DV_CENTRAL]*m[PNOISE])**2 + m[ANOISE]**2
    c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)





This section shows that we are fitting p[DV_CENTRAL] with c[DV_CENTRAL] using a proportional noise model, where the standard deviation of the proportional noise is m[PNOISE]. Here m[ANOISE] is fixed to a small positive constant, in order to avoid zero variances when p[DV_CENTRAL] is close to zero. For more detailed information on the syntax above see PREDICTIONS.

PoPy finds the best combination of the estimated parameters:-


	f[KE] - the median elimination rate - which roughly makes sure that the PK curves are of the correct shape to find the data.


	f[KE_isv] - the magnitude of the variability in m[KE] between individuals


	f[PNOISE] - the proportional noise not explained by the model in the c[DV_CENTRAL] data




The unexplained noise f[PNOISE] and between subject variance f[KE_isv] compete with each other to explain the data. For example, do measurements vary from the average model prediction due to measurements lacking precision (or some unknown mechanism) or because subjects just vary a lot in their physiology? This dual explanation for noisy data makes population mixed-effects models difficult to fit. However the population as a whole contains enough data to solve this problem using maximum likelihood [Sheiner1980].

In PoPy the likelihood is optimised iteratively, with the f[X] and r[X] being updated at each iteration. In this case, the likelihood (or objective function) progressed as shown in Table 4


Table 4 Objective function at each iteration for simple PopPK example






	Iteration

	Time

	OBJV



	
	




	0.15

	4497.82099821



	
	




	0.85

	564.033847401



	
	




	0.95

	564.033847401



	1.1

	2.50

	327.759006584



	1.2

	3.72

	303.527907629



	1.3

	4.85

	303.082181309



	1.4

	5.62

	303.068921608



	1.5

	6.63

	303.068921608



	
	




	7.07

	303.068921609






Note that the objective function is defined as -2 * the log likelihood (ignoring fixed proportionality constants). Therefore the lower the value of the objective function the better the estimated parameters fit the observed data. By default PoPy stops the fitting algorithm once the objective function has stopped decreasing.




Visual Predictive Check for Simple PopPK Model

Given the estimated parameter values, i.e. the optimised f[X] variables, we can check whether the model and its estimate parameters are a good description of the observed data using a visual predictive check (VPC).


Running the MSim Script

When you run a PoPy Fit Script, it automatically generates several other scripts, including a ‘msim’ simulation script.  For the simple model which we have already fitted, this script can be found in:-

fit_example1.pyml_output/
    msim/
        fit_example1_msim.pyml





To view or edit the MSim script, which runs simulation, navigate to:-

fit_example1.pyml_output/
    msim/





Open a PoPy Command Prompt in the ‘msim’ sub folder then do:-

$ popy_edit fit_example1_msim.pyml





To view the MSim Script.

Then you can run the script with the following command:-

$ popy_run fit_example1_msim.pyml





Running the ‘fit_example1_msim.pyml’ script creates the following .svg file in the output directory:-

fit_example1_msim.pyml_output/
    DV_CENTRAL_sim,DV_CENTRAL_wrt_TIME_SINCE_LAST_DOSE_comb_quant_sim_vpc/
        000000.svg





This graphic should look something like Fig. 2:-


[image: ../../_images/simple_msim_vpc.svg]Fig. 2 Visual Predictive Check for Simple PopPK model.



In the vpc graph the y axis is the amount in the single compartment and the x axis is the time since the last dose (TSLD). It’s common to use TSLD in a plot that combines all individuals, as different individuals may have been administered doses at different times in a real life analysis, so absolute times are not comparable.

The TSLD values are grouped into 5 bins along the x axis. Note you need a minimum number of data points in each bin and there are only 100 data points in this simple example, hence the small number of bins.

In Fig. 2, the blue dots represent the original data points. In each bin the 5%,50% and 95% quantiles are plotted for the original data set (see solid blue lines). Also in each bin, the same quantiles are computed for each of the 100 synthetic data samples. The 90% confidence interval for each of these quantiles, calculated across the 100 simulated data sets, is depicted by the shaded blue region.

The key result from the vpc graph is that the solid blue line (i.e. quantiles from the original data set) mostly lie within the shaded blue region (quantile ranges from the synthetic data sets). Since this is the case here, the model performs adequately on the VPC. Note that the solid blue line should be within the shaded region approx 90% of the time, because the synthetic quantile ranges are constructed as a 90% confidence interval. You can change the number of simulated data sets, the quantiles of interest and the confidence intervals for those quantiles in the MSim Script.

The blue dots (original data) are mainly shown to give some visual corroboration of the quantiles (solid blue line). In this graph because there are only 5 time axis bins and therefore each time bin is quite wide, the data points on the left side of each time bin tend to have higher concentrations. This within-bin sample distortion is quite common. Only more bins, which in turn require more data, can address this issue.




Syntax of MSim Script

The MSim Script processes these three elements:-


	A data set


	The model - as automatically defined in the MSim Script file


	The estimated model parameters




For each individual in the original data set, new synthetic data sets are created by sampling new random effects r[X] variables for each individual and new measurement noise for all data rows. i.e. The synthetic populations vary due to sampling the r[X] for each individual here:-

LEVEL_PARAMS:
    INDIV:
        params: |
            r[KE] ~ norm(0, f[KE_isv])





And adding measurement noise here:-

PREDICTIONS: |
    p[DV_CENTRAL_sim] = s[CENTRAL]
    var = (p[DV_CENTRAL_sim]*m[PNOISE])**2 + m[ANOISE]**2
    c[DV_CENTRAL_sim] ~ norm(p[DV_CENTRAL_sim], var)





Note the simulated data c[DV_CENTRAL_sim] has a slightly different name from the original data set field c[DV_CENTRAL], in order to avoid name clashes when constructing graphs.

The ~ notation in the PREDICTIONS section of a PoPy script has two slightly different interpretations in fitting versus simulation scripts, in terms of how the operator compares the left hand side (lhs) and right hand side (rhs) of the expression:-


	In simulation scripts ~ means sample the lhs from the distribution on the rhs


	In fitting scripts ~ means evaluate the likelihood of the rhs given the lhs




In a MSim Script the former sampling definition is used. In a Fit Script the latter likelihood definition is employed.

This procedure creates a set of N new data sets, which can be compared with the original data set. In this case N=100 is defined in the OUTPUT_OPTIONS section:-

OUTPUT_OPTIONS:
    n_pop_samples: 100





You can increase the number of samples, in order to estimate the percentiles, and their confidence intervals, more accurately. If the PK/PD model contains more parameters or the data file is more structured, you probably need 500-1000 population samples.

Conceptually, if the model is sensible and the fitted f[X] parameters are well estimated then the artificial data sets generated by sampling the random variables should generate PK/PD curves that resemble the observed data PK/PD curves.

If your VPC curves do not look like the original data it may be possible to improve upon your model. The pattern of differences between your VPC predictions and the original data set, may give you some clues in how to improve your model.

Note that the VPC says nothing about your models ability to generalise, it only compares the model with the original data. For example, if you want to predict the response to much higher doses, than those present in the your original data set, the VPC provides no guarantee that predictions will be accurate.









          

      

      

    

  

    
      
          
            
  
PoPy Data Format

The PoPy data file records observation and dosing regimens for each individual in a study.

The columns or fields in the data file are split into four main types in Table 5:-


Table 5 PoPy data fields





	Field

	Comment





	Required Fields

	TYPE/ID/TIME



	Dosing Fields

	dosing regime data



	Observation Fields

	observed measurements



	Extra Fields

	extra co-variate information






The data file values for each field can be accessed using the c[X] notation in the PoPy script file.


Required Fields

A PoPy data set requires the following fields:-


	TYPE - type of row


	ID - identity


	TIME - time field




Note the names ‘TYPE’, ‘ID’ and ‘TIME’ are the default names of these three required fields. You can use other field names if you choose to redefine them in the script file DATA_FIELDS section.


TYPE

The ‘TYPE’ field specifies the event that is happening in each row of the data file. The different types of row are as follows:-


	obs - Measurements that contribute to the log likelihood as defined in the PREDICTIONS section.


	dose - Creates a dose according to the dosing functions in the DERIVATIVES section.


	pred - Extra prediction data points. PoPy will output extra p[X] data at these time points, but they do not contribute to the likelihood.


	reset -  Set the s[X] compartment states back to the initial values (usually zero)


	reset+dose - A ‘reset’ combined with a ‘dose’ event.




The row types above have direct equivalents in Nonmem in terms of the EVID integer values.

Typically a drug trial data set mainly consists mainly of ‘obs’ and ‘dose’ rows with a few ‘reset’ rows, per subject.




ID

The ‘ID’ field value defines the individual for a given row. As PoPy is a PopPK/PD system. The ‘ID’ field is required because the data is split over multiple individuals to form a population.

Note that non-population analysis can be performed in PoPy by assigning all rows the same ‘ID’ value.




TIME

The ‘TIME’ field defines the time stamp for each row.

The time field is required to be monotonically increasing, unless a TYPE = ‘reset’ or ‘reset+dose’ row is reached. Note that when the ID identifier changes between rows, then an implicit ‘reset’ occurs.

For an example of a valid combination of TYPE/ID/TIME data see Table 6.


Table 6 PoPy time reset example







	TYPE

	ID

	TIME

	comment





	obs

	Bob

	0.0

	observation at time zero



	dose

	Bob

	4.0

	dose for bob at time 4.0



	obs

	Bob

	4.0

	observation for bob at time 4.0



	obs

	Bob

	8.0

	later observation



	obs

	Ruth

	0.0

	time goes back, ok cos new ID



	dose

	Ruth

	10.0

	dose for Ruth at time 10.0



	obs

	Ruth

	20.0

	later observation



	reset

	Ruth

	30.0

	s[X] reset at time 30.0



	obs

	Ruth

	1.0

	observation following reset






In Table 6 the time always increases or stays the same in consecutive rows, but time is allowed to go backwards after a new ID or a reset.






Dosing Fields

Dosing events are created in the data file using ‘dose’ values in the TYPE field.

There are two methods of associating data dose rows with the DERIVATIVES section in the PoPy script file, as follows:-


	Single Dose Type


	Multiple Dose Types




The first involves using just the ‘dose’ value, the second involves defining dose type names.

The amount of each dose is usually specified in an AMT field, see below.


AMT

Note in PoPy AMT is not a keyword. It is just the conventional name for the dose amount field used in this documentation. See AMT for the Nonmem keyword.




Single Dose Type

The simplest way to create doses at a set of fixed times is shown in Table 7.


Table 7 PoPy single dose type example







	TYPE

	TIME

	AMT

	comment





	dose

	1.0

	100

	dose of 100 at time 1.0



	dose

	2.0

	200

	dose of 200 at time 2.0



	dose

	3.0

	100

	dose of 100 at time 3.0






Note that this creates 3 doses at times [1.0, 2.0, 3.0]. The script file loading this data set should have a DERIVATIVES section something like:-

DERIVATIVES: |
    d[DEPOT] = @bolus{amt: c[AMT]} - m[KE] * s[DEPOT]





Note that the @bolus dose has no name associated with it.




Multiple Dose Types

If you have multiple types of dose in your analysis, e.g. two different drugs being prescribed, then you need to give each dose type a name, as shown in Table 8.


Table 8 PoPy multi dose type example








	TYPE

	TIME

	AMT_DRUG1

	AMT_DRUG2

	comment





	dose:drug1

	1.0

	100

	0

	100 units of drug1



	dose:drug2

	2.0

	0

	200

	200 units of drug2



	dose:drug1

	3.0

	50

	0

	50 units of drug1






The data file above creates 2 doses of drug1 and 1 dose of drug2. The script file loading this data set should have a DERIVATIVES section something like:-

DERIVATIVES: |
    dose[drug1] = @bolus{amt: c[AMT_DRUG1]}
    dose[drug2] = @bolus{amt: c[AMT_DRUG2]}
    d[DEPOT1] = dose[drug1] - m[KE1] * s[DEPOT1]
    d[DEPOT2] = dose[drug2] - m[KE2] * s[DEPOT2]





The important aspect here is that the @bolus doses are defined with names ‘drug1’ and ‘drug2’. These names also appear in the TYPE field in the data set as ‘dose:drug1’ and ‘dose:drug2’.

An alternative naming syntax is as follows:-

DERIVATIVES: |
    d[DEPOT1] = @bolus{amt: c[AMT_DRUG1], name: 'drug1'} - m[KE1] * s[DEPOT1]
    d[DEPOT2] = @bolus{amt: c[AMT_DRUG2], name: 'drug2'} - m[KE2] * s[DEPOT2]





Note that when creating a PoPy data set, you only need to specify a name for each type of dose. You can leave the modelling decision of where each dose appears in the compartment model to a later time.






Observation Fields

Another important set of fields in the data file are the columns that define observed measurements. Observation rows are defined by setting TYPE = ‘obs’.

This section shows examples of the following:-


	Single Observed Field


	Observed Field with missing data


	Multiple Observed Fields




Note in each case the PREDICTIONS section of the PoPy script file is associated with observation fields in the data file in order to compute the likelihood correctly.


Single Observed Field

An example of a single observed field is shown in Table 9.


Table 9 PoPy single observed field example





	TYPE

	DRUG_CONC





	obs

	10.5



	obs

	15.5



	obs

	2.0






In this simple case the PREDICTIONS section may look something like:-

PREDICTIONS: |
    p[DRUG_CONC] = s[CEN]/m[V]
    c[DRUG_CONC] ~ norm(p[DRUG_CONC], m[ANOISE_var])





Note that the c[DRUG_CONC] references the ‘DRUG_CONC’ field of the data set. Here the likelihood is computed by comparing the model prediction p[DRUG_CONC] and the data file observation c[DRUG_CONC] for all rows of the data set, where TYPE = ‘obs’.

Therefore all values of the data column ‘DRUG_CONC’ have to be valid observations. If you have missing values then you need to use the data structure in Observed Field with missing data.




Observed Field with missing data

An example of a single observed field, with some missing data is shown in Table 10.


Table 10 PoPy single observed field missing data example







	TYPE

	DRUG_CONC

	DRUG_CONC_FLAG

	comment





	obs

	10.5

	1

	DRUG_CONC valid



	obs

	0.0

	0

	DRUG_CONC invalid



	obs

	-5.0

	0

	DRUG_CONC invalid



	obs

	2.0

	1

	DRUG_CONC valid






In this case the PREDICTIONS section may still look something like:-

PREDICTIONS: |
    p[DRUG_CONC] = s[CEN]/m[V]
    c[DRUG_CONC] ~ norm(p[DRUG_CONC], m[ANOISE_var])





However not all the TYPE = ‘obs’ rows contribute to the likelihood in this case. Only the rows that have TYPE = ‘obs’ and DRUG_CONC_FLAG = 1.

It is similar to having the following ‘if’ statement in your PREDICTIONS section:-

PREDICTIONS: |
    p[DRUG_CONC] = s[CEN]/m[V]
    if c[DRUG_CONC_FLAG] > 0.5:
        c[DRUG_CONC] ~ norm(p[DRUG_CONC], m[ANOISE_var])





You can include the ‘if’ statement in your PREDICTIONS section if you like, but it is not required (or encouraged).

Note also that missing out the ‘DRUG_CONC_FLAG’ field from your data set, has a similar effect to creating a ‘DRUG_CONC_FLAG’ field and setting all the values to 1. i.e. Flags default to 1 in PoPy.

If you have multiple observation types in your data set then flag fields become more important, see the example data structure in Multiple Observed Fields.




Multiple Observed Fields

An example of multiple observed fields, is shown in Table 11.


Table 11 PoPy multiple observed fields









	TYPE

	DRUG1

	DRUG1_FLAG

	DRUG2

	DRUG2_FLAG

	comment





	obs

	10.5

	1

	0.2

	1

	Both drugs valid



	obs

	10.5

	1

	0.0

	0

	only drug1 valid



	obs

	-4.1

	0

	0.0

	0

	both drugs invalid



	obs

	-4.1

	0

	0.5

	1

	only drug2 valid






In this case the PREDICTIONS section may look something like:-

PREDICTIONS: |
    p[DRUG1] = s[CEN1]/m[V1]
    c[DRUG1] ~ norm(p[DRUG1], m[ANOISE_var1])
    p[DRUG2] = s[CEN2]/m[V2]
    c[DRUG2] ~ norm(p[DRUG2], m[ANOISE_var2])





Here PoPy uses the ‘DRUG1_FLAG’ and ‘DRUG2_FLAG’ fields from the data set to only compute the likelihood from valid observations. You don’t have to use ‘if’ statements in the PREDICTIONS section to achieve this.






Extra Fields

The other columns of the PoPy data file are available to use in the following verbatim sections:-


	MODEL_PARAMS


	STATES


	DERIVATIVES


	PREDICTIONS




For example see below for a simple example of covariate modelling using the MODEL_PARAMS:-

MODEL_PARAMS: |
    m[X] = f[X] + f[X_Y_EFFECT]*c[Y]





Here the m[X] parameter is modelled as having a linear relationship with the c[Y] covariate from the data file.

It is also possible to use c[X] variables in the other sections. One usage case is when you already have PK parameters estimated (from a previous study) and wish to use these c[X] variables in the DERIVATIVES section, instead of estimating m[X] parameters for each individual.







          

      

      

    

  

    
      
          
            
  
Generate data and Fit using Simple PopPK Model

PoPy provides a method to simulate, analyse and compare results in a single script, which is ideal for generating tutorials or illustrative examples. Here we will demonstrate a Tut Script using the same compartment model as used in Fitting a Simple PopPK Model using PoPy, see Figure Fig. 3:-


[image: ../../_images/compartment_diagram10.svg]Fig. 3 One compartment model with bolus dosing for Tut Script. Here c[AMT] is the amount of the bolus dose. m[KE] is the elimination rate and s[CENTRAL] is the current amount in the central compartment.




Note

See the Simple Tut Example obtained by the PoPy developers for this example, including input script and output data file.



A Tut Script can be used as a theoretical tool to investigate identifiability of PK/PD models, because the true f[X] parameters and underlying structure of the data are known. Unfortunately this is never the case in a real life analysis.

This documentation makes extensive use of tut_scripts to create examples to illustrate different Principles of Pharmacokinetics.


Running the Tutorial Script

This tutorial example requires a single input file:-

c:\PoPy\examples\tut_example1.pyml





Open a PoPy Command Prompt to set up the PoPy environment in this folder:-

c:\PoPy\examples\





With the PoPy environment enabled, you can open the script using:-

$ popy_edit tut_example1.pyml





Again, with the PoPy environment enabled, call popy_run on the Tut Script from the command line:-

$ popy_run tut_example1.pyml





When the tut script has completed, you can view the output of the fit using popy_view, by typing the following command:-

$ popy_view tut_example1.pyml.html





Note the extra ‘.html’ extension in the above command. This command opens a local .html file in your web browser to summarise the result of the generating process.

You can compare your local html output with the pre-computed documentation output, see Simple Tut Example. You should expect some minor numerical differences when comparing results with the documentation.




Syntax of Tut Script

The major structural difference between a Fit Script or Gen Script and a Tut Script is that the LEVEL_PARAMS section combines the fitting and generating elements, for example the LEVEL_PARAMS section for this tutorial example is as follows:-

LEVEL_PARAMS:
    GLOBAL:
        split_field: None
        split_dict: {}
        gen_params: |
            c[AMT] = 100.0
            f[KE] = 0.1
            f[PNOISE] = 0.05
            f[KE_isv] = 0.03
        fit_params: |
            f[KE] ~ unif(0.001, 100) 0.05
            f[PNOISE] ~ unif(0.001, 100) 0.1
            f[KE_isv] ~ unif(0.001, 100) 0.1
    INDIV:
        split_field: ID
        split_dict: "*"
        gen_params: |
            c[ID] = sequential(20)
            t[DOSE] = 1.0
            t[OBS] ~ unif(1.0, 50.0; 5)
            r[KE] ~ norm(0, f[KE_isv])
        fit_params: |
            r[KE] ~ norm(0, f[KE_isv])





The LEVEL_PARAMS structure in a tut_script is as follows:-

LEVEL_PARAMS:
    level_name:
        split_field:
        split_dict:
        gen_params:
        fit_params:





The ‘gen_params’ and ‘fit_params’ simply get copied into the appropriate scripts and renamed ‘params’. From the examples above you can see that the gen_params GLOBAL section has:-

f[X] = true_value





Whereas the fit_params GLOBAL section has:-

f[X] ~ unif(0.001, 100) starting_value





Reflecting the fact that the f[X] are known constants for a Gen Script, but are unknown values to be estimated in a Fit Script, with lower and upper limits of [0.001, 100]. Note in PoPy you can also use ‘P’ meaning positive, as a shortcut for ‘~unif(0.0,+inf)’.

The ‘gen_params’ section at the INDIV level also contains these extra lines:-

c[ID] = sequential(20)
t[DOSE] = 1.0
t[OBS] ~ unif(1.0, 50.0; 5)





These lines are passed to the Gen Script and generate 20 individuals all with a dose at time 1.0 and 5 observations uniformally sampled in the time interval [1.0, 50.0].

The ‘gen_params’ section at the GLOBAL level has this extra line:-

c[AMT] = 100.0





This sets the dose amount to be 100.0 units for all individuals. See LEVEL_PARAMS with two levels from a gen_script for more information on the Gen Script syntax within a LEVEL_PARAMS section.




Summary of Tut Results

See Simple Tut Example for example HTML outputs generated by the PoPy developers.

On your local machine, the Tut Script generates an output folder containing four new scripts:-

simple_tut_example.pyml_output/
    simple_tut_example_gen.pyml
    simple_tut_example_fit.pyml
    simple_tut_example_comp.pyml
    simple_tut_example_tutsum.pyml





See Files Generated by Tut Script for more info. The purpose of each of theses scripts is as follows:-


Table 12 Scripts output by a tutorial script






	Script

	Purpose

	Documentation





	*_gen.pyml

	Generate synthetic data set from model

	Gen Script



	*_fit.pyml

	Fit model to synthetic data set

	Fit Script



	*_comp.pyml

	Compare gen model and fit model to synthetic data set

	Comp Script



	*_tutsum.pyml

	Summary of generating and fitting and comparison results

	TutSum Script






These four scripts are run in order.

The Gen Script uses a LEVEL_PARAMS structure similar to a Fit Script, but with some extra commands to generate new data rows, see Syntax of Tut Script above. Alternatively see Generate a Two Compartment PopPK Data Set, for a longer explanation of how a Gen Script works.

The Fit Script here is very similar to the PK/PD model described in Fitting a Simple PopPK Model using PoPy. Therefore here we will focus on the Comp Script outputs. To generate the comp output, you need this entry in your Tut Script OUTPUT_SCRIPTS section:-

OUTPUT_SCRIPTS:
    COMP: {output_mode: gen_script_and_run}





Otherwise the TutSum Script will have no comp output to summarise. The comp outputs are PK curves from the fitted and generated f[X] parameters and the associated objective function values. The simplest Comp Script output is a visual comparison of the true and fitted f[X] PK curves and the synthetic generated data, see Table 13.


Table 13 Fitted model PK curves vs true model PK curves for first three individuals
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The solid blue lines in Table 13 show the predicted PK curves for the fitted model f[X] values. The dotted blue lines show the PK curves for the true f[X] values that were used to generated the data set (in the Gen Script). The blue dots are the target c[DV_CENTRAL] values from the data file.

The target c[DV_CENTRAL] values have measurement noise added, so blue dot data points do not lie exactly on the true f[X] curves. The graphs show that the PK curves for the fitted f[X] are almost identical to the true f[X] curves, this is to be expected as the model only contains a single model parameter m[KE] and we have 5 observations per individual.

If the Comp Script has been run, the TutSum Script outputs convenient tables to compare the initial, fitted and true f[X] values, see Table 14, Table 15 and Table 16.


Table 14 Comparison of initial, fitted and true f[KE] values









	Name

	Initial

	Fitted

	True

	Prop. Error

	Abs. Error





	f[KE]

	0.05

	0.106

	0.1

	6.17%

	6.17e-03







Table 15 Comparison of initial, fitted and true f[KE_isv] values









	Name

	Initial

	Fitted

	True

	Prop. Error

	Abs. Error





	f[KE_isv]

	0.1

	0.0274

	0.03

	8.70%

	2.61e-03







Table 16 Comparison of initial, fitted and true f[PNOISE] values









	Name

	Initial

	Fitted

	True

	Prop. Error

	Abs. Error





	f[PNOISE]

	0.1

	0.0449

	0.05

	10.14%

	5.07e-03






Table 14 shows that the f[KE] parameter is recovered reasonably well, in the sense that the fitted value 0.106 is close to the true generating value 0.1 starting from an initial value of 0.05. Similarly the fitted f[KE_isv] and f[PNOISE] parameters are close to the true generating values.

The objective function Comp Script computes the objective function given the synthetic data and the true generating f[X] parameters (the r[X] are re-optimised). In this case the true f[X] ObjV is:-

-44.20





The Comp Script also computes he ObjV for the fitted f[X] and optimised r[X], which is as follows:-

-48.43





The lower objective value for the fitted f[X] is quite common, because the fitted f[X] can take advantage of noise in the generated synthetic data set. If the size of the synthetic data set is increased, then it is likely that the f[KE], f[KE_isv] and f[PNOISE] parameters will move closer to the true generating values and the ObjVs will also converge.

In this simple example the parameters are very easy to identify. For a more challenging example see Generate data and Fit using a Two Compartment Model.




Generate multiple data sets and Fit using Simple PopPK Model

The tutorial example above generates a single data set from user specified true f[X] values. In PoPy it is possible to generalise this approach and sample true f[X] values multiple times to create multiple data sets. Then fit the same model to each data set.

In this section we walk through how to generate multiple data sets using a MTut Script, using the same simple one compartment model as shown in Fig. 3.


Running the MTut Script

This multi tutorial example make use of this single file:-

c:\PoPy\examples\mtut_example1.pyml





Open a PoPy Command Prompt to setup the PoPy environment in this folder:-

c:\PoPy\examples\





With the PoPy environment enabled, you can open the script using:-

$ popy_edit mtut_example1.pyml





Again, with the PoPy environment enabled, call popy_run on the MTut Script from the command line:-

$ popy_run mtut_example1.pyml





Running a MTut Script can take a considerable amount of time, as it is equivalent to running a Tut Script multiple times. However in this toy example we only run the fit/gen cycle 30 times and only a small number of the f[X] parameters are estimated.




Syntax of MTut Script

The MTut Script specifies the number of populations to sample as follows:-

OUTPUT_OPTIONS: {n_pop_samples: 30}





The MTut Script encodes both the data generation and fitting in the LEVEL_PARAMS section, like a Tut Script. The syntax is the same. In this example the LEVEL_PARAMS section is as follows:-

LEVEL_PARAMS:
    GLOBAL:
        gen_params: |
            c[AMT] = 100.0
            # f[KE] = 0.1
            f[KE] ~ unif(0.05,0.15)
            # f[PNOISE] = 0.05
            f[PNOISE] ~ unif(0.02,0.08)
            # f[KE_isv] = 0.03
            f[KE_isv] ~ unif(0.01,0.05)
        fit_params: |
            # f[KE] ~ unif(0.001, 100) 0.05
            f[KE] ~ P 0.1
            # f[PNOISE] ~ unif(0.001, 100) 0.1
            f[PNOISE] ~ P 0.05
            # f[KE_isv] ~ unif(0.001, 100) 0.1
            f[KE_isv] ~ P 0.03
        split_field: None
        split_dict: {}
    INDIV:
        gen_params: |
            c[ID] = sequential(20)
            t[DOSE] = 1.0
            t[OBS] ~ unif(1.0, 50.0; 5)
            r[KE] ~ norm(0, f[KE_isv])
        fit_params: |
            r[KE] ~ norm(0, f[KE_isv])
        split_field: ID
        split_dict: "*"





Here the generated values of f[KE], f[PNOISE] and f[KE_isv] are sampled from uniform distributions. The fitting process is initialised with (constant) values in the centre of the uniform distribution for each fixed effect.




Summary of MTut Results

The MTut Script should generate an output folder containing three new scripts:-

mtut_example1.pyml_output/
    mtut_example1_mgen.pyml
    mtut_example1_mfit.pyml
    mtut_example1_mcomp.pyml





The purpose of each of theses scripts is as follows:-


Table 17 Scripts output by a multi tutorial script






	Script

	Purpose

	Documentation





	*_mgen.pyml

	Generate multiple synthetic data sets from model

	MGen Script



	*_mfit.pyml

	Fit model to multiple synthetic data sets

	MFit Script



	*_mcomp.pyml

	Compare gen model and fit model f[X]

	MComp Script






The MGen Script is very similar to the Gen Script described in Syntax of Tut Script and the MFit Script is very similar to the Fit Script described in Fitting a Simple PopPK Model using PoPy. See Files Generated by MTut Script for more info.

Here we mainly discuss the MComp Script outputs, which processes the results of MGen Script and MFit Script. The simplest output is a visual comparison of the true and fitted f[X] values as shown in Table 18.


Table 18 Fitted model vs true scatter plots for f[KE], f[KE_isv] and f[PNOISE]
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In Table 18 the blue dots are a scatter plot of fitted f[X] vs true f[X]. The green dots are initial f[X] vs true f[X]. For example in the case of f[KE] the true values are sampled as follows:-

f[KE] ~ unif(0.05,0.15)





i.e. the true values are uniformly sampled in the range [0,05,0.15]. The fitted f[KE] parameters are modelled as follows:-

f[KE] ~ P0.1





The initial values for f[KE] are always 0.1, see green dots in a horizontal line on the left graph in Table 18. The ‘P’ specifies that the fitting value of f[KE] is restricted to positive numbers. The final fitting values are the blue dots on the left graph in Table 18. For f[KE] the blue dots are clustered along the black 45 degree line. Hence fitting for f[KE] works well, this agrees with the initial findings in Fitting a Simple PopPK Model using PoPy. The blue dots for f[KE_isv] and f[PNOISE] (centre and right graphs in Table 18) are not as tightly clustered around the 45 degree line, indicating these parameters are harder to identify than f[KE]. However both f[KE_isv] and f[PNOISE] show a reasonable correlation between the true and fitted values.

Note it might well be possible to carry out a more statistical analysis of correlation between the true and fitted f[X], for example finding a line of best fit through the scatter plot data. The MComp Script outputs are all saved to .csv files, see Files Generated by MComp Script, which could easily be loaded into R or other statistical packages for further analysis.









          

      

      

    

  

    
      
          
            
  
Typical Workflows


Developing a PK/PD model for a real life Data Set

A typical task for a PK/PD modeller is deducing a model given a data set collected from patients. It is usually best to take pre-existing knowledge about the PK and PD of the drug and use this as a starting point to create an initial model. You can then explore more complex models by adding new parameters and comparing the fitted f[X] and objective value obtained with the new model, to prior models. In PoPy you can achieve this by developing a series of fit scripts, running each script and examining the outputs.

To help with this process the potential child scripts of an individual Fit Script are summarised in Fig. 4.


[image: ../../_images/fit_script_hierarchy.svg]Fig. 4 Hierarchy of child scripts for a parent Fit Script.



The child scripts are automatically generated by PoPy in order to facilitate other tasks you may wish to perform. Each child script is optionally generated by an entry in the OUTPUT_SCRIPTS section of the Fit Script.

For example a Sim Script will plot a dense PK or PD curve for each individual and you can see where your current model may not be matching the data set and where the model is extrapolating.

An MSim Script allows you to easily generate a VPC plot, which allow you to see how your current model compares to the data set for the whole population. As a VPC tests the distributional assumptions of the model as well as the fit to each individual, it is a rigorous test for a population model.




Investigate a PK/PD model using synthetic data

If you do not have a real life data set or just wish to carry out a more theoretical investigation you can use PoPy’s tools to generate artificial data. This approach has the benefit of allowing you to create data sets with known properties and test hypotheses about the identifiability of parameters. The primary tool to do this in PoPy is the Tut Script, see Generate data and Fit using Simple PopPK Model for a run through of using a tut script. The potential child scripts of a Tut Script are shown in Fig. 5.


[image: ../../_images/tut_script_hierarchy.svg]Fig. 5 Hierarchy of child scripts for a parent Tut Script.



Another tool for investigating models using artificial data in PoPy is the MTut Script. See Generate multiple data sets and Fit using Simple PopPK Model for a run through of using a MTut script. The potential child scripts of a MTut Script are shown in Fig. 6.


[image: ../../_images/mtut_script_hierarchy.svg]Fig. 6 Hierarchy of child scripts for a parent MTut Script.






Compare PoPy with a previous Nonmem model

Another possible application of PoPy to PK/PD data is taking an existing Nonmem model and running it in PoPy. This could be useful to compare the performance of PoPy and Nonmem or to get a second opinion in different modelling software.

See some examples of converting Nonmem scripts and data in PoPy for Nonmem Users.







          

      

      

    

  

    
      
          
            
  
Principles of Pharmacokinetics

Pharmacokinetics is the study of the time profile of drugs and metabolites in a physiological organism. It is often described as “what the body does to the drug”. Generally, our goal is to predict a time course of drug concentration that resembles the observations we have collected from an individual. (Observations from a population are covered in Population Models in PoPy.)

To make these predictions we build a mathematical model that, for an individual, has two main components:


	A deterministic structural model with parameters that define the shape of the time course


	A stochastic residual error model that specifies how observations deviate from the deterministic predictions





	[MouldUpton2012]


	[MouldUpton2013]


	[UptonMould2013]


	[RowlandTozer2012]




This part of the book provides a detailed description of how various pharmacokinetic (PK) models are implemented in PoPy. It assumes no prior knowledge of PK, hence experienced modellers may be tempted to skip this section. It is, however, probably valuable to look at the syntax for absorption models, particular the Weibull model, which is not available in other population modelling software.



	Elimination, Clearance and Volume of Distribution

	Compartment Models

	Dose Administration

	Residual Error Model

	Estimating Model Parameters

	Uncertainty and Standard Errors









          

      

      

    

  

    
      
          
            
  
Elimination, Clearance and Volume of Distribution

Pharmacokinetics is the study of “what the body does to the drug.” By and large, the body removes it either by metabolism (primarily in the liver) or by elimination (primarily in the kidneys).


Note

See the Elimination Example with KE parameter for the Tut Script used to generate results in this section.



Consider, as a first example, a bolus dose of 100 mg administered intravenously (IV) at time t0=1. Under first order kinetics, the rate of elimination is directly proportional to the amount of drug, $S(t)$, in the body at time t and the constant of proportionality is known as the elimination rate constant, KE:


[image: \frac{dS}{dt} = -KE \cdot S(t)]


This ordinary differential equation (ODE) has a closed form solution:


[image: S(t) = S(t0) \cdot \exp\{-KE \cdot (t-t0)\}]


i.e. an exponential decay curve, where the initial conditions are


[image: S(t0) = \text{100~mg}.]


We can specify this directly in the PREDICTIONS section of the control script,

PREDICTIONS: |
    plabel[DRUG_AMT] = "Drug Amount (mg)"
    clabel[TIME] = "Time (minutes)"
    p[DRUG_AMT] = c[AMT]*exp(-c[KE]*(c[TIME]-1.0))
    c[DRUG_AMT] ~ norm(p[DRUG_AMT], 0.0)





where, for now, we treat KE as if it were a constant measurable quantity, c[KE], defined in the data file. From this closed form solution, we can predict the concentration at different time points and synthesize observations (Fig. 7).


[image: ../_images/0000007.svg]Fig. 7 Amount Administered vs Time curve for an intravenously administered 100 mg bolus dose at time t0=1 with first order elimination. (Observations are noiseless in this example.)




Volume of Distribution

In practice, however, we cannot measure the amount of drug in the body from a blood plasma sample, only its concentration (i.e. amount of drug per unit volume).


Note

See the Elimination Example with Volume of Distribution for the Tut Script used to generate results in this section.



This measured concentration will clearly be influenced by the physiological volume of blood plasma in an individual’s body. Less obvious, however, is that the concentration will also be influenced by the physiochemical properties of the drug that determine how the drug is distributed throughout the body; some drugs are distributed mostly in the blood plasma (which is directly observed) whereas others get distributed to all tissues (which are not). The scaling factor – a combination of physiological and physiochemical properties – that relates amounts to concentrations is known as the volume of distribution, V, which varies greatly between drugs and, to a lesser extent, between individuals.

We model the observed concentration by including the volume of distribution parameter (with a value of 20 L in this example) in the PREDICTIONS section of the control script:

PREDICTIONS: |
    plabel[DRUG_CONC] = "Drug Concentration (mg/L)"
    clabel[TIME] = "Time (minutes)"
    AMOUNT = c[AMT]*exp(-c[KE]*(c[TIME]-1.0))
    p[DRUG_CONC] = AMOUNT/c[V]
    c[DRUG_CONC] ~ norm(p[DRUG_CONC], 0.0)





which has the effect of scaling the observations (Fig. 8; note the scale of the y-axis).


[image: ../_images/0000008.svg]Fig. 8 Concentration vs Time curve for an intravenously administered 100 mg bolus dose with first order elimination






Clearance


Note

See the Elimination Example with Clearance for the Tut Script used to generate results in this section.



Because we can only measure concentrations, it makes sense to define the rate of elimination also in terms of concentrations:


[image: \frac{dS}{dt} &= -KE \cdot V \cdot \frac{S(t)}{V} \\               &= -KE \cdot V \cdot C(t) \\               &= -CL \cdot C(t) \\]


where


[image: C(t) = \frac{S(t)}{V}]


is the concentration at time t and


[image: CL = KE \cdot V]


is a constant of proportionality known as the clearance, CL, that relates elimination to concentration. Again, this permits a closed form solution,


[image: S(t) = S(0) \cdot \exp\{-(CL/V) \cdot (t-t0)\}]


where we have substituted CL/V for the rate constant of elimination, KE:

PREDICTIONS: |
    plabel[DRUG_CONC] = "Drug Concentration (mg/L)"
    clabel[TIME] = "Time (minutes)"
    AMOUNT = c[AMT]*exp(-(c[CL]/c[V])*(c[TIME]-1.0))
    p[DRUG_CONC] = AMOUNT/c[V]
    c[DRUG_CONC] ~ norm(p[DRUG_CONC], 0.0)





Because this is a mathematical equivalence, the Concentration vs Time curve (Fig. 8) is unchanged.







          

      

      

    

  

    
      
          
            
  
Compartment Models

Although analytic solutions exist for simple models, more complex models can be difficult (or impossible) to define in closed form. Compartment models are a basic tool used to describe more complex PK in animals and man, the idea being that the body can be treated as though it were composed of a number of compartments through which the drug disperses. The concentration of drug in some of these compartments can be measured directly, e.g. by taking blood samples.

A typical model contains a Central compartment that represents the site of sampling (usually the blood plasma) with zero or more additional compartments. Drug diffuses between compartments (sometimes under the action of transporters) as the system heads toward an equilibrium state in which concentrations in each compartment may or may not be equal.

Drug is lost over time from the Central compartment via metabolism and elimination (usually through the action of the liver and kidneys, respectively).


Note

Compartmental models are not intended to replicate biology per se; they simply produce mathematical curves that resemble observations, and it is difficult to associate any compartment with a specific tissue or organ unless sampling occurs at that site.




One Compartment Model


One Compartment Model with Intravenous Dosing

We return to the example from the previous chapter whereby a 100 mg bolus dose of drug is administered intravenously into the body, which we now refer to as the Central compartment. The drug is then removed from the Central compartment by the same process of elimination described previously, such that


[image: \frac{dS}{dt} = -(CL/V) \cdot S(t) \\]


which has the closed form solution


[image: S(t) = S(0) \cdot \exp(-(CL/V) \cdot t).]



Note

See the One Compartment Model with Intravenous Dosing for Tut Script used to generate results in this section.



Graphically, we can draw a compartment diagram that shows the flows into and out of the Central compartment (Fig. 9).


[image: ../_images/compartment_diagram.svg]Fig. 9 Compartment diagram for a one compartment model with intravenous dosing.



In the previous chapter, we specified this model programatically by writing the closed form solution directly into the PREDICTIONS block of the control script:

PREDICTIONS: |
    plabel[DRUG_CONC] = "Drug Concentration (mg/L)"
    clabel[TIME] = "Time (minutes)"
    AMOUNT = c[AMT]*exp(-(c[CL]/c[V])*(c[TIME]-1.0))
    p[DRUG_CONC] = AMOUNT/c[V]
    c[DRUG_CONC] ~ norm(p[DRUG_CONC], 0.0)





Using the compartment model approach, however, we can express the same model more naturally using the differential equations themselves, and obtain amounts (and therefore concentrations) using a numerical ODE solver. To do so, we need to add a new section, DERIVATIVES, to the control script in which we specify the differential equations:

DERIVATIVES: |
    d[CENTRAL] = @bolus{amt:c[AMT]} - c[CL]*s[CENTRAL]/c[V]





where d[CENTRAL] represents the first derivative of the amount of drug, s[CENTRAL], in the Central compartment.

There are two components of the flow: a positive flow, representing an intravenous bolus dose, into the Central compartment

@bolus{amt: c[AMT]}





and a negative flow out of the Central compartment,

-c[CL]*s[CENTRAL]/c[V]





that is directly proportional to the concentration, s[CENTRAL]/c[V].

Because we are now using a compartment model, the PREDICTIONS section can simply refer to the amount in the Central compartment, s[CENTRAL], as determined by the solver:

PREDICTIONS: |
    plabel[DV_CENTRAL] = "Drug Concentration (mg/L)"
    clabel[TIME] = "Time (minutes)"
    p[DV_CENTRAL] = s[CENTRAL]/c[V]
    c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], 0.0)





and the predicted observations again follow an exponential decay curve (Fig. 10).


[image: ../_images/000000.svg]Fig. 10 Concentration vs Time curve for a bolus dose, intravenously applied to the Central compartment, with first order elimination.



(For clarity, this example applies the bolus dose at t = 1 s, as indicated by the vertical line in the plot.)

Given that this is a relatively simple model, it has a closed form solution which means we can write down an equation that defines concentration (not its derivative) as a function of time. As a result, we can obtain the concentration at any time point without needing to use a comparatively slow numerical differential solver.

PoPy therefore includes a convenient shortcut to this equation that can be used in the DERIVATIVES section of the script to compute directly the amount of drug:

DERIVATIVES: |
    s[CENTRAL] = @iv_one_cmp_cl{
        dose: @bolus{amt:c[AMT]},
        CL: c[CL], V: c[V] }






	The left hand side of the equation is now s[CENTRAL] rather than d[CENTRAL] because we are defining the amount and not its derivative.


	The shortcut’s name has three parts: the first, iv, denotes that the dose is intravenous; the second, one_cmp, says that there is one compartment; and the third, cl, says that we are parameterizing the model using clearance and volumes of distribution.


	The shortcut takes a number of arguments such as dose (which defines the properties of the dose such as its amount) and CL (which allows you to use any name for the rate constant model parameter, e.g. c[clearance]).




One quantity of interest in PK is half-life ([image: t_{1/2}]), the time taken for drug concentration to fall to half that of its peak value. For a one compartment model with IV administration, we can calculate [image: t_{1/2}] directly from the closed form solution:


[image: S(t_{1/2})     &= S(0) / 2 \\ \Rightarrow \exp\{ -(CL/V) \cdot t_{1/2} \}     &= 0.5 \\ -(CL/V) \cdot t_{1/2}     &= \log(0.5) \\ t_{1/2}     &= -\log(0.5) \cdot \frac{V}{CL} \\ t_{1/2}     &\approx 0.693 \cdot \frac{V}{CL} \\]


Next, we turn to the case where the drug is administered via a route that requires absorption  (i.e. anything except intravenous or intra-arterial injection).




One Compartment Model with Absorption

Many drugs are not administered directly into the bloodstream but are given orally, into the gastrointestinal tract, from which absorption must occur before the drug is observed in the plasma. Drugs are also frequently administered subcutaneously or intramuscularly, in which case absorption will also need to be modelled.

We model this using one or more absorption compartments (which we refer to as Depot compartments), connected via a one-way flow to the Central compartment.


Note

In PKPD terminology, the Depot compartment is not counted as a compartment, hence this is called a “one compartment model with absorption” even though it has two “compartments”.




Note

See the One Compartment Model with Absorption for Tut Script used to generate results in this section.



In a first order absorption model, the flow from the Depot to the Central compartment is proportional to the amount of drug in Depot, and the constant of proportionality is known as the absorption rate, KA:


[image: ../_images/compartment_diagram1.svg]Fig. 11 Compartment diagram for a one compartment model with absorption.



We must therefore model three flows:


	A bolus dose to the Depot


	A negative (outward) first order flow from the Depot with a rate constant of KA. This must be matched by a positive (inward) first order flow to the Central compartment.


	A negative (outward) flow from the Central compartment to account for elimination.




which we specify directly in the DERIVATIVES section of the PoPy script:

DERIVATIVES: |
    d[DEPOT]   = @bolus{amt:c[AMT]} - c[KA]*s[DEPOT]
    d[CENTRAL] = c[KA]*s[DEPOT] - c[CL]*s[CENTRAL]/c[V]





PoPy allows you to define the flows between compartments incrementally to simplify the model specification, after first initializing the flows to zero:

DERIVATIVES: |
    # initialize
    d[DEPOT]   = 0.0
    d[CENTRAL] = 0.0
    # update
    d[DEPOT] += @bolus{amt:c[AMT]}  # dose in
    d[DEPOT->CENTRAL] += c[KA]*s[DEPOT]  # absorption
    d[CENTRAL] -= c[CL]*s[CENTRAL]/c[V]  # elimination out





In this case, flows in from an external “source” are added using +=, flows out to an external “sink” are subtracted using -=, and flows between compartments are added using += with the arrow (->) notation to define the compartments being linked.

This notation has the advantage that the pairing of compartments is explicit and every flow is defined only once rather than having to maintain two equal and opposite flows, thus reducing the potential for human error when defining the model.

We note that, as in One Compartment Model with Intravenous Dosing, PoPy provides a closed form solution for this model:

DERIVATIVES: |
    s[DEPOT,CENTRAL] = @dep_one_cmp_cl{
        dose: @bolus{amt:c[AMT]},
        KA: c[KA], CL: c[CL], V: c[V]}





where dep (rather than iv) in the first part of the shortcut name denotes that a Depot compartment is included.


[image: ../_images/0000001.svg]Fig. 12 Concentration vs Time curve for a one compartment model with absorption



Regardless of which formulation is used, the resulting Concentration vs Time curve is the same (Fig. 12). In this case, the amount of drug in Central rises more slowly than in the intravenous case as the drug is absorbed, peaks at a lower amount, then drops off at an approximately exponential rate as elimination removes the drug from the body.


Note

It is common for a drug to be absorbed more quickly than it is eliminated. In some cases, however, the opposite is true and the elimination rate becomes limited by the absorption rate (because in practice the drug cannot be eliminated faster than it is absorbed). This phenomenon is known as flip flop kinetics [https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/flip-flop-kinetics].



We now turn to the case where the drug diffuses between the blood and an organ of interest, modelled by adding a peripheral compartment.






Two Compartment Model


Two Compartment Model with Intravenous Dosing

For simplicity, we return to intravenous administration of the drug directly into the Central compartment. This time, however, we add a peripheral distribution compartment, Peri, that models the diffusion of the drug between the blood and other tissues. The peripheral compartment is a useful approximation, which captures the impact of tissues with slower distribution on the shape of the plasma concentration-time profile.


Note

See the Two Compartment Model with Intravenous Dosing for Tut Script used to generate results in this section.



Because the diffusion can occur in both directions (unlike in absorption), we must now model the flow from Central to Peri and from Peri back to Central. We therefore introduce two new parameters:


	Q, the intercompartmental clearance


	V2, the volume of distribution of Peri (compartment 2)




and rename the volume of distribution of the Central compartment from V to V1 in order to distinguish it from that of the Peri compartment:


[image: ../_images/compartment_diagram2.svg]Fig. 13 Compartment diagram for a two compartment model with intravenous dosing.



The corresponding DERIVATIVES section is:

DERIVATIVES: |
    # initialize
    d[CENTRAL] = 0.0
    d[PERI] = 0.0
    # update
    d[CENTRAL] += @bolus{amt:c[AMT]}
    d[CENTRAL->PERI] += c[Q]*s[CENTRAL]/c[V1]  # intercompartmental diffusion
    d[PERI->CENTRAL] += c[Q]*s[PERI]/c[V2]  # intercompartmental diffusion
    d[CENTRAL] -= c[CL]*s[CENTRAL]/c[V1]





and, again, there is a convenient shortcut, @iv_two_cmp_cl

DERIVATIVES: |
    s[CENTRAL,PERI] = @iv_two_cmp_cl{
        dose: @bolus{amt:c[AMT]},
        CL: c[CL], V1: c[V1],
        Q: c[Q], V2: c[V2] }





As in previous examples, the resulting Concentration vs Time curve (Fig. 14) is the same regardless of whether we use flows or the closed form solution because they are equivalent.


[image: ../_images/0000002.svg]Fig. 14 Concentration vs Time curve for a two compartment model with intravenous dosing






Two Compartment Model with Absorption

We can now model the effect of absorption (i.e. a Depot compartment), either by adding a Depot compartment to iv_two_cmp_cl_tut or by adding a Peri compartment to dep_one_cmp_cl_tut.


Note

See the Two Compartment Model with Absorption for Tut Script used to generate results in this section.




[image: ../_images/compartment_diagram3.svg]Fig. 15 Compartment diagram for a two compartment model with absorption



The resulting DERIVATIVES section is:

DERIVATIVES: |
    # initialize
    d[DEPOT]   = 0.0
    d[CENTRAL] = 0.0
    d[PERI] = 0.0
    # add flows
    d[DEPOT] += @bolus{amt:c[AMT]}
    d[DEPOT->CENTRAL] += c[KA]*s[DEPOT]  # absorption
    d[CENTRAL->PERI] += c[Q]*s[CENTRAL]/c[V]
    d[PERI->CENTRAL] += c[Q]*s[PERI]/c[V2]
    d[CENTRAL] -= c[CL]*s[CENTRAL]/c[V]





which also has a closed-form shortcut:

DERIVATIVES: |
    s[DEPOT,CENTRAL,PERI] = @dep_two_cmp_cl{
        dose: @bolus{amt:c[AMT]},
        KA: c[KA], CL: c[CL], V1: c[V1],
        Q: c[Q], V2: c[V2] }






[image: ../_images/0000003.svg]Fig. 16 Concentration vs Time for a two compartment model with absorption



In the resulting Concentration vs Time curve (Fig. 16) we see a combination of the behaviours exhibited in the two earlier examples (iv_two_cmp_cl_tut and dep_one_cmp_cl_tut).






Three Compartment Model


Three Compartment Model with Intravenous Dosing

For completeness, we look at models with three compartments: the Central compartment and two peripheral compartments, Peri1 and Peri2.


Note

See the Three Compartment Model with Intravenous Dosing for Tut Script used to generate results in this section.



As in Two Compartment Model with Intravenous Dosing, we add two new parameters:


	Q3, the inter-compartmental clearance between Central and Peri2 (compartment 3)


	V3, the volume of distribution of Peri2 (compartment 3)




and rename the inter-compartmental clearance between Central and Peri1 (compartment 2) from Q to Q2.


[image: ../_images/compartment_diagram4.svg]Fig. 17 Compartment diagram for a three compartment model with intravenous dosing



After adding the two new flows to Peri2, the DERIVATIVES sections is now:

DERIVATIVES: |
    # initialize
    d[CENTRAL] = 0.0
    d[PERI1] = 0.0
    d[PERI2] = 0.0
    # update
    d[CENTRAL] += @bolus{amt:c[AMT]}  # dose in
    d[CENTRAL->PERI1] += c[Q2]*s[CENTRAL]/c[V1]
    d[PERI1->CENTRAL] += c[Q2]*s[PERI1]/c[V2]
    d[CENTRAL->PERI2] += c[Q3]*s[CENTRAL]/c[V1]
    d[PERI2->CENTRAL] += c[Q3]*s[PERI2]/c[V3]
    d[CENTRAL] -= c[CL]*s[CENTRAL]/c[V1]  # elimination out





and again there is a closed-form shortcut, iv_three_cmp_cl.

DERIVATIVES: |
    s[CENTRAL,PERI1,PERI2] = @iv_three_cmp_cl{
        dose: @bolus{lag:0, amt:c[AMT]},
        CL: c[CL], V1: c[V1],
        Q2: c[Q2], V2: c[V2],
        Q3:c[Q3], V3: c[V3] }





both of which give the same Concentration vs Time curve (Fig. 18), though it is not easy to see the impact of the second peripheral compartment that provides the transitional phase between the very steep initial fall and the shallow first-order terminal phase.


[image: ../_images/0000004.svg]Fig. 18 Amount vs. Time for a three compartment model with intravenous dosing






Three Compartment Model with Absorption

The final model we consider in this chapter is a three compartment model with first order absorption (Fig. 19), specified either by adding a Depot compartment to iv_three_cmp_cl_tut or by adding a second peripheral compartment to dep_two_cmp_cl_tut.


Note

See the Three Compartment Model with Absorption for Tut Script used to generate results in this section.




[image: ../_images/compartment_diagram5.svg]Fig. 19 Compartment diagram for a three compartment model with absorption



The DERIVATIVES section,

DERIVATIVES: |
    # initialize
    d[DEPOT] = 0.0
    d[CENTRAL] = 0.0
    d[PERI1] = 0.0
    d[PERI2] = 0.0
    # update
    d[DEPOT] += @bolus{amt:c[AMT]} # dose in
    d[DEPOT->CENTRAL] += c[KA]*s[DEPOT]  # absorption
    d[CENTRAL->PERI1] += c[Q2]*s[CENTRAL]/c[V1]
    d[PERI1->CENTRAL] += c[Q2]*s[PERI1]/c[V2]
    d[CENTRAL->PERI2] += c[Q3]*s[CENTRAL]/c[V1]
    d[PERI2->CENTRAL] += c[Q3]*s[PERI2]/c[V3]
    d[CENTRAL] -= c[CL]*s[CENTRAL]/c[V1]  # elimination out





also has a closed form shortcut,

DERIVATIVES: |
    s[DEPOT,CENTRAL,PERI1,PERI2] = @dep_three_cmp_cl{
        dose: @bolus{lag:0, amt:c[AMT]},
        KA: c[KA], CL: c[CL], V1: c[V1],
        Q2: c[Q2], V2: c[V2],
        Q3: c[Q3], V3: c[V3]}





both of which produce the same Concentration vs Time curve, which resembles that from Two Compartment Model with Absorption only with a lower peak (Fig. 20).


[image: ../_images/0000005.svg]Fig. 20 Concentration vs Time for a three compartment model with absorption











          

      

      

    

  

    
      
          
            
  
Dose Administration

So far we have considered only a bolus dose - a single amount administered instantaneously to a given compartment, either intravenously (e.g. an injection) or via absorption (e.g. an orally administered pill).

There are, of course, other means of administering a drug and here we will introduce the dosing functions supported by PoPy. All of the dosing functions have two arguments in common:


	the amt argument is the quantity of drug administered in total.


	the lag argument defines a delay between the drug being administered (as specified in the data file) and the drug entering the compartment where it is administered.  This can be useful when very little drug is absorbed immediately. Unless otherwise stated, it is assumed that the lag time is zero.




The remaining arguments to the dosing function are dependent on the dose type.


Bolus Dose

A bolus dose represents an instantaneous increase in the amount of a drug in a specific compartment. Physiologically it represents an injection where the drug is assumed to be well distributed within the compartment within a negligible time period.


Note

See the Bolus Dose with no elimination. for Tut Script used to generate results in this section.



The mathematical expression for a bolus at time [image: t_B] in compartment Central is:-


[image: s[CENTRAL] = s[CENTRAL] + B(t)]


where:-


[image: B(t)= \Biggl \lbrace {     \text{c[AMT]} ,\text{ if } { t = t_B }     \atop     0.0, \text{ otherwise } }]


In PoPy, we add a bolus dose to a given compartment (e.g. Central) using the DERIVATIVES section of the script:

d[CENTRAL] = @bolus{amt: c[AMT], lag: m[LAG]} + ...





Because the dose amount is usually fixed by the experiment, it is typically included in the input data and is therefore a column (or covariate) and encoded as such, e.g. c[AMT].

The lag time, however, is usually estimated as a model parameter and would typically be coded as such, e.g. m[LAG]. If lag time is not included in the bolus function, it defaults to zero:

d[CENTRAL] = @bolus{amt: c[AMT], lag: 0.0} + ...





which is exactly the same as

d[CENTRAL] = @bolus{amt: c[AMT]} + ...





See @bolus for some more syntax examples.

The cumulative amount in the compartment (with no elimination) is therefore a step function (Fig. 21):


[image: Cumulative amount following a bolus dose with no elimination]Fig. 21 Cumulative amount following a bolus dose with no elimination



An example of a bolus dose added to a one compartment model with no lag time is:

DERIVATIVES: |
    d[CENTRAL] = @bolus{amt:c[AMT]} - c[CL]*s[CENTRAL]/c[V]








Infusion

An infusion administers the dose gradually, usually at a fixed rate over a fixed period of time (i.e. the rate of infusion is constant during the time period and zero before and after, typically intravenously).

The mathematical expression for an infusion is:


[image: \text{d[CENTRAL]} = \text{d[CENTRAL]} + \text{R(t)}]


where the infusion has constant rate c[RATE], starts at time t=0 and has duration c[DUR] and in compartment CENTRAL is:-

where:-


[image: R(t)= \Biggl \lbrace {     c[RATE] ,\text{ if } { t_S \leq t \leq t_S + c[DUR] }     \atop     0.0, \text{ otherwise } }]


An infusion dose can be characterised either by the duration of the infusion or the rate of the infusion.

Note: For a constant total infusion amount (AMT) the RATE and DURATION can be calculated from each other:


[image: \text{AMT} = \text{RATE} \times \text{DURATION}]


So specifying either a RATE or DURATION, together with a total amount, is sufficient to fully define an infusion.


Infusion Duration

An infusion duration is coded by:

@inf_dur{amt: c[AMT], lag: m[LAG], dur: c[DUR]}





in the equation for the appropriate compartment in the DERIVATIVES: section of a fit or tutorial script.

Dose and lag are coded in the same way as for a bolus dose.

Duration can either be included in the input data or can be estimated as a parameter.


Note

See the Infusion Duration Dose with no elimination. for Tut Script used to generate results in this section.



An example of an infusion dose spread over 20 time units added to a one compartment model with no lag time is:

DERIVATIVES: |
    d[CENTRAL] = (
        @inf_dur{amt: c[AMT], lag: 0.0, dur: 20}
        - m[KE]*s[CENTRAL]
    )





If the infusion duration varies between individuals use:

DERIVATIVES: |
    d[CENTRAL] = (
        @inf_dur{amt: c[AMT], lag: 0.0, dur: c[DUR]}
        - m[KE]*s[CENTRAL]
    )





See @inf_dur for some more syntax examples.

The Amount-vs-Time curve for an infusion (without elimination) is a ramp function where the cumulative dose rises linearly until it reaches the total amount administered (Fig. 22).


[image: Cumulative amount following a infusion dose of 95 |nbsp| mg over a duration of 19 |nbsp| min with no elimination]Fig. 22 Cumulative amount following a infusion dose of 95 mg over a duration of 19 min with no elimination






Infusion Rate

An infusion duration is coded by:

@inf_rate{amt: c[AMT], lag: m[LAG], rate: c[RATE]}





in the equation for the appropriate compartment in the DERIVATIVES: section of a fit or tutorial script.

The amount and lag are coded in the same way as for a bolus dose.

Infusion rate can either be included in the input data or can be estimated as a parameter.


Note

See the Infusion Rate Dose with no elimination. for Tut Script used to generate results in this section.



An example of an infusion dose at a rate of 5 dose units per time unit added to a one compartment model with no lag time is:

DERIVATIVES: |
    d[CENTRAL] = (
        @inf_rate{amt: c[AMT], lag: 0.0, rate: 5}
        - m[KE]*s[CENTRAL]
    )





If the infusion rate is different between individuals use:

DERIVATIVES: |
    d[CENTRAL] = (
        @inf_rate{amt: c[AMT], lag: 0.0, rate: c[RATE]}
        - m[KE]*s[CENTRAL]
    )





See @inf_rate for some more syntax examples.


[image: Cumulative amount following a infusion dose of 95 |nbsp| mg at a rate of 5 |nbsp| mg/min with no elimination]Fig. 23 Cumulative amount following a infusion dose of 95 mg at a rate of 5 mg/min with no elimination








Gamma Dose

This occurs when the release of the drug into a specific compartment follows a Gamma curve. See:-

https://en.wikipedia.org/wiki/Gamma_distribution


Note

See the Gamma Dose with no elimination. for Tut Script used to generate results in this section.



The mathematical expression for an Gamma dose starting at time [image: t_S] with Weibull parameters [image: \lambda] and [image: \kappa] and total dose amount [image: \text{AMT}] in compartment Central is:-


[image: \text{d[CENTRAL]} = \text{d[CENTRAL]} + \text{R(t)}]


where:-


[image: R(t)= \Biggl \lbrace {     \frac{ \beta^\alpha (t-t_S)^{\alpha-1} e^{-\beta (t-t_S)}}{\Gamma(\alpha)} ,\text{ if } { t \geq t_S }     \atop     0.0, \text{ otherwise } }]


Where R(t) is the rate of drug absorption at time (t) and [image: \lambda] and [image: \kappa] are parameters of the Gamma. R(t) is the Gamma density function scaled by the AMT parameter. Since a density function has unit area under the curve, the AMT scaling ensures that the total dose administered is equal to AMT.

This can be implemented in PoPy using:

@gamma{amt: c[AMT], lag: m[LAG], alpha: m[ALPHA], beta: m[BETA]}





in the equation for the appropriate compartment in the DERIVATIVES section of a Fit Script or ref:tut_script. See @gamma.

Here the parameters map to the Gamma equation as follows:-







	Parameter

	Symbol





	alpha

	[image: \alpha]



	beta

	[image: \beta]






The lag is coded in the same way as for a bolus dose. A lag time merely delays the start time of the gamma dose.

An example of a gamma dose added to a one compartment model with no lag time is:

DERIVATIVES: |
    d[CENTRAL] = @gamma{amt: c[AMT], alpha: m[ALPHA], beta: m[BETA]} - m[KE]*s[CENTRAL]






[image: Cumulative amount following a Gamma dose with no elimination]Fig. 24 Cumulative amount following a Gamma dose with no elimination






Weibull Dose

The examples given so far have shown the amount of drug absorbed with respect to time, rising from an initial value (typically zero) to the amount administered.

They can, alternatively, be viewed as the cumulative probability of 1 mg of drug having been absorbed at any given time, multiplied by the total amount (in mg) of drug administered. (Because a density function has unit area under the curve, the scaling ensures that the total dose administered is equal to AMT.) This formulation allows us to consider alternative dosing functions by using different probability distributions.


Note

See the Weibull Dose with no elimination. for Tut Script used to generate results in this section.



One choice that has been proposed [Piotrovskii1987] uses the Weibull distribution [https://en.wikipedia.org/wiki/Weibull_distribution] [Christensen1980] where the amount, [image: S(t)], absorbed at time [image: t] following a dose of AMT at time [image: t=t_0] is given by


[image: S(t) = AMT \cdot \exp \left\{     -\left(         \frac{t-t_0}{\lambda}     \right)^\kappa \right\}]


such that


[image: \frac{dS(t)}{dt} = \left \{     \begin{array}{lr}         \frac{\kappa}{\lambda}         \left(             \frac{t-t_0}{\lambda}         \right)^{\kappa-1} \cdot         AMT \cdot \exp \left\{             -\left(                 \frac{t-t_0}{\lambda}             \right)^{\kappa}         \right \},         & \text{for } t \geq t_0 \\          0,         & \text{otherwise} \\     \end{array} \right \}]


where λ (lambda) and κ (kappa) are, respectively, scale and shape parameters of the Weibull distribution.

In other words, for [image: t \geq t_0]


[image: \frac{dS(t)}{dt} =     \frac{\kappa}{\lambda}     \left(         \frac{t-t_0}{\lambda}     \right)^{\kappa-1} \cdot S(t)]


which can be viewed as a rate absorption constant that varies over time, reflecting the possibility that a molecule of drug may be more likely to be absorbed the longer it is resident in the body (for example, due to passage of the drug into the intestine).

A shortcut for the Weibull dosing function is applied in PoPy using

@weibull{amt: c[AMT], lag: m[LAG], lambda: m[LAMBDA], kappa: m[KAPPA]}





in the equation for the appropriate compartment in the DERIVATIVES section of an input script.

The lag works in the same way as for a bolus dose, delaying the onset of the weibull dose. Again, this can be left out if we assume no lag:

DERIVATIVES: |
    d[CENTRAL] = @weibull{amt: c[AMT], lambda: m[LAMBDA], kappa: m[KAPPA]}






[image: Cumulative amount following a Weibull dose with no elimination]Fig. 25 Cumulative amount following a Weibull dose with no elimination






Repeated Dosing

There need not be only one dose administered to the subject for a given experiment – several doses may be given, for example to maintain drug concentration at a steady state over a period of time. PoPy handles this by allowing multiple dose lines in the data file and superimposing the resulting curves, see Table 19.


Table 19 Repeated dosing, administered to a one compartment model with first order elimination





	Repeated Bolus Dosing

	Repeated Infusion Dosing



	[image: ]
                
	[image: ]
                


	Repeated Gamma Dosing

	Repeated Weibull Dosing



	[image: ]
                
	[image: ]
                






Note

See Repeated Bolus Dose with first order elimination., Repeated Infusion Rate Dose with first order elimination., Repeated Gamma Dose with first order elimination. and Repeated Weibull Dose with first order elimination. for the tutorial scripts  used to generate results in this section.



Note PoPy can superimpose consecutive complex Dosing Functions (e.g. Weibull and Gamma functions) that can cause numerical instability in other PK/PD packages.







          

      

      

    

  

    
      
          
            
  
Residual Error Model

So far, we have looked at compartment models and different dosing regimes all under theoretical conditions. For example, our Concentration vs Time curve for a one compartment model with absorption produces smooth curves with evenly spaced observation points (Fig. 26).


[image: ../_images/pop_spag8.svg]Fig. 26 Concentration vs Time for a one compartment model with absorption, without measurement error (noise).



In practice, however, it is impossible to measure any quantity perfectly; all measurements are imperfect and contain some noise. To weight each observation correctly, we may need to account for patterns of noise in the data. For example, noise often increases proportionally with signal so that higher concentrations contain more absolute error. Sometimes we know that observations have been collected in suboptimal conditions and may wish to allow the model to downweight them if they are inconsistent with other data.

We therefore turn to the different ways in which noise manifests itself on the observations and how we can incorporate this into a fitted model.


Error Models for Continuous Data

Specifically, we look at how to model errors that appear on a continuous quantity such as the measured concentration of drug, demonstrating the concept using a normal distribution (a popular choice for continuous measurements).


Additive Noise


Note

See the Model containing additive error only and additive error only input data for the Tut Script used to generate results in this section.



In the simplest case, the difference between the observed measurement and the model prediction will be a random variable of constant variance (or, equivalently, constant standard deviation) such that the observations are scattered evenly around the ideal curve.

PREDICTIONS: |
    plabel[DV_CENTRAL] = "Drug Concentration (mg/L)"
    clabel[TIME] = "Time (minutes)"
    p[DV_CENTRAL] = s[CENTRAL]/m[V]
    add_std = m[ANOISE_STD]
    total_var = add_std**2
    c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], total_var)





With a standard deviation of 1.0, for example, and 100 randomly sampled time points between 1 and 40, we get a more realistic Concentration vs Time curve (Fig. 27).


[image: ../_images/pop_spag9.svg]Fig. 27 Concentration vs Time for a one compartment model with absorption, plus additive noise.






Proportional Noise


Note

See the Model containing proportional error only, with proportional only data for the Tut Script used to generate results in this section.



While additive noise is independent of the strength of the signal (e.g. the magnitude of the measurement) at any point in time, proportional noise increases in proportion to the magnitude of the signal. For example, the standard deviation of the noise may be equal to 10% of the signal magnitude such that the error is greatest at the peak of the curve, reducing as the concentration falls (Fig. 28)

PREDICTIONS: |
    plabel[DV_CENTRAL] = "Drug Concentration (mg/L)"
    clabel[TIME] = "Time (minutes)"
    p[DV_CENTRAL] = s[CENTRAL]/m[V]
    prop_std = p[DV_CENTRAL] * m[PNOISE_STD]
    total_var = prop_std**2
    c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], total_var)






[image: ../_images/pop_spag10.svg]Fig. 28 Concentration vs Time for a one compartment model with absorption, plus proportional noise.






Additive and Proportional Noise


Note

See the Model containing both proportional and additive error for the Tut Script used to generate results in this section.



In reality, most measurement processes are affected by both kinds of error such that the additive noise dominates at low signal magnitudes whereas proportional noise dominates at high signal magnitudes (Fig. 29).


[image: ../_images/0000009.svg]Fig. 29 Concentration vs Time for a one compartment model with absorption, plus both proportional and additive noise



We must, however, take care when defining the variance of a mixed error model. The variance of the sum of two normally distributed variables [https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables] is the sum of their variances, and therefore the standard deviation of the sum does not equal the sum of their standard deviations:


[image: a        &\sim N(\mu_a, \sigma_a^2) \\ b        &\sim N(\mu_b, \sigma_b^2) \\ Var(a+b) &= \sigma_a^2 + \sigma_b^2 \\          &\neq (\sigma_a + \sigma_b)^2 \\ Std(a+b) &\neq \sigma_a + \sigma_b]


as shown in the PREDICTIONS block of the PoPy input script:

PREDICTIONS: |
    plabel[DV_CENTRAL] = "Drug Concentration (mg/L)"
    clabel[TIME] = "Time (minutes)"
    p[DV_CENTRAL] = s[CENTRAL]/m[V]
    prop_std = p[DV_CENTRAL] * m[PNOISE_STD]
    add_std = m[ANOISE_STD]
    total_var = prop_std**2 + add_std**2
    c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], total_var)





It is crucially important to specify the form of the total variance correctly when fitting if we are to estimate the additive and proportional variances correctly. To see the effect of specifying the variance incorrectly, compare the tutorial script Mixed error model fitted to mixed error data, but with incorrect variance definition with its correct counterpart, Model containing both proportional and additive error.









          

      

      

    

  

    
      
          
            
  
Estimating Model Parameters


Note

See One Compartment Model with Absorption estimating V and CL for the Tut Script used here.



The previous chapters show how the observed concentrations are influenced by the parameters that define them such as the number of compartments and their function, how flows between compartments are specified, the shape of the dosing function, and the residual error model. We have explored these topics by taking models with given parameters, and using them to generate datasets of synthetic observations. This is often known as a forward problem.

We now turn to the more difficult inverse problem where we are given a dataset of measurements and a parameterized model, and want to estimate the most likely parameters for the given data. To solve this problem, we first need to make three design decisions.

First, we need a way to quantify the goodness-of-fit for a set of parameters, i.e. a single number that enables us to compare one set of parameters with another and determine which agrees better with the data. A popular choice for this is the likelihood that quantifies how likely the data are, given the model parameters.

Second, we must specify an algorithm for finding the “best” model parameters from the set of possible options. In practice, finding the best set of parameters is difficult or impossible, so we instead look for a locally optimal set that is better than all other nearby sets [DennisSchnabel1987] [NocedalWright2006].

Finally, we need a set of criteria that determine whether we have reached the best local solution, i.e. whether the algorithm has converged.


Likelihood and the Objective Function

Before we can find the “best” fit of a model to a set of observations, we first need a measure of what is “good”. A common measure of goodness-of-fit is a model’s likelihood [Millar2011]: how likely are the observations to arise if the given set of model parameters is correct? Although this is not a probability (the integral over model parameters does not equal one), for a given set of observations and a given model structure a higher likelihood indicates a better fit.

In practice, we compute the Maximum Likelihood by minimizing the negative of the likelihood (because most optimization algorithms are written to find the minimum of an error or cost function). Moreover, where the likelihood is a member of the exponential family of distributions [https://en.wikipedia.org/wiki/Exponential_family] it is mathematically convenient to minimize -2 log(likelihood) which is commonly referred to as the objective function, ObjV.

Using this measure of cost, we can take a “bird’s eye view” of the surface in two dimensions by plotting it as a contour map for pairs of parameter values. In One Compartment Model with Absorption, for example, we looked at a model with three parameters: KA, CL and V. Fixing V at its true value - which we know because these observations are synthetic - we can see how the cost surface varies with respect to KA and CL (Fig. 30).


[image: ../_images/objv_contour.svg]Fig. 30 KA vs CL surface plot of the Objective Function Value (ObjV) for a bolus dose, administered to a one compartment model with absorption



In this example, we see that the cost function has a single minimum in this region and is at its lowest close to the true values: KA = 0.3 and CL = 3. Its lowest point is close to, not exactly at, the true value because of noise added to the observations.




Minimization Algorithm

Once we have specified the cost function we want to minimize, we need an algorithm that will find the minimum. Because some models have large datasets and complex models with many parameters, it is not practical to find the minimum via an exhaustive search over every possible combination of parameters.

We therefore adopt an incremental approach that takes an initial guess at the parameter values, then looks for a different set of values nearby that has a lower cost. Repeating this process takes us on a path across the likelihood surface until there are no nearby solutions that are better than the current one. This, by definition, is the local minimum.


[image: ../_images/objv_contour_path.svg]Fig. 31 KA vs CL surface plot overlaid with the path taken by the optimization algorithm to the minimum



Depending on the shape of the cost surface and the particular algorithm used, finding the local minimum can take only a few steps or it can require many steps over a winding path. In the example given (Fig. 31), a local minimum was found by PoPy in a single step. PoPy’s search algorithm is very good at finding nearby minima with very few steps, however it is impossible to guarantee that this is the global minimum. This is true for all search algorithms.

Details of optimization algorithms are beyond the scope of this manual, but there are many good references for the interested reader [DennisSchnabel1987] [NocedalWright2006].




Initial Values and Convergence

When using an local optimization algorithm, the current estimate heads “down the hill” to a nearby point where the cost is lower until there is nowhere lower to go. In some cases, there may be more than one point that is locally the lowest point. As a result, starting the algorithm from some points will lead to one local minimum whereas starting from other initial points will lead to other local minima.

The set of points that lead to a given local minimum are known as its basin of convergence. In simple models, this is rarely a major problem. However, in complex models or if the fitted parameters are infeasible it is worthwhile to test alternative starting values, especially if the initial guess at a starting estimate was a long way from the fitted value.







          

      

      

    

  

    
      
          
            
  
Uncertainty and Standard Errors

Parameter estimation (also referred to as “model fitting”) aims to find a solution in parameter space that has a likelihood at least as good as all other nearby solutions. We know that a locally optimal solution has been found when changing any parameter in any direction decreases the likelihood (or, equivalently, increases the cost).

We can also quantify the confidence in our estimates from the shape of the surface at the local minimum: changing some parameters will lower the likelihood by a lot, suggesting that we have high confidence (or low uncertainty) in their estimated value; changing others, however, will lower the likelihood by only a little or possibly not at all, suggesting that we have low confidence (high uncertainty) in our estimate.


Note

See One Compartment Model with Absorption estimating KA for the Tut Script used here.



First we return to the example used in the last chapter – a one compartment model with absorption – only here we reduce it to a one dimensional problem by fixing all but one parameter, KA. We can then plot ObjV for a range of values of KA as a line (Fig. 32).


[image: ../_images/objv_line.svg]Fig. 32 ObjV vs KA with other parameters fixed at their true values



Although ObjV as a function of KA is not symmetric, it is smooth and has a clearly defined minimum. We can therefore compute properties of the curve (e.g. its gradient) at any point and approximate it with a polynomial using a Taylor series [https://en.wikipedia.org/wiki/Taylor_series] expansion.

More specifically, using a second order Taylor series at the minimum requires only the value, ObjV, and its second derivative because the gradient is zero by definition. This approximates the ObjV function with a quadratic (Fig. 33).


[image: ../_images/objv_line_overlay.svg]Fig. 33 ObjV vs KA with other parameters fixed at their true values, plus the quadratic approximation at the minimum



In effect, this approximates the likelihood surface with a Gaussian whose peak coincides with that of the true likelihood (Fig. 34).


[image: ../_images/lhood_line_overlay.svg]Fig. 34 Likelihood vs KA with other parameters fixed at their true values, plus the gaussian approximation at the maximum




Note

See One Compartment Model with Absorption estimating KA and V, One Compartment Model with Absorption estimating KA and CL and One Compartment Model with Absorption estimating V and CL,  for the tutorial scripts used here.



In more than one dimension, the second derivative is a matrix and is known as the hessian. In two dimensions, for example, the quadratic approximation to ObjV resembles a basin whose shape reflects the true function at its minimum (Table 20).


Table 20 Comparison of ObjV surface (left) with quadratic approximation (right)
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Standard Errors


Note

See One Compartment Model with Absorption estimating KA, V and CL for the Tut Script used here.



The hessian matrix (or its inverse) that is used to approximate the ObjV surface,

inv(hess) = [
    [ 1329.37, -24.0487, 23.2961 ],
    [ -24.0487, 0.459129, 0.0301191 ],
    [ 23.2961, 0.0301191, 33.589 ]
]





contains useful information about the shape of the surface, and therefore about our certainty in the parameter estimates.

Specifically, the hessian in n dimensions has n axes whose direction indicates the level of correlation between population parameters (i.e. fixed effects) and length indicates the amount of variation in those directions.

Using an eigenvalue decomposition of the hessian, we can compute the directions of variation (from the unit-length eigenvectors) and also the magnitudes (the square root of the eigenvalues):

1.34e-01 * [ 0.01832445 -0.0177096  -0.99967524]
5.76e+00 * [ 0.99973942  0.0139376   0.01807872]
3.65e+01 * [-0.01361291  0.99974602 -0.01796038]





The greater the magnitude, the greater the uncertainty in the parameter estimate. In this example, the smallest uncertainty (highest confidence) is associated with the third parameter, CL, while the greatest uncertainty (lowest confidence) is associated with the second parameter, V.




Confidence Intervals


Note

See One Compartment Model with Absorption estimating KA and CL for the Tut Script used here.



With a gaussian approximation to the likelihood, we can sample new values for the population parameters from the distribution. By sampling many possible solutions from the distribution, we can compute a range for each parameter in which a given percentage of the sampled values lie. These ranges are called confidence intervals and typically encompass 90% or 95% of the sampled values (Fig. 35).


[image: ../_images/objv_contour_samples.svg]Fig. 35 ObjV surface with population parameters sampled from the approximating gaussian and 90% confidence intervals in red for KA and CL



CI(KA) = 0.274 + [-0.0534, 0.0536]
CI(CL) = 3.24 + [-0.343, 0.338]





The purpose of the confidence interval is to compare one estimate with another, for example by confirming that our estimated confidence interval contains a value published in research literature by a third party.

When computing confidence intervals, we can get different estimates depending on how we parameterized the model. When population parameters are required to be positive, for example, we might optimise over values for their logarithm (which spans the whole of the real line). This can change the ObjV surface to be closer to a quadratic, and effectively samples from a lognormal distribution over the population parameters (Fig. 36).


[image: ../_images/objv_contour_samples1.svg]Fig. 36 ObjV surface with population parameters sampled from the approximating gaussian and 90% confidence intervals in red for log(KA) and log(CL)



One outcome of this is that (in the limit) the confidence interval is less likely to be centred on the estimated value:

CI(KA) = 0.273 + [-0.049, 0.0587]
CI(CL) = 3.25 + [-0.321, 0.363]











          

      

      

    

  

    
      
          
            
  
Population Models in PoPy

Estimating model parameters for a single subject requires many observations to differentiate between one model and another. However, because the observation process is usually intrusive (e.g. taking a blood sample to measure drug concentration) it is often practical to take only a few samples from one individual.

To overcome this limitation we can take a few samples from many individuals and pool the data, known as Population PK. Early attempts at doing this relied on the residual error model “taking up the slack” but it quickly became clear that the estimates of population parameters was biased - when dealing with a population of subjects, a single set of model parameters cannot capture the variation in concentration time courses in a sensible way.

A significant advance in the field came with the development of mixed effect models that predict a time course that is personalized to every individual so that the residual error model described earlier remains sensible. This personalization is done by introducing new parameters to capture variability:


	A stochastic statistical model that uses random effects to capture unpredictable, random variability between subjects from the same population, and possibly between occasions for the same subject


	A deterministic covariate model that uses additional fixed effects to capture predictable variability as a result of relationships between subject characteristics and structural model parameters (e.g. between weight and the volume of distribution)




The distributional assumptions we choose for the newly introduced random effects constrain the problem mathematically, making it practical to find a “best” local fit even with sparse observations.



	Inter-Subject Variation (ISV)

	Inter-Occasion Variation (IOV)

	Modelling Correlation in Random Effects

	Covariates









          

      

      

    

  

    
      
          
            
  
Inter-Subject Variation (ISV)

One way to model random variability between individuals is to use a mixed effect model. With this approach, we assign a set of one or more random effects to every individual such that their model parameters (e.g. the clearance, m[CL]) can deviate from the population values.

The random effect, r[CL_isv] for example, is a realization of a random variable drawn from a probability distribution. Typically, this is a normal distribution with the mean fixed at zero and a variance that is estimated from the data though other distributions are possible.

This is then combined with the population value to give an individualized value for the PK parameter. For example, we can use an additive model such that an individual’s pharmacokinetic parameters deviate from the population mean:

m[CL] = f[CL] + r[CL_isv]





Additive models can also be used for parameters such as lag times when the exact time of a dose event is not known, or when a measurement has no meaningful zero reference point (like temperature).

Most physiological quantities, however, are constrained to be positive (e.g. clearances, volumes) such that an additive model can cause problems if m[CL] becomes negative. It is therefore common instead to impose a log-normal distribution over m[CL] by applying the additive model in a log-transformed space:

m[LOG_CL] = log(f[CL]) + r[CL_isv]
...
CL = exp(m[LOG_CL])





or, equivalently,

m[CL] = f[CL] * exp(r[CL_isv])






Data Synthesis with ISV


Note

See One Compartment Model with Absorption and Inter-subject Variance f[CL_isv]=0.2, One Compartment Model with Absorption and Inter-subject Variance f[CL_isv]=0.01 and One Compartment Model with Absorption and Inter-subject Variance f[CL_isv]=0.5 for the Tut Script used to generate results in this section.



We illustrate Inter Subject Variability (sometimes referred to as “Between Subject Variability”) using an example based on the one compartment model with absorption that was introduced earlier (One Compartment Model with Absorption).

Because we now want several individuals, we make three changes to the LEVEL_PARAMS section of the script:


	move values that vary between individuals (c[ID], c[AMT] and time points t[RESET], t[DOSE] and t[OBS]) from the GLOBAL level into a new level, INDIV.


	add to the INDIV level an individual-specific random effect, r[CL_isv], that is responsible for inter-subject variation in the model parameter CL.


	add to the GLOBAL level a population-specific fixed effect, f[CL_isv], that specifies the variance (i.e. the spread) of the random effects, r[CL_isv].




LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[KA] = 0.3
            f[CL] = 3
            f[V] = 20
            f[PNOISE_STD] = 0.1
            f[ANOISE_STD] = 0.05
            # new: true inter-subject variability
            f[CL_isv] = 0.2
        split_field: None
        split_dict: {}
    INDIV:
        params: |
            # new: 30 individuals for this population
            c[ID] = sequential(30)
            c[AMT] = 100.0
            t[RESET] = 0.0
            t[DOSE] = 1.0
            t[OBS] ~ unif(1.0, 50.0; 4)
            # new: inter-subject variability
            r[CL_isv] ~ norm(0, f[CL_isv])
        split_field: ID
        split_dict: "*"






Note

The INDIV level sits below GLOBAL to indicate that there should be a branch of the hierarchy created for every individual in the population.



During data synthesis, PoPy adds random variation between individuals by sampling realizations of r[CL_isv] from the probability distribution. These realizations of r[CL_isv] are then used in the MODEL_PARAMS section to add inter-subject variability to the model parameter, m[CL].

MODEL_PARAMS: |
    m[KA] = f[KA]
    # new: log-normally distributed ISV
    m[CL] = f[CL]*exp(r[CL_isv])
    m[V] = f[V]
    m[PNOISE_STD] = f[PNOISE_STD]
    m[ANOISE_STD] = f[ANOISE_STD]





The rest of the script (e.g. DERIVATIVES and PREDICTIONS) are the same as for a single individual.

This variation changes the shape of the predicted curves over the set of individuals in the population (Table 21).


Table 21 Population graphs with increasing ISV: (left) CL_isv=0.01; (centre) CL_isv=0.2; (right) CL_isv=0.5
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Naïve ISV Fit


Note

See the One Compartment Model with Absorption and no inter-subject Variance f[CL_isv]=0 for the Tut Script used to generate results in this section.



Given a dataset where there are 30 subjects with ISV, we first investigate the effect of excluding ISV from the model we fit.

We can do this without changing the data synthesis code (e.g. the MODEL_PARAMS section) by fixing f[CL_isv] at zero such that all deviations from the population prediction are accounted for under the residual error model.

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[KA] ~ unif(0.01, 1) 0.5
            f[CL] ~ unif(0.01, 10) 1
            f[V] ~ unif (0.01, 100) 15
            f[PNOISE_STD] ~ unif(0.001, 1) 0.2
            f[ANOISE_STD] ~ unif(0.001, 1) 0.2
            # new: assumed zero inter-subject variability
            f[CL_isv] = 0.0
        split_field: None
        split_dict: {}
    INDIV:
        params: |
            # new: inter-subject variability
            r[CL_isv] ~ norm(0, f[CL_isv])
        split_field: ID
        split_dict: "*"





After the fit, we see that the population parameters (i.e. the fixed effects) are poorly estimated. In particular, the noise levels f[PNOISE_STD] and f[ANOISE_STD] are far higher than the true values because they are responsible for capturing the variation that, in reality, is ISV rather than noise.

f[KA] = 1
f[CL] = 1
f[V] = 7.3224
f[PNOISE_STD] = 0.62876
f[ANOISE_STD] = 0.12415
f[CL_isv] = 0





As a reference point, the final objective function value is

-60.4607888206








Mixed Effect ISV Fit


Note

See the One Compartment Model with Absorption and Inter-subject Variance f[CL_isv]=0.2 for the Tut Script used to generate results in this section.



We now look at a mixed effects model that allows model parameters (and predictions) to be tailored to each individual by making the ISV variance, f[CL_isv], a parameter to be optimized:

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[KA] ~ unif(0.01, 1) 0.5
            f[CL] ~ unif(0.01, 10) 1
            f[V] ~ unif (0.01, 100) 15
            f[PNOISE_STD] ~ unif(0.001, 1) 0.2
            f[ANOISE_STD] ~ unif(0.001, 1) 0.2
            # new: estimated inter-subject variability
            f[CL_isv] ~ unif(0.001, 1) 0.01
        split_field: None
        split_dict: {}
    INDIV:
        params: |
            # new: inter-subject variability
            r[CL_isv] ~ norm(0, f[CL_isv])
        split_field: ID
        split_dict: "*"





As a result, the population parameters are now much closer to the values used for data synthesis (shown above). In particular, we see that the noise parameters are much more accurate since the ISV can be accounted for using f[CL_isv] rather than the residual noise model.

f[KA] = 1
f[CL] = 2.4482
f[V] = 21.931
f[PNOISE_STD] = 0.23417
f[ANOISE_STD] = 0.037484
f[CL_isv] = 0.12828





For comparison, we can also see that the final objective function value is also far lower than that obtained without modelling ISV:

-311.993580056





Variation between subjects is just one of many sources of randomness in population data. The next source we will look at is variation within a subject from one visit to another - Inter-Occasion Variation (IOV).







          

      

      

    

  

    
      
          
            
  
Inter-Occasion Variation (IOV)

Just as PK parameters can vary from one individual to the next, they can also vary within an individual over a period of time. Clearances and volumes, for example, can often vary from day-to-day, particularly where inflammation plays a role but even in healthy volunteers. Absorption parameters can also vary substantially with each dosing occasion, sometimes to the extent that IOV is even greater than ISV. As a result, when drugs are administered on multiple occasions it may be important to model this variation, too [KarlssonSheiner1993].


Data Synthesis with IOV


Note

See the One Compartment Model with Absorption and Inter-occasion Variance f[CL_isv]=0.2 and One Compartment Model with Absorption and Inter-occasion Variance f[CL_isv]=0.5 for the Tut Script used to generate results in this section.



First, we generate some new data with both ISV and IOV by making more changes to the LEVEL_PARAMS section of the script:


	move values that vary between occasions (just the time points t[RESET], t[DOSE] and t[OBS], unless the dose amount, c[AMT] varies with occasion) from the INDIV level into a new level, OCCASION.


	add to the OCCASION level an occasion-specific covariate, c[OCC], that indicates the occasion, and an occasion-specific random effect, r[CL_iov], that is responsible for inter-occasion variation in the model parameter CL.


	add to the GLOBAL level a population-specific fixed effect, f[CL_iov], that specifies the variance (i.e. the spread) of the inter-occasional random effects, r[CL_iov].




LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[KA] = 0.3
            f[CL] = 3
            f[V] = 20
            f[PNOISE_STD] = 0.1
            f[ANOISE_STD] = 0.05
            f[CL_isv] = 0.2
            # new: true inter-occasion variability
            f[CL_iov] = 0.1
        split_field: None
        split_dict: {}
    INDIV:
        params: |
            # new: 10 subjects in this population
            c[ID] = sequential(10)
            c[AMT] = 100.0
            r[CL_isv] ~ norm(0, f[CL_isv])
        split_field: ID
        split_dict: "*"
    OCCASION:
        params: |
            # new: 3 occasions per individual
            c[OCC] = sequential(3)
            t[RESET] = 0.0
            t[DOSE] = 1.0
            t[OBS] ~ unif(1.0, 50.0; 4)
            # new: inter-occasion variability
            r[CL_iov] ~ norm(0, f[CL_iov])
        split_field: OCC
        split_dict: "*"





(Here we have also reduced the population to ten individuals with three occasions each in order to maintain 30 time courses.)


Note

Adding the OCCASION level below the INDIV level tells PoPy that there are multiple occasions for an individual, much as adding INDIV below GLOBAL says that there are multiple subjects in the population. Every occasion therefore inherits the parameters defined in the levels above. (See LEVEL_PARAMS.)



The IOV random effect is then added to its ISV sibling in the MODEL_PARAMS section of the script:

MODEL_PARAMS: |
    m[KA] = f[KA]
    # log-normally distributed ISV and IOV
    m[CL] = f[CL]*exp(r[CL_isv] + r[CL_iov])
    m[V] = f[V]
    m[PNOISE_STD] = f[PNOISE_STD]
    m[ANOISE_STD] = f[ANOISE_STD]





The remaining sections (e.g. DERIVATIVES and PREDICTIONS) remain the same.

As with ISV, this added variation changes the shape of the predicted curves over the set of individuals in the population (Table 22). Depending on the magnitude of the variances, the set of curves may overlap such that it is difficult to separate the individuals or they may form tight clusters. (The overlap will also increase with bigger populations.)


Table 22 Population graphs with increasing ISV: (left) CL_isv=0.2, CL_iov=0.1; (right) CL_isv=0.5, CL_iov=0.01
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Naïve IOV Fit


Note

See  One Compartment Model with Absorption and no inter-occasion Variance f[CL_iov]=0 for the Tut Script used to generate results in this section.



As with ISV, we can investigate the effect of excluding IOV from a fit to data where IOV exists by fixing the f[CL_iov] variance to zero.

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[KA] ~ unif(0.01, 1) 0.5
            f[CL] ~ unif(0.01, 10) 1
            f[V] ~ unif (0.01, 100) 15
            f[PNOISE_STD] ~ unif(0.001, 1) 0.2
            f[ANOISE_STD] ~ unif(0.001, 1) 0.2
            f[CL_isv] ~ unif(0.001, 10) 0.01
            # new: assumed zero inter-occasion variability
            f[CL_iov] = 0
        split_field: None
        split_dict: {}
    INDIV:
        params: |
            r[CL_isv] ~ norm(0, f[CL_isv])
        split_field: ID
        split_dict: "*"
    OCCASION:
        params: |
            # new: inter-occasion variability
            r[CL_iov] ~ norm(0, f[CL_iov])
        split_field: OCC
        split_dict: "*"





Again, although the population parameters are close to their “true” values, the noise parameters and the ISV are all bigger than they should be in order to capture the IOV that has not been modelled

f[KA] = 1
f[CL] = 2.1402
f[V] = 21.991
f[PNOISE_STD] = 0.46239
f[ANOISE_STD] = 0.061691
f[CL_isv] = 4.0946
f[CL_iov] = 0





and we use the resulting objective function value,

-163.742130968





as a reference.




Mixed Effect IOV Fit


Note

See  One Compartment Model with Absorption and Inter-occasion Variance f[CL_isv]=0.2 for the Tut Script used to generate results in this section.



Adding IOV to the model by making f[CL_iov] a free parameter

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[KA] ~ unif(0.01, 1) 0.5
            f[CL] ~ unif(0.01, 10) 1
            f[V] ~ unif (0.01, 100) 15
            f[PNOISE_STD] ~ unif(0.001, 1) 0.2
            f[ANOISE_STD] ~ unif(0.001, 1) 0.2
            f[CL_isv] ~ unif(0.001, 10) 0.01
            # new: estimated inter-occasion variability
            f[CL_iov] ~ unif(0.001, 10) 0.01
        split_field: None
        split_dict: {}
    INDIV:
        params: |
            r[CL_isv] ~ norm(0, f[CL_isv])
        split_field: ID
        split_dict: "*"
    OCCASION:
        params: |
            # new: inter-occasion variability
            r[CL_iov] ~ norm(0, f[CL_iov])
        split_field: OCC
        split_dict: "*"





results in population parameters that are again close to their “true” values, this time including the variance parameters. This reflects the intuition that a correctly defined model requires less variance to capture the observed deviations from the population estimates.

f[KA] = 1
f[CL] = 2.211
f[V] = 20.54
f[PNOISE_STD] = 0.2123
f[ANOISE_STD] = 0.05187
f[CL_isv] = 0.073326
f[CL_iov] = 0.10083





As with the ISV example, the final objective function value,

-276.188167113





is also significantly lower, indicating a better fit of the model to the observed concentrations.







          

      

      

    

  

    
      
          
            
  
Modelling Correlation in Random Effects

As shown in Inter-Subject Variation (ISV), we can use random effects to account for variability in model parameters between individuals in a population. In that example, we demonstrated the principle for a single parameter whereas we now consider the case where two or more parameters vary between individuals. In particular, we are interested in what happens when pairs of parameters vary in similar ways, for example when they have a common underlying cause.

In the following examples we model inter-subject variability in both m[CL] and m[V] using a combined proportional and additive noise model to generate observations for 200 individuals, and fit various models to the synthesized data.


Uncorrelated Effects


Note

See the Diagonal matrix generation diagonal matrix fit using separate univariate normals and Diagonal matrix generation diagonal matrix fit for the Tut Script used to generate results in this section.



We can synthesize observations where parameters are uncorrelated simply by creating, for each parameter, an independent random effect with its own variance:

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[KA] = 0.3
            f[CL] = 3
            f[V] = 20
            f[PNOISE_STD] = 0.1
            f[ANOISE_STD] = 0.05
            f[CL_isv] = 0.2
            # new: ISV on volume of distribution
            f[V_isv] = 0.1
        split_field: None
        split_dict: {}
    INDIV:
        params: |
            c[ID] = sequential(200)
            c[AMT] = 100.0
            t[RESET] = 0.0
            t[DOSE] = 1.0
            t[OBS] ~ unif(1.0, 50.0; 4)
            r[CL_isv] ~ norm( 0, f[CL_isv] )
            # new: ISV on volume of distribution
            r[V_isv] ~ norm( 0, f[V_isv] )
        split_field: ID
        split_dict: "*"





Mathematically, this is equivalent to modelling the two parameters jointly via a covariance matrix with the individual variances along the diagonal and zeros everywhere else. In PoPy this structure is enforced using the ~diag_matrix() notation:

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[KA] = 0.3
            f[CL] = 3
            f[V] = 20
            f[PNOISE_STD] = 0.1
            f[ANOISE_STD] = 0.05
            # new: Joint ISV on both CL and V
            f[CL_isv, V_isv] ~ diag_matrix() [[0.2, 0.1]]
        split_field: None
        split_dict: {}
    INDIV:
        params: |
            c[ID] = sequential(200)
            c[AMT] = 100.0
            t[RESET] = 0.0
            t[DOSE] = 1.0
            t[OBS] ~ unif(1.0, 50.0; 4)
            # new: Joint ISV on both CL and V
            r[CL_isv, V_isv] ~ mnorm( [0,0], f[CL_isv, V_isv] )
        split_field: ID
        split_dict: "*"





for the covariance matrix and using a multivariate normal distribution, ~mnorm(), to model the two random effects as a vector (in this case with zero mean). Throughout this chapter we will continue to use the covariance matrix form rather than independent variables.

With independent inter-subject variability in m[CL] and m[V] the generated curves (Fig. 37) vary widely from individuals with high CL and low V (i.e. a high KE) to individuals with a low CL and high V (i.e. a low KE).


[image: ../_images/pop_spag17.svg]Fig. 37 Simulated prediction curves for a population with independent inter-subject variability on parameters CL and V



In all cases here, we ensure that the generated observations are the same by specifying a fixed rand_seed option in the METHOD_OPTIONS section of the tutorial script:

METHOD_OPTIONS: {py_module: gen, rand_seed: 314159}






Uncorrelated Fit to Uncorrelated Effects


Note

See the Diagonal matrix generation diagonal matrix fit for the Tut Script used to generate results in this section.



We now consider fitting (i.e. estimating the parameters of) a model using the observations, where the model also imposes a diagonal structure on the covariance matrix:

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[KA] = 0.3
            f[CL] = 3
            f[V] = 20
            f[PNOISE_STD] = 0.1
            f[ANOISE_STD] = 0.05
            # new: Joint ISV on both CL and V
            f[CL_isv, V_isv] ~ diag_matrix() [[0.01, 0.01]]
        split_field: None
        split_dict: {}
    INDIV:
        params: |
            # new: Joint ISV on both CL and V
            r[CL_isv, V_isv] ~ mnorm( [0,0], f[CL_isv, V_isv] )
        split_field: ID
        split_dict: "*"





In this case, the only population parameters we estimate are the population variances, f[CL_isv] and f[V_isv]. The fitted parameter values,

f[KA] = 0.3
f[CL] = 3
f[V] = 20
f[PNOISE_STD] = 0.1
f[ANOISE_STD] = 0.05
f[CL_isv,V_isv] = [
    [ 0.175, 0 ],
    [ 0, 0.087425 ]
]





largely agree with the “true” values used to generate the observations, albeit with lower values for the variances than the true values (a phenomenon known as shrinkage).

The final objective function value (OBJV) for this fit is

-2172.76714255








Correlated Fit to Uncorrelated Effects


Note

See the Diagonal matrix generation full matrix fit for the Tut Script used to generate results in this section.



We could, however, use a different covariance structure when fitting the model to the observations. For example, we could relax the constraints on the off-diagonal elements by allowing any covariance matrix that is symmetric positive definite (SPD) - a necessary property for all covariance matrices.

In PoPy, we do this using the ~spd_matrix() notation:

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[KA] = 0.3
            f[CL] = 3
            f[V] = 20
            f[PNOISE_STD] = 0.1
            f[ANOISE_STD] = 0.05
            # new: Model that links variability of
            # CL to that of V
            f[CL_isv, V_isv] ~ spd_matrix() [
                [ 0.01 ],
                [ 0.0, 0.01 ]
            ]
        split_field: None
        split_dict: {}
    INDIV:
        params: |
            r[CL_isv, V_isv] ~ mnorm( [0,0], f[CL_isv, V_isv] )
        split_field: ID
        split_dict: "*"





Using the “full” covariance matrix the fitted values,

f[KA] = 0.3
f[CL] = 3
f[V] = 20
f[PNOISE_STD] = 0.1
f[ANOISE_STD] = 0.05
f[CL_isv,V_isv] = [
    [ 0.177, 0.0094221 ],
    [ 0.0094221, 0.085779 ]
]





also largely agree with those fitted using the diagonally-constrained covariance since a diagonal matrix is a specific example of an SPD matrix. This can also be seen in the fitted objective function value,

-2173.24217272





which is only fractionally lower than that for the diagonally-constrained model, since the full covariance matrix has more freedom to fit to the data.






Correlated Effects


Note

See the Full matrix generation diagonal matrix fit for the Tut Script used to generate results in this section.



We now run the same experiments, only using new observations that have been synthesized from a model where the variability in m[CL] and m[V] is correlated. This is a more realistic example, since both clearance and volume of distribution can increase with weight.

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[KA] = 0.3
            f[CL] = 3
            f[V] = 20
            f[PNOISE_STD] = 0.1
            f[ANOISE_STD] = 0.05
            # new: Data in which variability of CL is
            # linked to that of V
            f[CL_isv, V_isv] ~ spd_matrix() [
                [ 0.15 ],
                [ 0.05, 0.15 ],
            ]
        split_field: None
        split_dict: {}
    INDIV:
        params: |
            c[ID] = sequential(200)
            c[AMT] = 100.0
            t[RESET] = 0.0
            t[DOSE] = 1.0
            t[OBS] ~ unif(1.0, 50.0; 4)
            r[CL_isv, V_isv] ~ mnorm( [0,0], f[CL_isv, V_isv] )
        split_field: ID
        split_dict: "*"






[image: ../_images/pop_spag18.svg]Fig. 38 Simulated prediction curves for a population with correlated inter-subject variability on parameters CL and V.



The generated predictions (Fig. 38) are qualitatively different from those generated without correlation because the resulting KE values have a smaller spread. (Correlated changes in CL and V cancel out to a degree.)


Uncorrelated Fit to Correlated Effects


Note

See the Full matrix generation diagonal matrix fit for the Tut Script used to generate results in this section.



We now run the fit using a model that prohibits correlation between CL and V by imposing a diagonal form on the covariance structure,

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[KA] = 0.3
            f[CL] = 3
            f[V] = 20
            f[PNOISE_STD] = 0.1
            f[ANOISE_STD] = 0.05
            # new: Model in which variability of CL is
            # independent of that of V
            f[CL_isv, V_isv] ~ diag_matrix() [[0.01, 0.01]]
        split_field: None
        split_dict: {}
    INDIV:
        params: |
            r[CL_isv, V_isv] ~ mnorm( [0,0], f[CL_isv, V_isv] )
        split_field: ID
        split_dict: "*"





which is at odds with the data.

As a result, the fitted parameters

f[KA] = 0.3
f[CL] = 3
f[V] = 20
f[PNOISE_STD] = 0.1
f[ANOISE_STD] = 0.05
f[CL_isv,V_isv] = [
    [ 0.1176, 0 ],
    [ 0, 0.12337 ]
]





are much smaller than the “true” values used to generate the observations because they are unable to capture the correlations between values. The final objective function value (OBJV) for the fit,

-2187.54239736





cannot be compared with that of the data without correlation because they are different datasets, but serves as a useful baseline when fitting with different models.




Correlated Fit to Correlated Effects


Note

See the Full matrix generation full matrix fit for the Tut Script used to generate results in this section.



Finally, we run a fit with a model that does have the flexibility to capture correlations, again using the ~spd_matrix() notation

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[KA] = 0.3
            f[CL] = 3
            f[V] = 20
            f[PNOISE_STD] = 0.1
            f[ANOISE_STD] = 0.05
            # new: Model that links variability of
            # CL to that of V
            f[CL_isv, V_isv] ~ spd_matrix() [
                [ 0.01 ],
                [ 0.00, 0.01 ]
            ]
        split_field: None
        split_dict: {}
    INDIV:
        params: |
            r[CL_isv, V_isv] ~ mnorm( [0,0], f[CL_isv, V_isv] )
        split_field: ID
        split_dict: "*"





This time, the fitted parameters

f[KA] = 0.3
f[CL] = 3
f[V] = 20
f[PNOISE_STD] = 0.1
f[ANOISE_STD] = 0.05
f[CL_isv,V_isv] = [
    [ 0.13157, 0.060025 ],
    [ 0.060025, 0.13958 ]
]





are closer to the “true” values: the individual variances (along the diagonal) are higher and the covariance (the off-diagonal) is close to the generating value.

The improvement in fit is also apparent from the final objective function value (OBJV),

-2214.69920435





which is lower than for the diagonally-constrained fit, showing that the extra flexibility is beneficial when the data require it.

These examples illustrate the importance of including the flexibility to capture correlations in random effects where the model parameters vary together (for example, due to a common underlying property).

Where the observations do not come from a correlated source, having the flexibility to capture correlations has little real benefit to the model fit (a constrained covariance matrix would do just as well) but may require more data to estimate the greater number of parameters; the model should be as complex as it needs to be, but no more.

In practice, it is rare for PK parameters to be completely independent with a correlation of zero. Accounting for correlations tends to lead to better VPCs and more realistic simulations of future patients.









          

      

      

    

  

    
      
          
            
  
Covariates

Within a population, there will be variability in structural model parameters (such as clearance and volume of distribution) from one individual to another that can be predicted as a function of a measurable property (such as renal function impairment). These measurable properties are known as covariates.

If the variability can be expressed as a deterministic function of these underlying properties, we can model it to increase the accuracy of our predicted time course and decrease the burden on the residual error model.


Continuous Covariates

Continuous covariates appear on a sliding scale that can take on any value (often within a sensible range), as opposed to Discrete Covariates that take one of a finite (and often small) number of values.

We encode the effect of covariate c[Y] on model parameter m[X] via mathematical functions in the MODEL_PARAMS section of the PoPy script. For example, we may assume a linear relationship

m[X] = f[X] + f[X_Y_EFFECT]*c[Y]





though this can permit m[X] to be negative which is undesirable for many model parameters. Alternatives that avoid this problem include the exponential function

m[X] = f[X] * exp(f[X_Y_EFFECT]*c[Y])





or the power function

m[X] = f[X] * c[Y]**f[X_Y_EFFECT]





among others.

It may also be sensible to standardize the covariate in some way, for example by shifting

m[X] = f[X] * (c[Y]-Yref)**f[X_Y_EFFECT]





or scaling

m[X] = f[X] * (c[Y]/Yref)**f[X_Y_EFFECT]





the covariate with respect to some reference value, Yref. Choosing a value that is close to the middle of the range of the data (body weight, for example, is conventionally centred at 70 kg) reduces the correlation between the intercept and the covariate slope, which leads to smaller standard errors and means that the intercept has a sensible interpretation (e.g. CL in an individual with GFR of 120 mL/min).


Body Weight as a Covariate


Note

See  Body Weight Covariate for the Tut Script used to generate results in this section.



Empirical studies have shown that the volume of distribution (and clearance, among others) increases with body weight. In the supplied tutorial example, we have added a weight effect coefficient to the fixed effects in the GLOBAL level of LEVEL_PARAMS and a weight covariate at the INDIV level:

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[KA] = 0.3
            f[CL] = 3
            f[V] = 20
            f[PNOISE] = 0.1
            f[ANOISE] = 0.05
            f[WT_EFFECT] = 0.75  # new fixed effect
        split_field: None
        split_dict: {}
    INDIV:
        params: |
            c[ID] = sequential(30)
            c[AMT] = 100.0
            t[RESET] = 0.0
            t[DOSE] = 1.0
            t[OBS] ~ unif(1.0, 50.0; 4)
            c[WT] ~ norm(70, 100)  # new covariate
        split_field: ID
        split_dict: "*"





We then update the MODEL_PARAMS section to include the covariate effect as per the “allometric function” [Holford1996]

MODEL_PARAMS: |
    m[KA] = f[KA]
    m[CL] = f[CL]*(c[WT]/70)**f[WT_EFFECT]  # new covariate effect
    m[V] = f[V]*(c[WT]/70)  # new covariate effect
    m[PNOISE] = f[PNOISE]
    m[ANOISE] = f[ANOISE]





which is a form of power function, using a scaled weight with 70 kg as the reference (as is now accepted in the literature).

This generates a population with time courses that are weight dependent (Fig. 39).


[image: ../_images/pop_spag11.svg]Fig. 39 Simulated prediction curves for a population of 40 individuals with weight-dependent clearance, CL, and volume of distribution, V



For fitting, we estimate only the baseline (median) volume of distribution, f[V], and the weight effect coefficient, f[WT_EFFECT], and we see that the estimated values,

f[KA] = 0.3
f[CL] = 3
f[V] = 20.261
f[PNOISE] = 0.1
f[ANOISE] = 0.05
f[WT_EFFECT] = 0.66554





closely match those used to generate the observations.




Other Continous Covariates

Other continuous covariates include


	Age: Renal and hepatic functions decrease with age, which can lead to a reduced drug clearance. The volume of distribution of some lipid soluble drugs also increases with age.


	Ideal Body Weight (IBW):





	Lean Body Weight (LBW):



[image: \text{Males} &= 50 + 0.9\text{kg for every cm over 150cm} \\ \text{Females} &= 45 + 0.9\text{kg for every cm over 150cm}]







	Height: The height of an individual, usually measured in cm or m.


	Body Surface Area (BSA): The surface area of the body in m2 can be calculated using the weight in Kg and height in cm. There are various different methods for achieving this such as the Du Bois formula:



[image: \text{BSA}   &= 0.007184 * \text{WT}^{0.425} * \text{H}^{0.725}]









or Mosteller formula:



[image: \text{BSA}   &= \frac{\sqrt{\text{WT}*\text{H}}}{60}]






	Body Mass Index(BMI): The mass or weight of a subject in kg divided by the square of the height in m, gives the BMI measured in kg/m2



[image: \text{BMI}   &= \frac{\text{WT}}{\text{H}^2}]














Discrete Covariates

Discrete covariates take one of a finite (and often small) number of values, as opposed to continuous covariates that lie on a spectrum. Discrete covariates can then be used to model differences between groups by allowing a different median value in each group.

Where the covariate represents an either-or classification (i.e. the covariate is dichotomous), we can encode group membership with a zero (reference group) or one (other group). We can then use this indicator variable in a mathematical formula,

m[X] = (1-c[Y])*f[X_WHEN_Y_IS_ZERO] + c[Y]*f[X_WHEN_Y_IS_ONE]





For ease of interpretation, PoPy allows you to encode data columns as strings so that you can see immediately which group is being referred to in the input file. In these cases, an if-else statement can be used to apply the correct fixed effect to the model parameter. This method, unlike indicator variables, can also be used for discrete variables that take more than two values (e.g. race).

if c[Y] == 'zero':
    m[X] = f[X_WHEN_Y_IS_ZERO]
elif c[Y] == 'one':
    m[X] = f[X_WHEN_Y_IS_ONE]
elif c[Y] == 'two':
    m[X] = f[X_WHEN_Y_IS_TWO]
...





We refer to discrete covariates that assign to a group as categorical covariates.

In contrast, ordinal covariates are a discretization of the continuous spectrum and have a definite ordering. These values can sometimes be treated as if they are continuous (e.g. the Child-Pugh scale for hepatic impairment) but it is up to the modeller to decide whether this is justifiable.


Other Discrete Covariates

Other discrete covariates include:


	Sex


Females may have different volumes of distribution or clearances (or both) than men for some drugs, even after the difference in body weight is accounted for.






	Race


In some cases, race categorizations may be associated with different pharmacokinetic parameters. For example, the frequency of genetic polymorphisms affecting clearance can vary with race.






	Concomitant Medication


When two or more drugs are administrated concurrently, they may interfere with each others pharmacokinetic profiles by competing for metabolizing enzymes or transporters. Drugs can also alter the transcription of enzymes, transporters or proteins within drug-binding sites, which can alter both their own pharmacokinetics and the pharmacokinetics of co-administered drugs.

For example, Drug A, or its metabolites, could induce an enzyme for a conjugation reaction in the metabolisation of Drug B.
In this case, Drug A could increase the clearance of Drug B.

Alternatively, Drug A, or its metabolites could be an inhibitor on one of the enzymes facilitating the metabolism of Drug B.
In this case, Drug A could decrease the clearance of Drug B.

The interactions of different drugs and their metabolites can be very complex and are an important area for population pharmacokinetic modelling.






	Smoking


Smoking cigarettes increases the clearance of some drugs by increasing the activity of enzymes used in hepatic metabolism.
Caffeine is an example of a drug that has increased clearance in smokers. Note that it is not usually the nicotine in cigarettes that affects metabolism, but other chemicals in the cigarette smoke. Nicotine replacement therapy may not have the same effect.






	Disease state


Many diseases or conditions can alter pharmacokinetics. An example is oedema, which causes an excess of fluid in cavities or tissues in the body. If a drug is soluble in this fluid, it could increase the volume of distribution.






	Food intake


If a drug is administered orally, the rate of absorption can be affected by whether an individual has eaten recently or not. This is because most drugs are absorbed through the small intestine, but to reach this they have to pass through the stomach. When food is present in the stomach, gastric secretion and residence time are increased. This could lead to a slower absorption rate.
















          

      

      

    

  

    
      
          
            
  
PoPy Example Models

The easiest way to learn PoPy is by using working examples, that you can then adapt to your own requirements. See HTML Summary Links for links to all examples (both data and scripts) used in this documentation. For detailed walk through examples, see below:-



	Creating Example Scripts

	Fitting a Two Compartment PopPK Model

	Generate a Two Compartment PopPK Data Set

	Generate data and Fit using a Two Compartment Model

	Generate multiple data sets and Fit using a Two Compartment Model









          

      

      

    

  

    
      
          
            
  
Creating Example Scripts

PoPy contains built in example scripts that can be generated on the command line. The general method is:-

$ popy_create [script_type] [script_name]





These built in scripts are designed to get you started with using a particular type of script file. Once generated you can edit the default text for your own PK/PD modelling requirements.

See popy_create documentation, or the Creating an example Fit Script and Creating an example Tut Script examples below.


Creating an example Fit Script

First, Open a PoPy Command Prompt. Then do:-

$ popy_create fit my_fit_script.pyml





where


	popy_create is one of the Command Line Tools


	the fit option requests a fit script to be created and


	the ‘my_fit_script.pyml’ file is the name of the Fit Script written to disk.




You can generate a more verbose example script with comments using:-

$ popy_create -acsl fit my_fit_script.pyml





See popy_create for the meaning of the ‘-acsl’ command line switch options. Or type ‘popy_create -h’.

You will notice that popy_create also creates a file called my_fit_script.pyml.create.main.log. This is a record of the messages output by the popy_create tool. In this case the log file is very short. These log files, created by all of the Command Line Tools, act as part of the audit trail for your experiments. You can open the ‘my_fit_script.pyml’ in your system editor as follows:-

$ popy_edit my_fit_script.pyml





You can try running the fit_script:-

$ popy_run my_fit_script.pyml





However, you will likely see a message, similar to the following:-

CAST_ERROR= ERROR in value_record: ROOT->FILE_PATHS->input_data_file
ERROR when casting input file element
input file path = C:\Users\david\my_popy_egs\examples\fit_example4\input.csv
NOT present on file system.





Essentially this is telling you that this entry in ‘builtin_fit_example.pyml’:-

FILE_PATHS: {input_data_file: input.csv}





Is causing a problem because ‘input.csv’ does not exist. The popy_create tool outputs a script file only, so the ‘input.csv’ entry is just a place holder. You need to set the ‘input_data_file’ field to point at an existing data file to run the Fit Script.

Note one way of creating a data file is to create and then run a Gen Script or Tut Script, as described below.

The ‘my_fit_script.pyml’ is just meant to provide an easy template for you to use for your own analyses. The ‘tut_script’ example below is more complete, as a Tut Script works with just a single .pyml file.




Creating an example Tut Script

As always the first step is to Open a PoPy Command Prompt. Then do:-

$ popy_create tut my_tut_script.pyml





You can generate a more verbose example script with comments using:-

$ popy_create -acsl tut my_tut_script.pyml





See popy_create for the command line switch options. Or type ‘popy_create -h’.

You can use this mechanism to create an example file for any of the Script File Formats in PoPy.

You can open the ‘my_tut_script.pyml’ in your system editor as follows:-

$ popy_edit my_tut_script.pyml





You should now have a run-able Tut Script. Run as follows:-

$ popy_run my_tut_script.pyml





You can use this mechanism to create an example file for any of the Script File Formats in PoPy.







          

      

      

    

  

    
      
          
            
  
Fitting a Two Compartment PopPK Model

The Fitting a Simple PopPK Model using PoPy shows fitting a one compartment PK model, to pre-existing data. In this example, we again utilise a pre-existing data set. We will demonstrate how to fit a two compartment model with absorption and bolus dosing, see Fig. 40:-


[image: ../../_images/compartment_diagram6.svg]Fig. 40 Two compartment model with depot dosing for Fit Script. Here c[AMT] is the size of the bolus dose specified in the data file. m[KA], m[CL], m[Q], m[V1], m[V2] are all MODEL_PARAMS to be estimated for each individual.



This model is called a two compartment model, because the Depot is not included, only the compartments that conventionally represent blood volumes are counted. In this case Central and Peri.

This PoPy model is also created by default when Creating an example Fit Script, using popy_create.


Note

See the First order absorption model with peripheral compartment obtained by the PoPy developers for this example, including input script and input data file.




Run the Fit Script

This fitting example uses these two files:-

c:\PoPy\examples\builtin_fit_example.pyml
                 builitin_fit_example_data.csv





Open a PoPy Command Prompt to setup the PoPy environment in this folder:-

c:\PoPy\examples\





With the PoPy environment enabled, do:-

$ popy_edit builtin_fit_example.pyml





To view the script in an editor and then run the Fit Script using popy_run from the command line:-

$ popy_run builtin_fit_example.pyml





When the fit script has completed, you can view the output of the fit using popy_view, by typing the following command:-

$ popy_view builtin_fit_example.pyml.html





Note the extra ‘.html’ extension in the above command. This command opens a local .html file in your web browser to summarise the result of the fitting.

You can compare your local html output with the pre-computed documentation output, see First order absorption model with peripheral compartment. You should expect some minor numerical differences when comparing results with the documentation.




Summary of Fit Results

The results of running the fitting script are PoPy’s best estimate for the presumed unknown fixed effects variables:-

f[KA] = 0.23326
f[CL] = 2.2423
f[V1] = 58.107
f[Q] = 0.69961
f[V2] = 114.93
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
    [ 0.16704, 0.02277, -0.041913, 0.085272, 0.0053418 ],
    [ 0.02277, 0.02969, 0.0082606, 0.010176, 0.0073914 ],
    [ -0.041913, 0.0082606, 0.031914, -0.022249, 0.0097421 ],
    [ 0.085272, 0.010176, -0.022249, 0.12799, -0.001646 ],
    [ 0.0053418, 0.0073914, 0.0097421, -0.001646, 0.052089 ]
]
f[PNOISE] = 0.14935





The aim of a Fit Script is to optimise the fixed effects and random effects maximizing the likelihood of observing the input data given the model structure defined in ‘builtin_fit_example.pyml’. The input data in this case, is the c[DV_CENTRAL] column in ‘builtin_fit_example_data.csv’, which contains 50 individuals each with 5 observations at random time points following a bolus dose event.

You can visually compare the initial f[X] and fitted f[X] outputs with the input data, see Table 23.


Table 23 Model predictions vs original data points for first three individuals
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In the graphs above the blue dots represent the original data points. The solid blue line represents the model predictions given the final f[X] parameters and fitted r[X] values for each individual. The dashed blue lines represent the model predictions given initial f[X] parameters and r[X] values set to zero.

Note in this model a bolus dose is received by all individuals at time 2.0. Then the amount of drug in the Central compartment follows a complex PK curve as it is first absorbed form the Depot compartment and then eliminated over time, whilst also interacting with the Peripheral compartment.

The graphs show that PoPy has adjusted the f[X] and r[X] parameters, so that the PK curves more closely match the input data and therefore maximise the likelihood of the data being generated from this model.

The data file included in this example is synthesized from the PK model of the same form described in ‘builtin_fit_example.pyml’ (see Generate a Two Compartment PopPK Data Set). So in this case, the model structure is known to be correct, so we should expect a good model fit.




Syntax of Fit Script

The mixed effect population structure is defined in the LEVEL_PARAMS section as follows:-

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[KA] ~ P1.0
            f[CL] ~ P1.0
            f[V1] ~ P20
            f[Q] ~ P0.5
            f[V2] ~ P100
            f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] ~ spd_matrix() [
                [0.05],
                [0.01, 0.05],
                [0.01, 0.01, 0.05],
                [0.01, 0.01, 0.01, 0.05],
                [0.01, 0.01, 0.01, 0.01, 0.05],
            ]
            f[PNOISE] ~ P0.1
        split_field: None
        split_dict: {}
    INDIV:
        params: |
            r[KA, CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])
        split_field: ID
        split_dict: "*"





There are 5 mean fixed effect parameters i.e. f[KA], f[CL], f[V1], f[Q], f[V2], a 5x5 covariance matrix f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv], a proportional noise variable f[PNOISE] and a 5 element vector r[KA, CL, V1, Q, V2] of random effects defined for each individual. There are 50 individuals in the data set, therefore this model is attempting to estimate 6 main f[X] parameters, 15 variance f[X] parameters (the covariance matrix is symmetric) and 5 r[X] per individual. There are 271 parameters in total (i.e 15+6 f[X] + 50*5 r[X]).

The allowable ranges and starting values for the main f[X] are defined using the following syntax:-

f[X] ~ P start_x





Here the ‘P’ is short for ‘positive’. This expression is actually a shortcut for:-

f[X] ~ unif(0.0, +inf) start_x





Where a ~unif() distribution is used to define a range of allowed values [0.0, +inf]. Note, it’s quite common to require PK/PD model parameters be non-negative, in order to make physical sense. The ‘start_x’ value is the initial value for f[X] used in the optimisation, which is usually an initial guess by the modeller.

Each individual has a unique r[KA, CL, V1, Q, V2] vector, because the random effects are defined at the INDIV level. For more info on the syntax above see LEVEL_PARAMS. The r[X] are here defined as a zero-mean, multi-variate normal distribution:-

r[KA, CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])





Note the second parameter of ~mnorm() distribution, the square covariance matrix f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv] is a global parameter shared by all individuals.

When fitting a model, the f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv] matrix is defined using a ~spd_matrix() distribution:-

f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] ~ spd_matrix() [
    [0.05],
    [0.01, 0.05],
    [0.01, 0.01, 0.05],
    [0.01, 0.01, 0.01, 0.05],
    [0.01, 0.01, 0.01, 0.01, 0.05],
]





Where spd is short for symmetric positive definite. This distribution will always return a matrix with positive eigenvalues, starting with an initial matrix:-


[image: \begin{pmatrix} 0.05     & 0.01      & 0.01     & 0.01  & 0.01 \\ 0.01     & 0.05      & 0.01     & 0.01  & 0.01 \\ 0.01     & 0.01      & 0.05     & 0.01  & 0.01 \\ 0.01     & 0.01      & 0.01     & 0.05  & 0.01 \\ 0.01     & 0.01      & 0.01     & 0.01  & 0.05 \\ \end{pmatrix}]


Note as the initial matrix is symmetric it is only necessary to specify the lower triangle elements. PoPy will update the 15 free elements of this matrix to increase the likelihood fit.

Given the f[X] and r[X] the mapping to the m[X] for each individual is defined in the MODEL_PARAMS section:-

MODEL_PARAMS: |
    m[KA] = f[KA] * exp(r[KA])
    m[CL] = f[CL] * exp(r[CL])
    m[V1] = f[V1] * exp(r[V1])
    m[Q] = f[Q] * exp(r[Q])
    m[V2] = f[V2] * exp(r[V2])
    m[ANOISE] = 0.001
    m[PNOISE] = f[PNOISE]





This shows that the m[KA], m[CL], m[V1], m[Q], m[V2] parameters for each individual are modelled as log normal distributions with median values of f[KA], f[CL], f[V1], f[Q], f[V2]. There is a shared proportional noise parameter f[PNOISE] for all individuals. And small fixed additive noise constant m[ANOISE]. For more info on the syntax above see MODEL_PARAMS.

A two compartment model with first order elimination and bolus dosing via a depot compartment is defined in the DERIVATIVES section:-

DERIVATIVES: |
    # s[DEPOT,CENTRAL,PERI] = @dep_two_cmp_cl{dose:@bolus{amt:c[AMT]}}
    d[DEPOT] = @bolus{amt:c[AMT]} - m[KA]*s[DEPOT]
    d[CENTRAL] = m[KA]*s[DEPOT] - s[CENTRAL]*m[CL]/m[V1] - s[CENTRAL]*m[Q]/m[V1]  + s[PERI]*m[Q]/m[V2]
    d[PERI] = s[CENTRAL]*m[Q]/m[V1] - s[PERI]*m[Q]/m[V2]





The bolus arrives in the Depot compartment, due to the @bolus term appearing on the right hand side of the d[DEPOT] equation:-

d[DEPOT] = @bolus{amt:c[AMT]} - m[KA]*s[DEPOT]





The amount of the bolus dose is c[AMT], which is defined in the data file. In this case it is always 100 units and occurs at time point 2.0 for all individuals. The  elimination rate from the Depot compartment is m[KA], which is first order with respect to s[DEPOT].

The Central compartment, which represents the blood plasma and where drug concentration observations are made is defined as follows:-

d[CENTRAL] = m[KA]*s[DEPOT] - s[CENTRAL]*m[CL]/m[V1] - s[CENTRAL]*m[Q]/m[V1]  + s[PERI]*m[Q]/m[V2]





This consists of the input from the Depot m[KA]*s[DEPOT] and a first order elimination expression s[CENTRAL]*m[CL]/m[V1] that represents the removal of the drug from the blood plasma. Here the elimination rate is expressed as a ratio of:-


	m[CL]: clearance from Central compartment


	m[V1]: volume of distribution of Central compartment




The last two terms - s[CENTRAL]*m[Q]/m[V1]  + s[PERI]*m[Q]/m[V2] are simply the negative values of the rates for the Peripheral compartment:-

d[PERI] = s[CENTRAL]*m[Q]/m[V1] - s[PERI]*m[Q]/m[V2]





To compute the objective function for each row of the data set, the s[X] values are used to compute p[X] prediction variables which are then compared with the target c[X] values from the data file, as defined below:-

PREDICTIONS: |
    p[DV_CENTRAL] = s[CENTRAL]/m[V1]
    var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
    c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)





The predicted variable p[DV_CENTRAL] is defined as follows:-

p[DV_CENTRAL] = s[CENTRAL]/m[V1]





Hence this is a concentration, because we are dividing the amount s[CENTRAL] by the volume of distribution of the Central compartment. The other two lines:-

var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)





show that we are comparing the model prediction p[DV_CENTRAL] with the data c[DV_CENTRAL] and using ~norm() distribution likelihood error model. The variance is a proportional noise model, where the standard deviation of the proportional noise is m[PNOISE]. Here m[ANOISE] is fixed to a small positive constant, this is to avoid zero variances when p[DV_CENTRAL] is close to zero. For more info on the syntax above see PREDICTIONS.

PoPy is essentially trying to find the best combination of fixed parameters as follows:-


	f[KA] - the median elimination rate from the Depot -> Central compartment


	f[CL] - the median clearance of the Central compartment


	f[V1] - the median volume of distribution of the Central compartment


	f[Q] - the median clearance between the Central <-> Peripheral compartments


	f[V2] - the median volume of distribution of the Peripheral compartment


	f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv] - The covariance structure of the f[X] parameters above over the population of individuals.


	f[PNOISE] - the proportional noise not explained by the model in the c[DV_CENTRAL] data.




The unexplained noise f[PNOISE] and between subject variance f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv] obfuscate each other. However the population as a whole contains enough data to solve this problem using maximum likelihood [Sheiner1980].

In PoPy the likelihood is optimised iteratively, with the f[X] and r[X] being updated at each iteration. In this case, the likelihood (or objective function) progressed as follows (Table 24):


Table 24 Objective values vs iteration number and time






	Iteration

	Time

	OBJV



	
	




	487.98

	4694.97944955



	
	




	499.02

	925.406423154



	
	




	499.28

	925.406423154



	1.1

	514.39

	-661.755209606



	1.2

	526.58

	-792.469234575



	1.3

	535.92

	-854.131391277



	1.4

	544.11

	-877.308717518



	1.5

	551.26

	-884.715836361



	1.6

	558.22

	-887.091130458



	1.7

	564.64

	-887.982950809



	1.8

	570.69

	-888.387744502



	1.9

	576.67

	-888.598039741



	1.10

	582.81

	-888.731031959



	1.11

	588.84

	-888.830922606



	1.12

	594.89

	-888.918808768



	1.13

	600.92

	-889.002568065



	1.14

	607.19

	-889.087156679



	1.15

	613.18

	-889.174500946



	1.16

	619.15

	-889.265114639



	1.17

	625.11

	-889.359934326



	1.18

	631.03

	-889.458974703



	1.19

	636.99

	-889.560633267



	1.20

	642.91

	-889.665397895



	1.21

	648.87

	-889.773201786



	1.22

	654.83

	-889.883732061



	1.23

	660.78

	-889.9975775



	1.24

	666.94

	-890.114256848



	1.25

	672.95

	-890.233595526



	1.26

	678.98

	-890.35498932



	1.27

	685.03

	-890.480464838



	1.28

	691.05

	-890.609269328



	1.29

	697.39

	-890.741271669



	1.30

	703.69

	-890.877751331



	
	




	708.69

	-890.877751328






Note that the objective function is defined as -2 * the log likelihood. Therefore the lower the objective function the more likely the input data will be observed given the current f[X] values. By default PoPy stops the fitting algorithm once the objective function has stopped decreasing.




Visual Predictive Check for Two Compartment PopPK Model

The Fitting a Two Compartment PopPK Model section showed fitting a PK/PD model to a data set.

As shown previous in Visual Predictive Check for Simple PopPK Model. It is possible to use the fitted fixed effects values, i.e the optimised f[X] variables, to generate a visual predictive check, often abbreviated to ‘VPC’.


Running the MSim Script

It is presumed that you have already run the ‘builtin_fit_example.pyml’ script from Fitting a Two Compartment PopPK Model. If you have then you should have access to the following output folder:-

builtin_fit_example.pyml_output/
    msim/
        builtin_fit_example_msim.pyml





You need to Open a PoPy Command Prompt in the ‘msim’ sub folder then do:-

$ popy_edit builtin_fit_example_msim.pyml





To open the MSim Script in an editor. You can then run the script using:-

$ popy_run builtin_fit_example_msim.pyml





If you run this script the following .svg file is output:-

builtin_fit_example_msim.pyml_output/
    DV_CENTRAL_sim,DV_CENTRAL_wrt_TIME_SINCE_LAST_DOSE_comb_quant_sim_vpc/
        000000.svg





This graphic should look something like Fig. 41:-


[image: ../../_images/builtin_msim_vpc.svg]Fig. 41 Visual Predictive Check for Complex PopPK model.



Here the y axis is the concentration in the Central compartment and the x axis is the time since the last dose (TSLD). See Visual Predictive Check for Simple PopPK Model for a more general description of the VPC plot shown in Fig. 41.

In this case, the TSLD values are grouped into 12 equally spaced bins along the x axis. Note you need a minimum number of data points in each bin and there are only 250 data points in this toy example. Hence the small number of bins.

The blue dots (original data) are mainly shown to give some visual corroboration of the quantiles (solid blue line). In this graph there are only 12 bins and therefore each bin is quite wide, therefore some data points are grouped together inappropriately. This grouping issue is most obvious at the smaller values of TSLD, during the drug uptake period, when the drug is being mainly absorbed into Central compartment and has not been cleared from the blood plasma yet (see Fig. 41). Only more data and more bins can really fix the issue.




Syntax in the MSim Script

For each individual in the original data set, new synthetic data sets are created by sampling new random effects r[X] variables and new measurement noise for all data rows. i.e. The synthetic populations vary due to sampling the r[X] for each individual here:-

LEVEL_PARAMS:
    INDIV:
        params: |
            r[KA, CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])





And adding measurement noise here:-

PREDICTIONS: |
    p[DV_CENTRAL_sim] = s[CENTRAL]/m[V1]
    var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL_sim]**2
    c[DV_CENTRAL_sim] ~ norm(p[DV_CENTRAL_sim], var)





This procedure creates a set of N new data sets, which can be compared with the original data set. Where N is defined here:-

OUTPUT_OPTIONS:
    n_pop_samples: 100





You can increase the number of samples, to make the VPC more representative of your model. The more complex the PK/PD model, the more synthetic data samples you will need.

As this model has more parameters compared to the Fitting a Simple PopPK Model using PoPy, it may be worth increasing the ‘n_pop_samples’ and re-running the MSim Script. This is left as an exercise for the reader.









          

      

      

    

  

    
      
          
            
  
Generate a Two Compartment PopPK Data Set

The Fitting a Two Compartment PopPK Model section showed fitting a PK/PD model to a pre-existing data set. However in PoPy it is also possible to use a Gen Script, to generate a data set from a model file instead. i.e. The opposite of a Fit Script.

In this example we will demonstrate how to generate new data from a two compartment model with absorption and bolus dosing, see Fig. 42:-


[image: ../../_images/compartment_diagram7.svg]Fig. 42 Two compartment model with depot dosing for Gen Script. This is the same model as Two compartment model with depot dosing for fit_script. Here c[AMT] is the size of the bolus dose specified in the data file. m[KA], m[CL], m[Q], m[V1], m[V2] are all model_params to be estimated for each individual..



The ability to generate synthetic data from a model is especially useful if you wish to demonstrate a model, but do not have access to a real data set. Real data is expensive to obtain and even if it exists may have issues regarding completeness, accuracy or confidentiality. The other disadvantage of real data is that we never know the true underlying model.


Note

See the First order absorption model with peripheral compartment obtained by the PoPy developers for this example, including input script and output data file.




Running the Gen Script

This generating example make use of this single file:-

c:\PoPy\examples\builtin_gen_example.pyml





Open a PoPy Command Prompt to setup the PoPy environment in this folder:-

c:\PoPy\examples\





With the PoPy environment enabled, open the Gen Script in an editor as follows:-

$ popy_edit builtin_gen_example.pyml





then execute the script using popy_run from the command line:-

$ popy_run builtin_gen_example.pyml





When the gen script has completed, you can view the output of the generating process using popy_view, by typing the following command:-

$ popy_view builtin_gen_example.pyml.html





Note the extra ‘.html’ extension in the above command. This command opens a local .html file in your web browser to summarise the result of the generating process.

You can compare your local html output with the pre-computed documentation output, see First order absorption model with peripheral compartment. You should expect some minor numerical differences when comparing results with the documentation.




Summary of Gen Results

The main inputs of the generating script are the fixed effects f[X] variables as defined in the LEVEL_PARAMS of the Gen Script. In this case the f[X] are all constant and summarised here:-

f[KA] = 0.2
f[CL] = 2
f[V1] = 50
f[Q] = 1
f[V2] = 80
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
    [ 0.1, 0.01, 0.01, 0.01, 0.01 ],
    [ 0.01, 0.03, -0.01, 0.02, 0.02 ],
    [ 0.01, -0.01, 0.09, 0.01, 0.01 ],
    [ 0.01, 0.02, 0.01, 0.07, 0.01 ],
    [ 0.01, 0.02, 0.01, 0.01, 0.05 ]
]
f[PNOISE] = 0.15





If the f[X] are random variables, which in PoPy are defined using a ~, then the Gen Script will sample each f[X] variable once. Sampling the f[X] however makes more sense if you are creating multiple synthetic data sets, see MGen Script.

Given the global f[X] variables, the Gen Script then creates the requested number of individuals (in this case 50) and samples a set of time points (in this case 5) and dosing times (in this case a single bolus dose) for each individual. This step defines the number of rows in the synthetic data set.

The next stage is to sample any c[X] variables specified for each individual. In this example the only c[X] variables defined in the gen_script are the c[ID] field and c[AMT] value (which in this case is constant for all individuals). The c[TIME] and c[TYPE] fields are created by PoPy automatically. We now have most of a valid PoPy data set, but no observation values are defined yet.

To generate observations the r[X] variables for each individual are sampled. This along with the dose times and observation time period is enough to simulate smooth PK/PD curves from the MODEL_PARAMS, DERIVATIVES and PREDICTIONS defined in the script.

You can visualise the model predictions outputs (p[X] variables) by examining the plots for the first three individuals in the data set.


Table 25 Synthetic data plots for first three individuals
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In Table 25 above, the dotted blue line represents the model predictions given the f[X] parameters and sampled r[X] values for each individual. No noise is added to this curve and it is plotted at regular unit time steps, therefore it is smooth.

The solid blue dots represent the observations with noise added at randomly sampled time points for each individual. The solid blue dots are the values that end up in the synthetic data file under the c[DV_CENTRAL] field.

Note in this model a bolus dose is received by all individuals at time 2.0. After the dose, the concentration of the drug in the Central compartment increases as drug is absorbed from the Depot compartment. Then the drug concentration falls as the drug is metabolised. The decay curve is first order with an inflection point due to the Peripheral compartment.

The doses are the same for all individuals, but the smooth curves generated by the model vary due to each individual having a different r[X] vector.




Syntax in the Gen Script

The LEVEL_PARAMS section defines the population structure that the Gen Script will create as follows:-

LEVEL_PARAMS:
    GLOBAL:
        params: |
            c[AMT] = 100.0
            f[KA] = 0.2
            f[CL] = 2.0
            f[V1] = 50
            f[Q] = 1.0
            f[V2] = 80
            f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
                [0.1],
                [0.01, 0.03],
                [0.01, -0.01, 0.09],
                [0.01, 0.02, 0.01, 0.07],
                [0.01, 0.02, 0.01, 0.01, 0.05],
            ]
            f[PNOISE] = 0.15
        split_field: None
        split_dict: {}
    INDIV:
        params: |
            c[ID] = sequential(50)
            t[DOSE] = 2.0
            t[OBS] ~ unif(1.0, 50.0; 5)
            # t[OBS] = range(1.0, 50.0; 5)
            r[KA, CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])
        split_field: ID
        split_dict: "*"





This LEVEL_PARAMS structure is similar to the Syntax of Fit Script with some additional lines to define new individuals, doses and observation times.

The number of individuals is defined by the following line:-

c[ID] = sequential(50)





This specifies a sequence where the first individual is ‘1’, the 2nd is ‘2’ etc. up to ‘50’.

This line specifies a single dose record for each individual at time 2.0:-

t[DOSE] = 2.0





This line request a sample of 5 time points uniformly distributed in the period [1.0, 50.0]:-

t[OBS] ~ unif(1.0, 50.0; 5)





The random effects are here sampled from a zero-mean, multi-variate normal distribution, as follows:-

r[KA, CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])





Note the second parameter of mnorm, the square covariance matrix f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv] is a global parameter shared by all individuals. Each individual has a unique r[KA, CL, V1, Q, V2] vector, because the random effects are defined at the INDIV level. For more info on the syntax above see LEVEL_PARAMS.

The MODEL_PARAMS and DERIVATIVES sections of this Gen Script are the same as the Syntax of Fit Script, so are not discussed here.

The PREDICTIONS section in the Gen Script defines how the dependent c[X] variables are sampled given the p[X] model predictions:-

PREDICTIONS: |
    p[DV_CENTRAL] = s[CENTRAL]/m[V1]
    var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
    c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)





PoPy samples c[DV_CENTRAL] for each row of the data set, to create a synthetic noisy measurement at each time point for each individual.




Structure of output synthetic data file

The c[X] variables are saved to disk. For an example data file see First order absorption model with peripheral compartment. The first few lines of the ‘synthetic_data.csv’ are shown in (Table 26) below:-


Table 26 First 10 rows of ‘synthetic_data.csv’ file










	TYPE

	ID

	TIME

	AMT

	DV_CENTRAL

	orig_data_row

	DV_CENTRAL_FLAG





	dose

	1

	2

	100

	0

	0

	0



	obs

	1

	10.0120217722

	100

	1.06360868532

	1

	1



	obs

	1

	11.0234536491

	100

	1.0742087272

	2

	1



	obs

	1

	16.5024021745

	100

	0.991182116434

	3

	1



	obs

	1

	28.818526425

	100

	0.637641920076

	4

	1



	obs

	1

	46.551188548

	100

	0.328576902998

	5

	1



	dose

	2

	2

	100

	0

	0

	0



	obs

	2

	30.181690446

	100

	0.582782891995

	1

	1



	obs

	2

	33.0056777467

	100

	0.53420402498

	2

	1



	…

	…

	…

	…

	…

	…

	…






This shows some of the typical properties of PoPy’s PoPy Data Format, where the main fields are:-


	TYPE - Specifies either a dose or an observation row.


	ID - The identifier for a given subject.


	TIME - The time stamp of the row event.


	AMT - The size of the dose at a given time.


	DV_CENTRAL - The synthetic observed values.


	DV_CENTRAL_FLAG - Indicates valid measurement rows, 1=valid 0=ignore.


	orig_data_row - The data row number within an individual subject.







Controlling Random Seed in PoPy scripts

Note that the .csv data file generated by Gen Script on your own machine, will likely contain different values due to the random sampling of random effect realizations and then random noise added to each observation.

If you wish to obtain new random results each time your re-run the Gen Script then change the ‘rand_seed’ option to ‘auto’ as follows:-

METHOD_OPTIONS: {rand_seed: auto}





However if you re-run the Gen Script with a fixed number, you should obtain exactly the same results on your machine as before, due to this setting:-

METHOD_OPTIONS: {rand_seed: 12345}





Using a fixed number for the ‘rand_seed’ makes any sampling process in PoPy replicable.







          

      

      

    

  

    
      
          
            
  
Generate data and Fit using a Two Compartment Model

In this example we will demonstrate a Tut Script using the same two compartment model with absorption and bolus dosing, as used in the Fitting a Two Compartment PopPK Model and Generate a Two Compartment PopPK Data Set, see Fig. 43:-


[image: ../../_images/compartment_diagram8.svg]Fig. 43 Two compartment model with depot dosing for Tut Script.



This PoPy model is also used when Creating an example Tut Script.


Note

See the First order absorption model with peripheral compartment obtained by the PoPy developers for this example, including input script and output data file.



A Tut Script can be used as a theoretical tool to quickly investigate identifiability of PK/PD models, because the true f[X] parameters and the structure of the data are known.

The PoPy Manual makes extensive use of tut_scripts to create examples to illustrate different Principles of Pharmacokinetics.


Running the Tutorial Script

This tutorial example requires a single input file:-

c:\PoPy\examples\builtin_tut_example.pyml





Open a PoPy Command Prompt to setup the PoPy environment in this folder:-

c:\PoPy\examples\





With the PoPy environment enabled, you can open the script using:-

$ popy_edit builtin_tut_example.pyml





Again, with the PoPy environment enabled, call popy_run on the Tut Script from the command line:-

$ popy_run builtin_tut_example.pyml





When the tut script has terminated, you can view the output of the fit using popy_view, by typing the following command:-

$ popy_view builtin_tut_example.pyml.html





Note the extra ‘.html’ extension in the above command. This command opens a local .html file in your web browser to summarise the result of the generating process.

You can compare your local html output with the pre-computed documentation output, see First order absorption model with peripheral compartment. You should expect some minor numerical differences when comparing results with the documentation.




Syntax of Tut Script

The major structural difference between a Fit Script or Gen Script and a Tut Script is that the LEVEL_PARAMS section combines the fitting and generating elements, for example the LEVEL_PARAMS section for this tutorial example is as follows:-

LEVEL_PARAMS:
    GLOBAL:
        split_field: None
        split_dict: {}
        gen_params: |
            c[AMT] = 100.0
            f[KA] = 0.2
            f[CL] = 2.0
            f[V1] = 50
            f[Q] = 1.0
            f[V2] = 80
            f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
                [0.1],
                [0.01, 0.03],
                [0.01, -0.01, 0.09],
                [0.01, 0.02, 0.01, 0.07],
                [0.01, 0.02, 0.01, 0.01, 0.05],
            ]
            f[PNOISE] = 0.15
        fit_params: |
            f[KA] ~ P1.0
            f[CL] ~ P1.0
            f[V1] ~ P20
            f[Q] ~ P0.5
            f[V2] ~ P100
            f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] ~ spd_matrix() [
                [0.05],
                [0.01, 0.05],
                [0.01, 0.01, 0.05],
                [0.01, 0.01, 0.01, 0.05],
                [0.01, 0.01, 0.01, 0.01, 0.05],
            ]
            f[PNOISE] ~ P0.1
    INDIV:
        split_field: ID
        split_dict: "*"
        gen_params: |
            c[ID] = sequential(50)
            t[DOSE] = 2.0
            t[OBS] ~ unif(1.0, 50.0; 5)
            # t[OBS] = range(1.0, 50.0; 5)
            r[KA, CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])
        fit_params: |
            r[KA, CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])





The ‘gen_params’ and ‘fit_params’ simply get copied into the appropriate scripts and renamed ‘params’. From the examples above you can see that the gen_params GLOBAL section has:-

f[X] = true_value





Whereas the fit_params GLOBAL section has:-

f[X] ~ P starting_value





Reflecting the fact that the f[X] are known constants for a Gen Script, but are unknown values to be estimated in a Fit Script.




Summary of Tut Results

The Tut Script generates an output folder containing four new scripts:-

builtin_tut_example.pyml_output/
    builtin_tut_example_gen.pyml
    builtin_tut_example_fit.pyml
    builtin_tut_example_comp.pyml
    builtin_tut_example_tutsum.pyml





See Files Generated by Tut Script for more info. These four scripts are run in order. The Gen Script is described in Generate a Two Compartment PopPK Data Set and the Fit Script is described in Fitting a Two Compartment PopPK Model. Therefore here we will focus on the Comp Script outputs, which are fitted f[X] and generated f[X] plots and their objective values. The simplest comparison output is a visual comparison of the true and fitted f[X] PK curves and the synthetic measurement data, see Table 27.


Table 27 Fitted model PK curves vs true model PK curves for first three individuals
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The solid blue lines in Table 27 show the predicted PK curves for the fitted model f[X] values. The dotted blue lines show the PK curves for the true f[X] values that were used to generated the data set (in the Gen Script). The blue dots are the target c[DV_CENTRAL] values from the data file.

The target c[DV_CENTRAL] values have measurement noise added, so blue dot data points do not lie on the true f[X] curves. The graphs show that the PK curves for the fitted f[X] are very similar to the true f[X] curves. Most divergence occurs away from the data points and most agreement close to the data points, for example for Individual 2 the fitted and true curves differ over time period [0,30], but are very similar in the period [30,50]. In the period [0,30], the model tends to impute the curve for the median individual, in the absence of actual data.


Fit vs True f[X] values

If the Comp Script has been run, the TutSum Script output also contains a convenient table to compare the initial, fitted and true f[X] values, see Table 28.


Table 28 Comparison of main initial, fitted and true f[X] values









	Name

	Initial

	Fitted

	True

	Prop. Error

	Abs. Error





	f[KA]

	1

	0.233

	0.2

	16.63%

	3.33e-02



	f[CL]

	1

	2.24

	2

	12.11%

	2.42e-01



	f[V1]

	20

	58.1

	50

	16.21%

	8.11e+00



	f[Q]

	0.5

	0.7

	1

	30.04%

	3.00e-01



	f[V2]

	100

	115

	80

	43.67%

	3.49e+01






Table 28 shows that the f[KA], f[CL], f[V1], f[Q] parameters are recovered reasonably well, in the sense that the fitted values are much closer to the true values, compared to the initial starting values. However the f[V2] fitted value is quite different from the true value.

You can also compare the proportional noise estimate:-


Table 29 Comparison of fitted and true proportional noise f[X] values









	Name

	Initial

	Fitted

	True

	Prop. Error

	Abs. Error





	f[PNOISE]

	0.1

	0.149

	0.15

	0.43%

	6.52e-04






Here the f[PNOISE] starts at 0.1, is estimated at 0.141, which can be compared with the true value 0.15. Generally the proportional noise is identifiable in a PK/PD model. This is because every row of the data set and the current f[PNOISE] parameter has an influence on the overall likelihood.

The comparison of the covariance matrix estimates is quite long, as it displays a row for 5*5 f[X] comparisons. However the diagonal elements (only) are shown here:-


Table 30 Comparison of fitted and true isv variance diagonal f[X] values









	Name

	Initial

	Fitted

	True

	Prop. Error

	Abs. Error





	f[KA_isv]

	0.05

	0.21

	0.1

	110.44%

	0.11



	f[CL_isv]

	0.05

	0.029956

	0.03

	0.15%

	4.37E-05



	f[V1_isv]

	0.05

	0.0473

	0.09

	47.47%

	0.0427



	f[Q_isv]

	0.05

	0.0729

	0.07

	4.14%

	0.0029



	f[V2_isv]

	0.05

	0.0567

	0.05

	13.45%

	0.00673






This shows that f[CL_isv] and f[Q_isv], the inter-subject variances of the clearances are estimated reasonably well. The f[KA_isv] estimate is far too high. The f[V1_isv] and f[V2_isv] estimates are worse than the starting value estimates.

The fact that f[V1_isv] and f[V2_isv] are badly estimated compared to the true values is not that surprising, since volumes of distribution are harder to estimate in PK models, compared to clearances which are rates. The difficulty in estimating f[KA_isv] may be due to the relative lack of data before the cmax peak of the PK curve, there being only 5 data points sampled per individual.

There can be multiple reasons for the fitted values not agreeing with the true parameters, for example:-


	Too few observations in the data set.


	Too few individuals in the data set.


	Too much noise added to the measurement data.


	False minima on the likelihood surface.


	A fundamental difficulty in identifying some PK parameters, for example if the model is over-parametrised relative to the data set or even unidentifiable.




Given the relatively small amount of data generated (250 data points), the results in Table 28 are adequate. As shown in the next section the objective function for the fitted f[X] solution is actually lower than for the true f[X] solution here, see below for discussion.




Fit vs True Objective value

It is difficult to know by just comparing the fitted f[X] and true f[X] in section Fit vs True f[X] values, if the fitting method has done well or badly. We can run a form of sanity check by computing the objective function of the true f[X] and comparing this with the objective function of the fitted f[X]. This is done by optimising the r[X] for both solutions and using the synthetic data file to compute the likelihood.

The rational is that the fitted f[X] objective value should always be lower than the true f[X] objective value, because the fitted model estimates can take advantage of correlations in the random measurement noise to get a better fit to the synthetic data. If the fitted objective function is higher then the PoPy fitting method has ended up in a sub optimal local minima, because the known true values are a better minima.

In this example, the true model objective function is:-

-881.0027





Compared with the fitted model objective function:-

-896.8752





This indicates that the fitted f[X] pass the sanity check and perhaps justifies the lack of agreement with parameters such as f[V2]. However it does not say if the global optimum solution was found, i.e. whether or not f[X] is a true global minima of the likelihood surface.

The difference between the two objective values above is partially dependent on the amount of noise applied to the measurements i.e. f[PNOISE], the number of individuals simulated, the number of observations per individual and the number of parameters in the model. More random noise in the synthetic data creates more likelihood minima that are away from the true f[X] solution.

If the model is practically identifiable then increasing the number of data points and individuals should lead to a convergence between the true and fitted f[X] and the objective functions above.






Re-run the tutorial

You can familiarise yourself with PoPy’s various features by tweaking the tutorial example and re-running. A simple way of avoiding overwriting previous results is to do:-

$ copy builtin_tut_example.pyml builtin_tut_example_v2.pyml
$ popy_edit builtin_tut_example_v2.pyml





Then when you are happy with the edited file do:-

$ popy_run builtin_tut_example_v2.pyml





For example, you can adjust the amount of data generated, in this section:-

LEVEL_PARAMS:
    INDIV:
        gen_params: |
            c[ID] = sequential(50)
            t[DOSE] = 2.0
            t[OBS] ~ unif(1.0, 50.0; 5)
            # t[OBS] = range(1.0, 50.0; 5)





Note the ‘range’ function can sample time points evenly (instead of randomly). This usually makes the model fitting easier as the data points span the time range better. You can experiment with the number of doses or make a random sample of dose times for each individual.

You can also edit the underlying model or compartment structure, see the MODEL_PARAMS or DERIVATIVES sections.

Another possibility is changing the fitted model only, i.e take a copy of this file:-

builtin_tut_example.pyml_output/
    builtin_tut_example_fit.pyml





Name it ‘builtin_tut_example_fit_v2.pyml’, change the model structure or compartment. Then do:-

$ popy_run builtin_tut_example_fit_v2.pyml





Using a different model from the underlying generative model should result in a worse fit (using say an Akaike information criterion to compare fits).







          

      

      

    

  

    
      
          
            
  
Generate multiple data sets and Fit using a Two Compartment Model

The previous example showed how to Generate data and Fit using a Two Compartment Model, which generates data from a model then fits the model to the synthetic data.

In PoPy it is also possible to iterate over a Tut Script, using what we call a MTut Script or multi-tutorial script and apply the generate/fit process multiple times. In this example we will demonstrate a MTut Script using the same two compartment model with absorption and bolus dosing, as used in the Complex PopPK Tut Script example, see Fig. 44:-


[image: ../../_images/compartment_diagram8.svg]Fig. 44 Two compartment model with depot dosing for MTut Script.



An MTut Script is a tool for investigating identifiability of PK/PD models, but gives you more information than a Tut Script because the synthetic population data is sampled multiple times, which gives a spread of fitted f[X] results for each model parameter.


Running the MTut Script

This multi tutorial example make use of this single file:-

c:\PoPy\examples\builtin_mtut_example.pyml





Open a PoPy Command Prompt to setup the PoPy environment in this folder:-

c:\PoPy\examples\





With the PoPy environment enabled, you can open the script using:-

$ popy_edit builtin_mtut_example.pyml





Again, with the PoPy environment enabled, call popy_run on the MTut Script from the command line:-

$ popy_run builtin_mtut_example.pyml





Running an mtut script can take a considerable amount of time, as it is equivalent to running a Tut Script multiple times. However in this toy example we only run the fit/gen cycle 30 times and limit the f[X] parameters that are estimated.




Syntax of MTut Script

The MTut Script is very similar to the Tut Script in Syntax of Tut Script, the primary difference is that the MTut Script specifies the number of populations to sample as follows:-

OUTPUT_OPTIONS: {n_pop_samples: 30}





Like a Tut Script, the MTut Script encodes both the data generation and fitting in the LEVEL_PARAMS section. In this example the LEVEL_PARAMS section is slightly different from Syntax of Tut Script, as follows:-

LEVEL_PARAMS:
    GLOBAL:
        split_field: None
        split_dict: {}
        gen_params: |
            c[AMT] = 100.0
            f[KA] ~ unif(0.1,0.3)
            f[CL] ~ unif(7.0, 13.0)
            f[V1] ~ unif(30.0,70.0)
            f[Q] ~ unif(0.5,1.5)
            f[V2] = 80
            f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
                [0.1],
                [0.01, 0.03],
                [0.01, -0.01, 0.09],
                [0.01, 0.02, 0.01, 0.07],
                [0.01, 0.02, 0.01, 0.01, 0.05],
            ]
            f[PNOISE] ~ unif(0.1, 0.2)
        fit_params: |
            f[KA] ~ P0.2
            f[CL] ~ P10.0
            f[V1] ~ P50.0
            f[Q] ~ P1.0
            f[V2] = 80
            f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
                [0.1],
                [0.01, 0.03],
                [0.01, -0.01, 0.09],
                [0.01, 0.02, 0.01, 0.07],
                [0.01, 0.02, 0.01, 0.01, 0.05],
            ]
            f[PNOISE] ~ P0.15
    INDIV:
        split_field: ID
        split_dict: "*"
        gen_params: |
            c[ID] = sequential(10)
            t[DOSE] = 2.0
            t[OBS] ~ unif(1.0, 50.0; 5)
            # t[OBS] = range(1.0, 50.0; 5)
            r[KA, CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])
        fit_params: |
            r[KA, CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])





The gen_params section at the GLOBAL level defines the following f[X]:-

f[KA] ~ unif(0.1,0.3)
f[CL] ~ unif(7.0, 13.0)
f[V1] ~ unif(30.0,70.0)
f[Q] ~ unif(0.5,1.5)
f[V2] = 80
f[PNOISE] ~ unif(0.1, 0.2)





This means that when running the MGen Script the f[KA], f[CL], f[V1], f[Q] and f[PNOISE] are sampled 30 times to create 30 different synthetic data sets with different true f[X] values. The f[V2] parameters in contrast always has the constant value 80. Note the f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv] matrix is also constant here.

Where as the fit_params section at the GLOBAL section tries to estimate the following f[X]:-

f[KA] ~ P0.2
f[CL] ~ P10.0
f[V1] ~ P50.0
f[Q] ~ P1.0
f[V2] = 80
f[PNOISE] ~ P0.15





These entries mean that when running the MFit Script the f[KA], f[CL], f[V1], f[Q] and f[PNOISE] are estimated for each of the 30 synthetic data sets created by the MGen Script. The starting values for the parameter fitting are here set to the middle of the sampling region used in the gen_params. For example f[KA] has initial value 0.2, whereas the true value lies in the region [0.1,0.3] for each synthetic data set. f[V2] is not estimated at all, it is merely set to the true value i.e. 80. Similarly f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv] is set to the true constant value here. The ‘P’ in the fit_params forces the fitting process to estimate positive values.

Restricting the estimation to 5 f[X] parameters greatly speeds up the run time of MFit Script, which makes this toy example much faster to run. The MTut Script is only sampling 30 synthetic data sets, which is a relatively small number. You could increase this if you wish to obtain more detailed scatter plots (see below). Most of the run time is taken up by MFit Script, the MGen Script is relatively quick to run, as it only has to evaluate the ordinary differential equations in the DERIVATIVES block once per synthetic data set, where as the MFit Script must evaluate the ordinary differential equations multiple times to estimate f[X] for each synthetic data set.




Summary of MTut Results

The MTut Script should generate an output folder containing three new scripts:-

builtin_mtut_example.pyml_output/
    builtin_mtut_example_mgen.pyml
    builtin_mtut_example_mfit.pyml
    builtin_mtut_example_mcomp.pyml





The purpose of each of theses scripts is as follows:-


Table 31 Scripts output by a multi tutorial script






	Script

	Purpose

	Documentation





	*_mgen.pyml

	Generate multiple synthetic data sets from model

	MGen Script



	*_mfit.pyml

	Fit model to multiple synthetic data sets

	MFit Script



	*_mcomp.pyml

	Compare gen model and fit model f[X]

	MComp Script






The MGen Script is very similar to the Gen Script described in Generate a Two Compartment PopPK Data Set and the MFit Script is very similar to the Fit Script described in Fitting a Two Compartment PopPK Model. See Files Generated by MTut Script for more info.

Therefore here we mainly discuss the MComp Script outputs, which processes the results of MGen Script and MFit Script. The simplest output is a visual comparison of the true and fitted f[X] values as shown in Table 32 and Table 33.


Table 32 Fitted model vs true scatter plots for f[KA] and f[CL]





	[image: ]
                
	[image: ]
                





In Table 32 the blue dots are a scatter plot of fitted f[X] vs true f[X]. The green dots are initial f[X] vs true f[X]. For example in the case of f[CL] the true values are sampled as follows:-

f[CL] ~ unif(7.0, 13.0)





i.e. the true values are uniformly sampled in the range [7.0,13.0]. The fitted f[CL] parameters are specified as follows:-

f[CL] ~ P10.0





The initial values for f[CL] are always 10.0. see green dots in a horizontal line on the right graph in Table 32. The ‘P’ specifies that the fitting value of f[CL] is restricted to positive numbers. The final fitting values are the blue dots on the right graph in Table 32. For f[CL] the blue dots are clustered along the black 45 degree line. Hence fitting for f[CL] works well, this agrees with the initial findings in Fitting a Two Compartment PopPK Model. The f[KA] fitted values (blue dots) on the left graph in Table 32 are less obviously grouped around the 45 degree line. Especially the outlier when the fitted value is estimated at 0.48 compared to a true value of 0.21.


Table 33 Fitted model vs true scatter plots for f[Q] and f[V1] and f[PNOISE]
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In Table 33 (left graph) the f[Q] rate results for the Peripheral compartment are reasonably well estimated, apart from one outlier. The f[V1] parameter (middle graph) is really badly estimated, there does not seem to any correlation between true f[V1] values and fitted f[V1] values at all. The f[PNOISE] parameter (right graph) is reasonably well estimated, with the results mostly lying along the 45 degree line.

In this case, the f[V1] parameter (the volume of distribution of the Central compartment) is shown to be hard to estimate, compared to f[CL] and f[Q] clearances. The f[KA] estimate is a bit unstable, possibly due to this parameter requiring time point data shortly after the dose, which does not always exist. f[PNOISE] is reasonably well estimated, but it’s likely that higher values of f[PNOISE] make the other parameters harder to identify.

Given the relatively small amount of data generated (50 data points spread across 10 individuals), the results in Table 32 and Table 33 are reasonably good.




Re-run the MTut Script

You can familiarise yourself with PoPy’s various features by tweaking the multi-tutorial example and re-running. A simple way of avoiding overwriting previous results is to do:-

$ copy builtin_mtut_example.pyml builtin_mtut_example_v2.pyml
$ popy_edit builtin_mtut_example_v2.pyml





Then when you are happy with the edited file do:-

$ popy_run builtin_mtut_example_v2.pyml





For example, you can adjust the amount of data generated, in this section:-

LEVEL_PARAMS:
    INDIV:
        gen_params: |
            c[ID] = sequential(10)
            t[DOSE] = 2.0
            t[OBS] ~ unif(1.0, 50.0; 5)
            # t[OBS] = range(1.0, 50.0; 5)





Note the ‘range’ function can sample time points evenly (instead of randomly). This usually makes the model fitting easier as the data points span the time range better. You can experiment with the number of doses or make a random sample of dose times for each individual.

You could also change the initial fitting f[X] values, to make the f[X] estimation process start further away from the true f[X] values. You could also attempt to estimate more (or fewer) parameters, for example try estimating the f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv] covariance matrix.

You can also edit the underlying model or compartment structure, see the MODEL_PARAMS or DERIVATIVES sections.




Convert Tut to MTut

A MTut Script is essentially a Tut Script with an extra loop. Therefore it’s fairly simple to convert an existing tutorial script to a multi tutorial script. First change the script type from tut->mtut:-

METHOD_OPTIONS: {py_module: mtut}





Add the mtut OUTPUT_OPTIONS section:-

OUTPUT_OPTIONS: {n_pop_samples: 30}





Change the OUTPUT_SCRIPTS section to this:-

OUTPUT_SCRIPTS:
    MGEN: {output_mode: gen_script_and_run}
    MFIT: {output_mode: gen_script_and_run}
    MCOMP: {output_mode: gen_script_and_run, dot_size: 12}





You should then be able to run your new mtut script.







          

      

      

    

  

    
      
          
            
  
PoPy for Nonmem Users

For users who are familiar with Nonmem we give an overview for converting Nonmem data sets and fitting scripts to PoPy format.



	Nonmem Data to PoPy Data File

	Nonmem to PoPy Data conversions using P2NDAT and N2PDAT Scripts

	Nonmem control file to PoPy Fit Script

	Nonmem Advan1,2,3,4,11,12 to PoPy analytic compartment models

	DDMoRe0061 Conversion Example

	DDMoRe0093 Conversion Example

	DDMoRe0238 Conversion Example









          

      

      

    

  

    
      
          
            
  
Nonmem Data to PoPy Data File

The Nonmem data file has the same purpose as the PoPy data file. It represents the observations at different time points and the dosing regimens for each subject.

For simple data sets you may only need to substitute a few values to create a valid PoPy data file. If you have multiple dosing regimes and multiple measurements then the conversion may be more difficult.

Table 34 lists the the PoPy data fields for each Nonmem data field. Each subsection gives a one to one example conversion to PoPy format.


Table 34 Nonmem to PoPy Data






	Nonmem

	PoPy

	Comment





	EVID

	TYPE

	Data row property field



	ID

	ID

	Identity field



	TIME

	TIME

	Time field



	CMT

	N/A

	Compartment field



	AMT

	AMT

	Dose Amount field



	DV

	Observation field

	Observations



	MDV

	Observation flag field

	Missing observations






Both PoPy and Nonmem need to load a data file when estimating parameters. See $DATA for Nonmem’s method of specifying the input data file path and how to specify the input data file path in a PoPy Fit Script.


EVID

‘EVID’ is a required field in Nonmem. There is an equivalent required TYPE field in PoPy. The major difference is that Nonmem ‘EVID’ uses integers to define row properties, whereas PoPy uses human readable strings as shown in Table 35.


Table 35 Nonmem EVID to PoPy TYPE






	Nonmem EVID

	PoPy TYPE

	Comment





	0

	obs

	Observation Row



	1

	dose

	Dosing Row



	2

	pred

	Prediction Row



	3

	reset

	Reset Row



	4

	reset+dose

	Reset and Dose Row






Note in PoPy the ‘dose’ TYPE entry can have a name suffix using PoPy’s ‘:’ notation. See specifying multiple dose types in PoPy for more details.




ID

‘ID’ is a required field in Nonmem and PoPy. The ‘ID’ column defines the individual for each data row. It is usually not necessary to convert the ‘ID’ column of the data set.

However, note that in PoPy the same identifier in the ‘ID’ field is always treated as the same individual. In Nonmem only identical identifiers that are in consecutive rows are treated as one individual.

For example in Table 36.


Table 36 Nonmem id example






	ID

	Nonmem

	PoPy





	Bill

	New id

	New id



	Bill

	Bill again

	Bill again



	Sandra

	New id

	New id



	Bill

	New id

	Bill again



	Sandra

	New id

	Sandra again






Nonmem thinks there are 4 subjects, whilst PoPy thinks there are 2.




TIME

‘TIME’ is a required field in Nonmem and PoPy. The ‘TIME’ column defines the time stamp for each row. It is usually not necessary to convert the ‘TIME’ column of the data set.

In both Nonmem and PoPy the time field is required to be monotonically increasing, unless a EVID = 3 or 4 row is reached. In PoPy time is reset when a TYPE = ‘reset’ or ‘reset+dose’ row is reached.

One complication that can arise is if the Nonmem data is split over date and time, for example see Table 37.


Table 37 Nonmem id time






	Nonmem date

	Nonmem time

	PoPy time





	2016-02-12

	10:30

	0.0



	2016-02-13

	19:01

	32.5167



	2016-02-13

	19:02

	32.5333



	2016-02-13

	23:39

	37.15



	2016-02-13

	23:42

	37.2



	2016-02-14

	10:06

	47.6






Here the data for each individual needs to be converted to the time after the first record (or time since last reset) for use in PoPy.




CMT

The ‘CMT’ field in Nonmem is used to specify the index of the compartment where doses will be administered. i.e. rows with EVID=1 or EVID=4, with CMT=x will result in an bolus or infusion dose being administered in the compartment numbered ‘x’ in the $DES section of the Nonmem control file.

PoPy deliberately does not specify the dose compartment in the data file. Instead the dose compartment is specified in the DERIVATIVES section by the location of the Dosing Functions.

If the data only contains one type of dose, e.g. one drug which is always a bolus or always an infusion, then you can just ignore the ‘CMT’ field when converting to PoPy format.

If the data contains multiple types of dose however then PoPy needs a way of distinguishing between the two types (Nonmem uses a different CMT integer typically). In PoPy you need to give the dose a name, using the ‘:’ notation. An example data conversion with two types of dose is shown in Table 38.


Table 38 Nonmem cmt to PoPy dose name







	Nonmem evid

	Nonmem cmt

	PoPy type

	Comment





	1

	1

	dose:first_drug

	drug one in first compartment



	1

	1

	dose:first_drug

	drug one in first compartment



	1

	3

	dose:second_drug

	drug two in third compartment



	1

	1

	dose:first_drug

	drug one in first compartment






Note that the PoPy format above, leaves the destination compartment of each drug to be determined in the script file (the DERIVATIVES section), because the depot compartment for each drug is primarily a modelling decision, which might be changed in later analyses.




AMT

The Nonmem AMT field specifies the amount of each dose. The same field can be used in PoPy, so usually the AMT field needs no conversion.

Nonmem only allows a single AMT field to be used. If you have multiple doses, e.g. for two different drugs, then Nonmem forces you to put all dose amount values in a single column in your data file, even if the amounts are in different units.

In your PoPy data file you might want to take the opportunity to use separate columns, e.g. ‘AMT_DRUG1’, ‘AMT_DRUG2’ as a way of making your data file and script file clearer.




DV

The Nonmem DV field specifies the observed measurements in a data file. For example plasma drug concentration for a PK study or biomarker data in a PD trial. The same field can be used in PoPy, so often the DV field requires no conversion.

However Nonmem only allows a single DV field to be used. This has the same issues as the AMT field above. If you have multiple types of measurement in a study then Nonmem forces you to place all measurement values in a single column, even if the values have different units.

In your PoPy data file you might like to split the DV data into separate columns, e.g. ‘CONC’, and ‘MARKER’. This will make your data file and script file easier to read.

An example data conversion with two types of measurement is shown in Table 39.


Table 39 Nonmem DV to PoPy named fields









	Nonmem DV

	CONC

	CONC_FLAG

	MARKER

	MARKER_FLAG

	Comment





	5.3

	5.3

	1

	0

	0

	conc obs



	3

	0

	0

	3

	1

	marker obs



	5

	0

	0

	5

	1

	marker obs



	12.1

	12.1

	1

	0

	0

	conc obs






Note in Table 39 it is necessary to use the ‘_FLAG’ field convention. The ‘_FLAG’ field is similar to the Nonmem MDV field, but you can have multiple ‘_FLAG’ fields. In a flag field ‘1’ means use this observation, ‘0’ means ignore. The flag field means you don’t have to use ‘if statements’ in the PREDICTIONS section.




MDV

The Nonmem MDV (missing data value) column is used to ignore some observations. It is similar in function to the PoPy flag field syntax described in DV.

However the MDV indicator contains a double negative, an observation is valid in Nonmem if MDV=0, i.e. it is not missing. The PoPy flag field is just yes/no, i.e. an observation X is valid if X_FLAG =1.

An example DV/MDV conversion is shown in Table 40.


Table 40 Nonmem DV/MDV to PoPy flag fields








	Nonmem DV

	Nonmem MDV

	CONC

	CONC_FLAG

	Comment





	5.3

	0

	5.3

	1

	valid obs



	na

	1

	0.0

	0

	invalid obs



	0.0

	1

	0.0

	0

	invalid obs



	2.9

	0

	2.9

	1

	valid obs






Here:-


[image: FLAG = 1 - MDV]


Also, in Nonmem you are only allowed to have one MDV field, which makes it less useful when you have multiple types of measurement.







          

      

      

    

  

    
      
          
            
  
Nonmem to PoPy Data conversions using P2NDAT and N2PDAT Scripts

See Nonmem Data to PoPy Data File for an overview of how the Nonmem data format maps to PoPy format. It is very possible to use this format information to write your own data conversion script in a general purpose programming language, e.g. R or Python.

However, we provide a convenient N2PDat Script, to automatically convert from Nonmem to PoPy without doing any programming. We actually provide two scripts that are mirror images of each other as follows:-


	P2NDat Script - converts from PoPy to Nonmem data


	N2PDat Script - converts from Nonmem to PoPy data




The two types of conversion scripts are illustrated in this section using the following files from the PoPy examples folder:-

c:\PoPy\examples\p2ndat_script.pyml
                 n2pdat_script.pyml
                 fit_example1_data.csv





Here ‘fit_example1_data.csv’ is in PoPy Data Format and is the simple PK data file discussed in Fitting a Simple PopPK Model using PoPy. ‘p2ndat_script.pyml’ is a PoPy script that will convert the original PoPy ‘fit_example1_data.csv’ to Nonmem format, see P2NDAT Example. The ‘n2pdat_script.pyml’ will convert the newly created Nonmem data file back to PoPy format, see N2PDAT Example.

The data files in this section form a loop:-

fit_example1_data.csv -p2ndat-> fit_example1_nm_data.csv -n2pdat-> fit_example1_data_v2.csv

Where ‘fit_example1_data.csv’ and ‘fit_example1_data_v2.csv’ are both compatible PoPy data files and ‘fit_example1_nm_data.csv’ is in Nonmem format.


P2NDAT Example

The first few rows of the original ‘fit_example1_data.csv’ file are shown in Table 41.


Table 41 Original data in PoPy format (first ten rows)









	TYPE

	ID

	TIME

	AMT

	DV_CENTRAL

	DV_CENTRAL_FLAG



	reset

	1

	0

	100

	0

	0



	dose

	1

	1

	100

	0

	0



	obs

	1

	7.22152181887

	100

	55.3986503177

	1



	obs

	1

	13.7633242874

	100

	43.5423043551

	1



	obs

	1

	19.4607360933

	100

	24.3960137842

	1



	obs

	1

	44.9645896939

	100

	3.06161955063

	1



	obs

	1

	48.3691740856

	100

	2.84311907493

	1



	reset

	2

	0

	100

	0

	0



	dose

	2

	1

	100

	0

	0



	obs

	2

	7.03200507014

	100

	48.1712193857

	1






You can view the example P2NDat Script, Open a PoPy Command Prompt in this folder:-

c:\PoPy\examples\





And type:-

$ popy_edit p2ndat_script.pyml





Then run using:-

$ popy_run p2ndat_script.pyml





This will create a new Nonmem data file ‘fit_example1_nm_data.csv’. The first ten rows are shown in Table 42.


Table 42 Output data in Nonmem format (first ten rows)










	TIME

	ID

	AMT

	DV

	MDV

	EVID

	CMT



	0

	1

	0

	0

	1

	3

	1



	1

	1

	100

	0

	1

	1

	1



	7.22152181887

	1

	0

	55.3986503177

	0

	0

	1



	13.7633242874

	1

	0

	43.5423043551

	0

	0

	1



	19.4607360933

	1

	0

	24.3960137842

	0

	0

	1



	44.9645896939

	1

	0

	3.06161955063

	0

	0

	1



	48.3691740856

	1

	0

	2.84311907493

	0

	0

	1



	0

	2

	0

	0

	1

	3

	1



	1

	2

	100

	0

	1

	1

	1



	7.03200507014

	2

	0

	48.1712193857

	0

	0

	1






The differences between the input PoPy data Table 41 and the output Nonmem data Table 42. Are summarised in the Table 43


Table 43 Comparing PoPy ‘fit_example1_data.csv’ and Nonmem ‘fit_example1_nm_data.csv’






	Input PoPy column

	Output Nonmem column

	Comments





	TYPE

	EVID

	reset->3, dose->1, obs->0



	ID

	ID

	no change



	TIME

	TIME

	no change



	AMT

	AMT

	dose rows no change, obs/reset rows -> 0



	DV_CENTRAL

	DV

	no change



	DV_CENTRAL_FLAG

	MDV

	1-DV_CENTRAL_FLAG






Note the corresponding columns are not in the same order between ‘fit_example1_data.csv’ and ‘fit_example1_nm_data.csv’. The P2NDat Script has removed the ‘TYPE’, ‘DV_CENTRAL’ and ‘DV_CENTRAL_FLAG’ PoPy fields, to leave ‘TIME’, ‘ID’ and ‘AMT’, then added the newly created Nonmem specific ‘DV’, ‘MDV’, ‘EVID’ and ‘CMT’ columns.

The ‘fit_example1_nm_data.csv’ contains a ‘CMT’ field to specify that the Nonmem dosing occurs in compartment 1. PoPy specifies the dosing compartment entirely in the script file, see Dosing Fields, so the output ‘CMT’ column has no corresponding column in the PoPy data file. You have to specify the ‘CMT’ value in your P2NDat Script manually, see OUTPUT_NONMEM_FIELDS.


P2NDAT Script Syntax

You can view the example P2NDat Script here:-

c:\PoPy\examples\p2ndat_script.pyml





Each section is discussed below.


METHOD_OPTIONS

Just specifies the script type:-

METHOD_OPTIONS: {py_module: p2ndat}





See METHOD_OPTIONS for more info.




FILE_PATHS

Just specifies the input PoPy data file and output Nonmem data file:-

FILE_PATHS:
    input_popy_file: fit_example1_data.csv
    output_nonmem_file: fit_example1_nm_data.csv








INPUT_POPY_FIELDS

Describes the columns of the input PoPy file:-

INPUT_POPY_FIELDS:
    time_field: TIME
    id_field: ID
    type_field: TYPE
    dv_fields: ['DV_CENTRAL']
    amt_fields: ['AMT']
    rate_fields: []
    dur_fields: []
    dose_labels: ['']





Here ‘time_field’, ‘id_field’ and ‘type_field’ are the PoPy data file Required Fields. They default to the above values.

The ‘dv_fields’ is a list of PoPy Observation Fields that will be moved into the Nonmem DV field. Note you can specify multiple observed columns, each observed field will result in extra rows in the Nonmem data output, as Nonmem only ever has one DV observation column.

The ‘amt_fields’ is a list of PoPy Dosing Fields, i.e. columns that contain dose amounts. Similar to the ‘dv_fields’, if you specify multiple dosing amount columns, then the Nonmem data output will contain extra rows, as Nonmem only has one AMT field.

The ‘rate_fields’ and ‘dur_fields’ are blank because we only have bolus dosing here. If you have infusion dosing then add the @inf_rate and @inf_dur rate and duration parameters here.

The ‘dose_labels’ field contains the dosing names used in the PoPy data file. In this case dose_labels= [‘’] means PoPy dose names are not used. i.e. the TYPE column just uses ‘dose’ values. If you use ‘dose:my_dose_name’, ‘dose:my_other_dose_name’ in your PoPy data file, to describe Multiple Dose Types, then you need to list the names here, e.g. [‘my_dose_name’, ‘my_other_dose_name’].




OUTPUT_NONMEM_FIELDS

Describes the columns of the output Nonmem file:-

OUTPUT_NONMEM_FIELDS:
    comment_prefix: '#'
    column_names: auto
    time_field: TIME
    id_field: ID
    evid_field: EVID
    dv_field: DV
    mdv_field: MDV
    amt_field: AMT
    rate_field: none
    dur_field: none
    cmt_field: CMT
    obs_cmt_numbers: [1]
    dose_cmt_numbers: [1]





Here ‘comment_prefix’ allows loading of Nonmem data files with comment lines. Lines starting with the ‘comment_prefix’ symbol are ignored.

‘column_names: auto’, uses the columns names in the ‘.csv’ data file. You could rename them using a list here, a bit like the Nonmem $INPUT section.

The ‘time_field’, ‘id_field’, ‘evid_field’, ‘dv_field’, ‘mdv_field’, ‘rate_field’, ‘dur_field’ and ‘cmt_field’ allows you to specify the Nonmem key fields ‘ID’, ‘EVID’, ‘DV’, ‘MDV’, ‘AMT’, ‘RATE’, ‘DUR’ and ‘CMT’. These fields default to the Nonmem key names.

Note that if you do not require some of the Nonmem fields, e.g. in this case ‘rate_field’ and ‘dur_field’, because these only relate to infusion dosing and there is only bolus dosing in this example. Then you can assign null values using ‘none’.

The ‘obs_cmt_numbers’ is a list of compartment indices to appear in the CMT column to be created by the P2NDat Script. The ‘OUTPUT_NONMEM_FIELDS->obs_cmt_numbers’ list must be the same length as the ‘INPUT_POPY_FIELDS->dv_fields’ list. The elements of both lists must correspond to the same type of observation. e.g. in this case all PoPy observations ‘DV_CENTRAL’ occur in Nonmem compartment one. The P2NDat Script will copy the PoPy ‘DV_CENTRAL’ value into the Nonmem DV column for all rows with TYPE =’obs’ and set MDV =0 for these rows.

The ‘dose_cmt_numbers’ is a list of compartment indices to appear in the CMT column to be created by the P2NDat Script. The ‘OUTPUT_POPY_FIELDS->dose_cmt_numbers’ list must be the same length as the ‘INPUT_POPY_FIELDS->amt_fields’ list. The elements of both lists must correspond to the same type of dose. e.g. in this case all PoPy dose amounts ‘AMT’ occur in Nonmem compartment one. The P2NDat Script will copy the PoPy ‘AMT’ value into the Nonmem AMT column for all rows with TYPE =’dose’ and set AMT =0.0 for other rows.

If you have multiple doses and multiple observation fields in your input PoPy data, then you have to specify the dv_fields/obs_cmt_numbers and amt_fields/dose_cmt_numbers list pairs carefully.




OUTPUT_OPTIONS

Describes the output options. Currently, the only option is to remove fields from the final data file:-

OUTPUT_OPTIONS:
    drop_fields: ['TYPE', 'DV_CENTRAL', 'DV_CENTRAL_FLAG']





Here we are removing the old PoPy fields from the Nonmem data output. This is useful in this case, as we wish to demonstrate regenerating the orig PoPy fields, when we use a N2PDat Script in the next section.








N2PDAT Example

The P2NDat Script converts data from PoPy to Nonmem format. Here we discuss the N2PDat Script that computes the inverse conversion from Nonmem to PoPy format.

Assuming you have run the N2PDAT Example, view the example N2PDat Script in your text editor, by typing:-

$ popy_edit n2pdat_script.pyml





Then run the N2PDat Script using:-

$ popy_run n2pdat_script.pyml





This will create a new PoPy data file ‘fit_example1_data_v2.csv’. The first ten rows are shown in Table 44.


Table 44 Output data in Nonmem format (first ten rows)









	TIME

	ID

	AMT

	DV_CENTRAL

	DV_CENTRAL_FLAG

	TYPE



	0

	1

	0

	0

	0

	reset



	1

	1

	100

	0

	0

	dose:_bolus



	7.22152181887

	1

	0

	55.3986503177

	1

	obs



	13.7633242874

	1

	0

	43.5423043551

	1

	obs



	19.4607360933

	1

	0

	24.3960137842

	1

	obs



	44.9645896939

	1

	0

	3.06161955063

	1

	obs



	48.3691740856

	1

	0

	2.84311907493

	1

	obs



	0

	2

	0

	0

	0

	reset



	1

	2

	100

	0

	0

	dose:_bolus



	7.03200507014

	2

	0

	48.1712193857

	1

	obs






The differences between the input Nonmem data Table 42 and the output PoPy data Table 44. Are summarised in the Table 45


Table 45 Comparing Nonmem ‘fit_example1_nm_data.csv’ and PoPy ‘fit_example1_data_v2.csv’






	Input Nonmem column

	Output PoPy column

	Comments





	TIME

	TIME

	no change



	ID

	ID

	no change



	AMT

	AMT

	no change



	DV

	DV_CENTRAL

	no change



	MDV

	DV_CENTRAL_FLAG

	1-MDV



	EVID

	TYPE

	3->reset,1->dose:_bolus,0->obs



	CMT

	N/A

	PoPy has no ‘CMT’ equivalent






The N2PDat Script has removed ‘DV’, ‘MDV’, ‘EVID’ and ‘CMT’ Nonmem fields from ‘fit_example1_nm_data.csv’ and replaced them with ‘TYPE’, ‘DV_CENTRAL’ and ‘DV_CENTRAL_FLAG’ PoPy fields in ‘fit_example1_data_v2.csv’.

The ‘fit_example1_data_v2.csv’ contains no ‘CMT’ field because PoPy specifies the dosing compartment entirely in the script file, see Dosing Fields.


N2PDAT Script Syntax

You can view the example N2PDat Script here:-

c:\PoPy\examples\n2pdat_script.pyml





Each section is discussed below.


METHOD_OPTIONS

Specifies the script type:-

METHOD_OPTIONS: {py_module: n2pdat}





See METHOD_OPTIONS for more information.




FILE_PATHS

Specifies the input Nonmem data file and output PoPy data file:-

FILE_PATHS:
    input_nonmem_file: fit_example1_nm_data.csv
    output_popy_file: fit_example1_data_v2.csv








INPUT_NONMEM_FIELDS

Describes the columns of the input Nonmem file:-

INPUT_NONMEM_FIELDS:
    comment_prefix: '#'
    column_names: auto
    date_field: none
    date_format: none
    time_field: TIME
    id_field: ID
    evid_field: EVID
    dv_field: DV
    mdv_field: MDV
    amt_field: AMT
    rate_field: none
    dur_field: none
    cmt_field: CMT
    obs_cmt_numbers: [1]
    dose_cmt_numbers: [1]





This is the same as the OUTPUT_NONMEM_FIELDS section. The only difference is that this section is now describing an input Nonmem data file instead of an output Nonmem data file.

The ‘obs_cmt_numbers’ and ‘dose_cmt_numbers’ list have to correspond to the ‘dv_fields’ and ‘amt_fields’ in the OUTPUT_POPY_FIELDS section to get sensible PoPy data output. See below for more explanation.




OUTPUT_POPY_FIELDS

Describes the columns of the output PoPy file:-

OUTPUT_POPY_FIELDS:
    time_field: TIME
    id_field: ID
    type_field: TYPE
    dv_fields: ['DV_CENTRAL']
    amt_fields: ['AMT']
    rate_fields: []
    dur_fields: []
    dose_labels: ['']





This is the same as the INPUT_POPY_FIELDS section. The only difference is that this section is now describing an output PoPy data file instead of an input PoPy data file.

Here the ‘dv_fields’ is a list of PoPy observation columns to be created by the N2PDat Script, based on the input Nonmem DV field. The ‘OUTPUT_POPY_FIELDS->dv_fields’ list must be the same length as the ‘INPUT_NONMEM_FIELDS->obs_cmt_numbers’ list. The elements of both lists must correspond to the same type of observation. e.g. in this case all Nonmem observations occur in compartment one, so for Nonmem data rows with EVID =0 and CMT =1 the Nonmem DV value is copied into the PoPy DV_CENTRAL column with DV_CENTRAL_FLAG=1.

The ‘amt_fields’ is a list of PoPy dose amount columns to be created by the N2PDat Script, based on the input Nonmem AMT field. The ‘OUTPUT_POPY_FIELDS->amt_fields’ list must be the same length as the ‘INPUT_NONMEM_FIELDS->dose_cmt_numbers’ list. The elements of both list must correspond to the same type of dose. e.g. in this case all Nonmem doses occur in compartment one, so for Nonmem data rows with EVID =1 and CMT =1 the Nonmem AMT value is copied into the PoPy AMT column, with all other rows set to zero.

If you have multiple doses and multiple observation fields in your input Nonmem data, then you have to specify the obs_cmt_numbers/dv_fields and dose_cmt_numbers/amt_fields list pairs carefully.




OUTPUT_OPTIONS

Describes the output options, currently, just which fields to remove:-

OUTPUT_OPTIONS:
    drop_fields: ['DV', 'MDV', 'EVID', 'CMT']





Here we are removing the Nonmem specific fields. In a real life conversion it may be sensible to keep the Nonmem fields, so that you can perform a side by side sanity check from within the PoPy output file. Note the fields above will be of little use to a PoPy Fit Script, compared to the ‘DV_CENTRAL’, ‘DV_CENTRAL_FLAG’ and ‘TYPE’ fields, created by the N2PDat Script.








Compare original PoPy data with P2NDAT/N2PDAT version

In this walk through we have taken a PoPy data file ‘fit_example1_data.csv’, run P2NDat Script to create a Nonmem data version. Then we ran N2PDat Script to re-create the original PoPy data file ‘fit_example1_data_v2.csv’ from the Nonmem data.

You can compare the first 10 rows of both the input PoPy data set in Table 41 and the output PoPy data in Table 44.

Both files contain the same column headers i.e. ‘TYPE’, ‘ID’, ‘TIME’, ‘AMT’, ‘DV_CENTRAL’, ‘DV_CENTRAL_FLAG’. The values in each column are the same apart from ‘AMT’ column has zero values in non-dose rows. Also the ‘dose’ value in the TYPE field is now ‘dose:_bolus’. Both the input and output .csv files are valid PoPy data formats for the PK/PD problem described in Fitting a Simple PopPK Model using PoPy.







          

      

      

    

  

    
      
          
            
  




Nonmem control file to PoPy Fit Script

The Nonmem control file has the same purpose as the PoPy Fit Script, i.e. to estimate the fixed effects given a PK/PD model and a data file. Table 46 lists the equivalent script file sections.


Table 46 Nonmem to PoPy Fitting






	Nonmem

	PoPy

	Comment





	$PROBLEM

	DESCRIPTION

	Model Description



	$DATA

	FILE_PATHS

	Input data file path



	$INPUT

	DATA_FIELDS

	Data header information



	$SUBROUTINES

	ODE_SOLVER

	ordinary differential equation method



	$MODEL

	N/A

	Number of compartments



	$THETA

	LEVEL_PARAMS

	Main fixed effects



	$OMEGA

	LEVEL_PARAMS

	Variance of random effects



	$SIGMA

	LEVEL_PARAMS

	Variance of measurement noise



	$PK

	MODEL_PARAMS

	Model Parameters



	$DES

	DERIVATIVES

	ordinary differential equation system



	$ERROR

	PREDICTIONS

	Likelihood model



	$ESTIMATION

	FIT_METHODS

	Fitting algorithms







$PROBLEM

Nonmem:-

$PROBLEM My pkpd model





to PoPy:-

DESCRIPTION: {title: My pkpd model}





Note in PoPy you can optionally add additional fields ‘name’, ‘author’, ‘abstract’ and ‘keywords’, see DESCRIPTION section for examples.




$DATA

Nonmem:-

$DATA my_nm_data.csv





to PoPy:-

FILE_PATHS: {input_data_file: my_popy_data.csv}





Here the file ‘my_nm_data.csv’ is assumed to be in the same directory as the Nonmem script file. Similarly ‘my_popy_data.csv’ will need to be in the same directory as the PoPy script.

Note you will need to convert the data file to a valid PoPy data file, see Nonmem Data to PoPy Data File.




$INPUT

Nonmem:-

$INPUT EVID ID TIME CMT AMT DV MDV





to PoPy:-

DATA_FIELDS: {type_field: TYPE, id_field: ID, time_field: TIME}





Note that the Nonmem ‘$INPUT’ section redefines the header file for the data file. PoPy simply uses the header supplied in the .csv data file.

In PoPy you only need to specify the following fields in the DATA_FIELDS section:-


	type_field - equivalent to Nonmem EVID


	id_field - same as Nonmem ID


	time_field - same as Nonmem TIME




If you miss out the DATA_FIELDS section completely. Then you just need the default field names of ‘TYPE’, ‘ID’ and ‘TIME’ to be present in your data file.

See Nonmem Data to PoPy Data File for a more detailed discussion of the data format differences between Nonmem and PoPy.




$SUBROUTINES


ADVAN13 Example

Nonmem:-

$SUBROUTINES ADVAN13 TOL=6





to PoPy:-

ODE_SOLVER: {SCIPY_ODEINT: {rtol: 1e-06}}





In the Nonmem script ‘ADVAN13’ specifies the LSODA solver which is used to compute numerical solutions for the ordinary differential equations specified in the Nonmem $DES block.

The equivalent of this in PoPy is to specify ‘SCIPY_ODEINT’ in the ODE_SOLVER section, which is a Python wrapper around the LSODA solver. The ‘SCIPY_ODEINT’ parameters are as follows:-


	rtol - relative tolerance of LSODA solver, equivalent of TOL in Nonmem ($SUBROUTINES section)


	atol - additive tolerance of LSODA solver, equivalent of ATOL in Nonmem ($ESTIMATION section)


	max_nsteps - maximum number of steps allowed for LSODA solver, an exposed parameter in PoPy with a default value of ‘1e7’. In Nonmem this is fixed to ‘750’ and not configurable.




See ODE_SOLVER section for more information on the ‘SCIPY_ODEINT’ solver and other solvers available in PoPy.




ADVAN 1,2,3,4,11,12 Example

Note if an analytic ‘ADVAN’ model is used in Nonmem for example:-

$SUBROUTINES  ADVAN2 TRANS2





Then this is converted to PoPy in a slightly different way, the ODE_SOLVER is as follows:-

ODE_SOLVER: {ANALYTIC:{}}





And the DERIVATIVES section is as follows:-

DERIVATIVES: |
    s[ABS,CEN] = @dep_one_cmp_cl{
        dose: @bolus{amt:c[AMT]}, KA: m[KA],
        CL: m[CL], V: m[V]}





Here the ‘@dep_one_cmp_cl’ compartment function expects the parameters m[KA] m[CL] m[V] to be defined in MODEL_PARAMS, similar to how Nonmem ‘ADVAN2’ expects KA, CL and V to be defined in the $PK section. Also PoPy expects c[AMT] to be defined in the data file and Nonmem expects the ‘AMT’ field to exist in the Nonmem data file.

Note PoPy is explicit about the input parameter names that are required for compartment model functions and you can easily change the name of the input c[X] and m[X] parameters in your script file. In Nonmem you just have to know what the fixed magic words and conventions are. For example, you need to declare the variables ‘KA’, ‘CL’ and ‘V’ carefully in the Nonmem $PK section and have an ‘AMT’ field in your data file.

The PoPy equivalents of the various ‘ADVAN’ analytic compartment models are discussed in the Nonmem Advan1,2,3,4,11,12 to PoPy analytic compartment models section below.






$MODEL

Nonmem:-

$MODEL NCOMPARTMENTS=1





This does not have any equivalent in PoPy, you do not need to specify the number of compartments in the DERIVATIVES section. PoPy can count!




$THETA

Nonmem:-

$THETA
    (0.001, 0.05, 1)  ; KE





to PoPy:-

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[KE] ~ unif(0.001, 1) 0.05





In PoPy the fixed effect f[KE] is explicitly declared at the GLOBAL level, i.e. there is one value for this parameter over the population.

The limits on f[KE] are defined using a ~unif() distribution, with the initial value added as suffix.

Note that comments have been added to the Nonmem notation here to make it more readable. PoPy insists on names for all variables.




$OMEGA

Nonmem:-

$OMEGA
    0.1  ; KE_isv





to PoPy:-

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[KE_isv] ~ unif(0.001, +inf) 0.1





In PoPy the fixed effect variance parameter f[KE_isv] is explicitly declared at the GLOBAL level, i.e. there is one value for this parameter over the population.

The limits on f[KE_isv] are defined using a ~unif() distribution, with the initial value added as a suffix. In PoPy you can use the equivalent shorter notation:-

f[KE_isv] ~ P 0.1





Note that PoPy can deduce automatically that f[KE_isv] is a variance by examining the r[KE] ~norm() distribution definition from the INDIV level:-

LEVEL_PARAMS:
    INDIV:
        params: |
            r[KE] ~ norm(0, f[KE_isv])








$SIGMA

Nonmem:-

$SIGMA
    0.001 FIX ; ANOISE
    0.2 ; PNOISE





to PoPy:-

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[ANOISE] = 0.001
            f[PNOISE] ~ P0.2





In PoPy the fixed effect noise variance parameters f[ANOISE] and f[PNOISE] are explicitly declared at the GLOBAL level, i.e. there is one value for both parameters over the population.

The ‘=’ sign is used instead of the Nonmem ‘FIX’ keyword. The ‘~P’ notation is a shortcut for defining a ~unif() distribution, which is equivalent to the following:-

f[PNOISE] ~ unif(0.001, +inf) 0.2





The initial value 0.2 is added as a suffix after the distribution.

Note that PoPy can deduce automatically that f[ANOISE] and f[PNOISE] are noise parameters (i.e. sigma like variables) by examining the c[DV_CENTRAL] ~norm() distribution likelihood definition from the PREDICTIONS section:-

PREDICTIONS: |
    p[DV_CENTRAL] = s[CENTRAL]
    var = m[ANOISE] + m[PNOISE]*p[DV_CENTRAL]**2
    c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)





Where m[ANOISE] and m[PNOISE] are copies of the f[ANOISE] and f[PNOISE] parameters as defined in the MODEL_PARAMS section.




$PK

Nonmem:-

$PK
    KE = THETA(1) * exp(ETA(1))





to PoPy:-

MODEL_PARAMS: |
    m[KE] = f[KE] * exp(r[KE])
    m[ANOISE] = f[ANOISE]
    m[PNOISE] = f[PNOISE]





The PoPy MODEL_PARAMS section has exactly the same purpose as the Nonmem $PK section. Some differences are:-


	Nonmem uses numbered THETA and ETA variables, whilst PoPy uses named f[X] and r[X] variables.


	Nonmem uses bare variable names on the left hand side of equations in the $PK section and exports all of the variables for use in the $DES and $ERROR sections (just ‘KE’ in this case). PoPy requires explicit use of the m[X] syntax to export variables from the MODEL_PARAMS section.




You can use the local variable syntax in the PoPy MODEL_PARAMS section e.g.:-

MODEL_PARAMS: |
    f = f[KE]
    r = r[KE]
    m = f * exp(r)
    m[KE] = m





However only m[KE] will be available in the PoPy DERIVATIVES and PREDICTIONS sections not ‘f’, ‘r’ or ‘m’. Some other differences are:-


	PoPy requires that the f[ANOISE] and f[PNOISE] variables (which are sigmas in Nonmem) are converted to m[X] variables, because f[X] variables can not be used as inputs to the DERIVATIVES and PREDICTIONS sections.


	Nonmem implements IOV using ‘if’ statements. PoPy MODEL_PARAMS can handle IOV r[X] variables without using ‘if’ statements, see DDMoRe0238 Conversion Example.


	Nonmem converts the $PK section into a Fortran function, whilst PoPy converts the MODEL_PARAMS section into executable C++ code.




Otherwise the $PK and MODEL_PARAMS sections are quite similar. They both accept procedural pseudocode, e.g. ‘if’ statements etc. and compute model variables for each row of the data set when fitting PK/PD models.




$DES

Nonmem:-

$DES
    DADT(1) = -KE*A(1)





to PoPy:-

DERIVATIVES: |
    d[CENTRAL] = @bolus{amt:c[AMT]} - m[KE]*s[CENTRAL]





The PoPy DERIVATIVES section has exactly the same of purpose as the Nonmem $DES section. Some differences are:-


	Nonmem uses numbered DADT and A variables, whilst PoPy uses named d[X] and s[X] variables.


	Nonmem will allow you to use any previously specified variables as input, whereas PoPy restricts input variables to be of type c[X] and m[X].


	Nonmem specifies the dosing time, amount and compartment (either bolus or infusion) entirely from the data file, however PoPy has Dosing Functions that have explicitly declared input parameters. The dosing compartment is clearly defined by the dose function location in the DERIVATIVES section. The time of each dose is still defined in the data file. See Dosing Fields for more info.


	Nonmem uses the magic variable ‘T’ to specify continuous time in the $DES section, PoPy uses the more obviously magic x[TIME] variable to do the same thing.


	Nonmem converts the $DES section into a Fortran function, whilst PoPy converts the DERIVATIVES section into a C++ function, that can be called by a numerical ordinary differential equation solver.




Otherwise the $DES and DERIVATIVES sections are quite similar. They both accept procedural pseudocode, e.g. ‘if’ statements etc. and generate code that be executed by a numerical ordinary differential equation solver to compute compartment model amount/state variables at time points specified in the data file.




$ERROR

Nonmem:-

$ERROR
    Y = F + EPS(1) + F*EPS(2)





to PoPy:-

PREDICTIONS: |
    p[DV_CENTRAL] = s[CENTRAL]
    var = m[ANOISE] + m[PNOISE] * p[DV_CENTRAL]**2
    c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)





The PoPy PREDICTIONS section has the same of purpose as the Nonmem $ERROR section. They both compare observations from the data file with model predictions. In a fitting script these sections compute a likelihood, when simulating these sections produce a noisy measurement prediction.

Some differences are:-


	The Nonmem $error section is much shorter, it relies on the convention that ‘Y’ is the dependant variable ‘DV’ column from the data file and ‘F’ is the model prediction for the compartment specified by the ‘CMT’ column in the data file.


	The PoPy PREDICTIONS explicitly creates p[X] prediction variables, often based on s[X] amounts from the compartment model, which all have human readable names.


	The Nonmem likelihood is expressed as a sum of ‘EPS’ normal distributions, which Nonmem combines into a single ~norm() distribution to compute the likelihood for each data row.


	The PoPy likelihood is constructed using the ‘~’ notation and uses named Probability Distributions.




In PoPy you have to work out how to compute the ~norm() distribution parameters yourself. Here the mean is simply the model prediction p[DV_CENTRAL]. The m[ANOISE] and m[PNOISE] parameters are separate additive and proportional variances, so have a combined variance as follows:-

var = m[ANOISE] + m[PNOISE] * p[DV_CENTRAL]**2





Otherwise the $ERROR and PREDICTIONS sections are quite similar. They both accept procedural pseudocode, e.g. ‘if’ statements etc. and generate code that can be used to compute a likelihood value for each row of a data set (when fitting).




$ESTIMATION

Nonmem:-

$ESTIMATION METHOD=ITS INTERACTION PRINT=1 MAXEVALS=100





Or

$ESTIMATION METHOD=FOCE INTERACTION PRINT=1 MAXEVALS=100





to PoPy:-

FIT_METHODS: [JOE: {max_n_main_iterations: 100}]





Note estimation methods can be called sequentially in Nonmem:-

$ESTIMATION METHOD=ITS INTERACTION PRINT=1 MAXEVALS=100
$ESTIMATION METHOD=FOCE INTERACTION PRINT=1 MAXEVALS=100





Similarly the JOE fitting method can be called sequentially in PoPy as:-

FIT_METHODS:
    - JOE: {max_n_main_iterations: 100}
    - JOE: {max_n_main_iterations: 100}





In PoPy the JOE fitting method, optimises the same ObjV as Nonmem FOCE and ITS, but the fitting algorithm is slightly different.







          

      

      

    

  

    
      
          
            
  
Nonmem Advan1,2,3,4,11,12 to PoPy analytic compartment models

Table 47 shows how to convert each Nonmem inbuilt ADVAN analytic functions to PoPy equivalents.

See ADVAN 1,2,3,4,11,12 Example for info on Nonmem $SUBROUTINES section.

Note to use the analytic compartment models in PoPy you should always set ODE_SOLVER as follows:-

ODE_SOLVER: {ANALYTIC:{}}





For more information on PoPy analytic functions see Analytic Compartment Functions.


Table 47 Nonmem to PoPy Analytic ODEs






	Nonmem

	PoPy

	Parameters





	ADVAN1

	@iv_one_cmp_k

	dose/KE



	ADVAN1 TRANS2

	@iv_one_cmp_cl

	dose/CL/V



	ADVAN2

	@dep_one_cmp_k

	dose/KA/KE



	ADVAN2 TRANS2

	@dep_one_cmp_cl

	dose/KA/CL/V



	ADVAN3

	@iv_two_cmp_k

	dose/KE/K12/K21



	ADVAN3 TRANS4

	@iv_two_cmp_cl

	dose/KA/CL/V1/Q/V2



	ADVAN4

	@dep_two_cmp_k

	dose/KA/KE/K12/K21



	ADVAN4 TRANS4

	@dep_two_cmp_cl

	dose/KA/CL/V1/Q/V2



	ADVAN11

	@iv_three_cmp_k

	dose/KE/K12/K21/K13/K31



	ADVAN11 TRANS4

	@iv_three_cmp_cl

	dose/CL/V1/Q2/V2/Q3/V3



	ADVAN12

	@dep_three_cmp_k

	dose/KA/KE/K12/K21/K13/K31



	ADVAN12 TRANS4

	@dep_three_cmp_cl

	dose/KA/CL/V1/Q2/V2/Q3/V3







ADVAN1

In Nonmem:-

$SUBROUTINES  ADVAN1





Equivalent PoPy DERIVATIVES section:-

DERIVATIVES: |
    s[CEN] = @iv_one_cmp_k{dose: @bolus{amt:c[AMT]}, KE: m[KE]}





See @iv_one_cmp_k.




ADVAN1 TRANS2

In Nonmem:-

$SUBROUTINES  ADVAN1 TRAN2





Equivalent PoPy DERIVATIVES section:-

DERIVATIVES: |
    s[CEN] = @iv_one_cmp_cl{dose: @bolus{amt:c[AMT]}, CL: m[CL], V: m[V]}





See @iv_one_cmp_cl.




ADVAN2

In Nonmem:-

$SUBROUTINES  ADVAN2





Equivalent PoPy DERIVATIVES section:-

DERIVATIVES: |
    s[DEP,CEN] = @dep_one_cmp_k{dose: @bolus{amt:c[AMT]}, KA: m[KA], KE: m[KE]}





See @dep_one_cmp_k.




ADVAN2 TRANS2

In Nonmem:-

$SUBROUTINES  ADVAN2 TRAN2





Equivalent PoPy DERIVATIVES section:-

DERIVATIVES: |
    s[DEP,CEN] = @dep_one_cmp_cl{
        dose: @bolus{amt:c[AMT]},
        KA: m[KA], CL: m[CL], V: m[V]
    }





See @dep_one_cmp_cl.




ADVAN3

In Nonmem:-

$SUBROUTINES  ADVAN3





Equivalent PoPy DERIVATIVES section:-

DERIVATIVES: |
    s[CEN,PERI] = @iv_two_cmp_k{
        dose: @bolus{amt:c[AMT]},
        KE: m[KE], K12: m[K12], K21: m[K21]}





See @iv_two_cmp_k.




ADVAN3 TRANS4

In Nonmem:-

$SUBROUTINES  ADVAN3 TRANS4





Equivalent PoPy DERIVATIVES section:-

DERIVATIVES: |
    s[CEN,PERI] = @iv_two_cmp_cl{
        dose: @bolus{amt:c[AMT]},
        CL: m[CL], V1: m[V1], Q: m[Q], V2: m[V2]}





See @iv_two_cmp_cl.




ADVAN4

In Nonmem:-

$SUBROUTINES  ADVAN4





Equivalent PoPy DERIVATIVES section:-

DERIVATIVES: |
    s[DEP,CEN,PERI] = @dep_two_cmp_k{
        dose: @bolus{amt:c[AMT]},
        KA: m[KA], KE: m[KE], K12: m[K12], K21: m[K21]}





See @dep_two_cmp_k.




ADVAN4 TRANS4

In Nonmem:-

$SUBROUTINES  ADVAN4 TRANS4





Equivalent PoPy DERIVATIVES section:-

DERIVATIVES: |
    s[DEP,CEN,PERI] = @dep_two_cmp_cl{
        dose: @bolus{amt:c[AMT]},
        KA: m[KA], CL: m[CL], V1: m[V1],
        Q: m[Q], V2: m[V2]}





See @dep_two_cmp_cl.




ADVAN11

In Nonmem:-

$SUBROUTINES  ADVAN11





Equivalent PoPy DERIVATIVES section:-

DERIVATIVES: |
    s[CEN,PERI1,PERI2] = @iv_three_cmp_k{
        dose: @bolus{amt:c[AMT]},
        KE: m[KE], K12: m[K12], K21: m[K21],
        K13: m[K13], K31: m[K31]}





See @iv_three_cmp_k.




ADVAN11 TRANS4

In Nonmem:-

$SUBROUTINES  ADVAN11 TRANS4





Equivalent PoPy DERIVATIVES section:-

DERIVATIVES: |
    s[CEN,PERI1,PERI2] = @iv_three_cmp_cl{
        dose: @bolus{amt:c[AMT]},
        CL: m[CL], V1: m[V1], Q2: m[Q2],
        V2: m[V2], Q3: m[Q3], V3: m[V3]}





See @iv_three_cmp_cl.




ADVAN12

In Nonmem:-

$SUBROUTINES  ADVAN12





Equivalent PoPy DERIVATIVES section:-

DERIVATIVES: |
    s[DEP,CEN,PERI1,PERI2] = @dep_three_cmp_k{
        dose: @bolus{amt:c[AMT]},
        KA: m[KA], KE: m[KE],
        K12: m[K12], K21: m[K21],
        K13: m[K13], K31: m[K31]}





See @dep_three_cmp_k.




ADVAN12 TRANS4

In Nonmem:-

$SUBROUTINES  ADVAN12 TRANS4





Equivalent PoPy DERIVATIVES section:-

DERIVATIVES: |
    s[DEP,CEN,PERI1,PERI2] = @dep_three_cmp_cl{
        dose: @bolus{amt:c[AMT]},
        KA: m[KA],
        CL: m[CL], V1: m[V1],
        Q2: m[Q2], V2: m[V2],
        Q3: m[Q3], V3: m[V3]}





See @dep_three_cmp_cl.







          

      

      

    

  

    
      
          
            
  
DDMoRe0061 Conversion Example


Overview

A real world model, based on a gentamicin PK study [Harling2015]. Combined bolus + infusion PK model. Uses ADVAN3 TRANS4 in Nonmem. Some covariate effects on PK parameters. 210 individuals. 1949 total data rows. See DDMoRe: 0061 [http://repository.ddmore.eu/model/DDMODEL00000061]




Data Conversion

We describe the conversion of this data set in Nonmem format:-

c:\PoPy\validation\ddmore0061\Simulated_gentamicin_pk.csv





To this data set in PoPy format:-

c:\PoPy\validation\ddmore0061\popy\popy_data.csv





Using the N2PDat Script located here:-

c:\PoPy\validation\ddmore0061\popy\n2p_script.pyml





The original Nonmem data set looks something like Table 48.


Table 48 Main data fields for Nonmem (first six rows)











	ID

	TIME

	AMT

	RATE

	DUR

	DV

	MDV

	EVID



	1

	0

	150

	0

	0

	12.376

	1

	1



	1

	9

	150

	0

	0

	13.156

	1

	1



	1

	14.25

	0

	0

	0

	2.2347

	0

	0



	1

	16.92

	150

	0

	0

	13.599

	1

	1



	1

	25

	150

	250

	0.5

	1.322

	1

	1



	1

	33

	0

	0

	0

	1.459

	0

	0






The critical entries for the N2PDat Script are as follows:-

INPUT_NONMEM_FIELDS:
     obs_cmt_numbers: [1]
     dose_cmt_numbers: [1]





These two entries specify that the observations and doses all occur in compartment one. Technically the Nonmem data set above has no CMT field. However CMT defaults to one in Nonmem if it is NOT provided.

The dataset output by N2PDat Script is the same as the input, but with the 3 extra columns shown in Table 49.


Table 49 Extra data fields for PoPy (first six rows)






	DRUG_CONC

	DRUG_CONC_FLAG

	TYPE



	0

	0

	dose:DOSE_bolus



	0

	0

	dose:DOSE_bolus



	2.2347

	1

	obs



	0

	0

	dose:DOSE_bolus



	0

	0

	dose:DOSE_infrate



	1.459

	1

	obs






Here the new ‘DRUG_CONC’ field will be the target value for the new PoPy script. The ‘DRUG_CONC_FLAG’ switches the observations on/off appropriately. Note that ‘DRUG_CONC_FLAG’ is the inverse of the Nonmem ‘MDV’ flag. The new ‘TYPE’ field is formatted to process either bolus or infusion doses in PoPy.




Script Conversion

We describe the manual conversion of the Nonmem script file:-

c:\PoPy\validation\ddmore0061\Executable_gentamicin_pk.mod





To create the PoPy Fit Script here:-

c:\PoPy\validation\ddmore0061\popy\fit_script.pyml





The Nonmem script loads the data as follows:-

$DATA Simulated_gentamicin_pk.csv IGNORE=@





Whereas the PoPy script uses this syntax:-

FILE_PATHS: {input_data_file: popy_data.csv}





In the Nonmem script, the theta/omega/sigma fixed effect definitions are:-

$THETA
    (0,4.1) ; CL
    (1,8.63) ; V1
    (0,1.21) ; Q
    (0,8.12) ; V2

    (-0.01,0.00982,0.016) ; BCLC
    (-0.409) ; ALB
    (0,0.00683) ; DCLC

$OMEGA
    0.0465 ; CL
    0.376 ; Q

$SIGMA
    0.0297 ; E1
    0.0486 ; E2





In PoPy these fixed effect are defined in LEVEL_PARAMS:-

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[CL] ~ P 4.1
            f[V1] ~ unif(1, inf) 8.63
            f[Q] ~ P 1.21
            f[V2] ~ P 8.12
            f[BCLC_eff] ~ unif(-0.01, 0.016) 0.00982
            f[ALB_eff] = -0.409
            f[DCLC_eff] ~ P 0.00683

            f[CL_isv, Q_isv] ~ diag_matrix() [ [ 0.0465, 0.376 ] ]

            f[PNOISE_var] ~ P 0.0297
            f[ANOISE_var] ~ P 0.0486





Note the ranges and initial values of the f[X] variables are defined using different syntax from the $THETA variables. Note also that the f[X] have explicit names, whereas the Nonmem list of thetas has to be clumsily annotated with comments to make it human readable.

In PoPy you can specify a diagonal matrix, which can be explicitly used as a covariance matrix input to a Multivariate Normal Distribution distributed r[X] vector, as follows:-

LEVEL_PARAMS:
    INDIV:
        params: |
            r[CL_isv, Q_isv] ~ mnorm([0,0], f[CL_isv, Q_isv])
        split_field: ID
        split_dict: "*"





There r[CL_isv] is the equivalent of ‘ETA(1)’ and r[Q_isv] is the equivalent of ‘ETA(2)’. In Nonmem you just have to remember the index values, whereas PoPy uses actual real life variable names.

In PoPy the sigmas are fixed effects and also defined in LEVEL_PARAMS.

The Nonmem PK section is as follows:-

$PK
    BSA = 71.84*(WT**0.425)*(HT**0.725)
    BSA = BSA/10000
    HT1 = HT/100
    BMI = WT/HT1**2

    IF(NEWIND.NE.2) BCLC = CLC
    DCLC = CLC-BCLC
    IF(NEWIND.NE.2) BBSA = BSA

    TVCL = THETA(1) * (1 + THETA(5)*(BCLC-81) + THETA(7)*DCLC)
    TVV1 = THETA(2) * BBSA*(ALB/34)**THETA(6)
    TVQ  = THETA(3)
    TVV2 = THETA(4)

    CL = TVCL * EXP(ETA(1))
    V1 = TVV1
    Q  = TVQ  * EXP(ETA(2))
    V2 = TVV2

    S1 = V1





This maps almost exactly to the PoPy MODEL_PARAMS section:-

MODEL_PARAMS: |
    BSA = 71.84 * (c[WT]**0.425) * (c[HT]**0.725)
    BSA = BSA / 10000
    HT1 = c[HT] / 100
    BMI = c[WT] / HT1**2

    BCLC = c[CLC]
    DCLC = c[CLC] - BCLC
    BBSA = BSA

    TVCL = f[CL] * (1 + f[BCLC_eff]*(BCLC-81) + f[DCLC_eff]*DCLC)
    TVV1 = f[V1] * BBSA * (c[ALB]/34)**f[ALB_eff]
    TVQ  = f[Q]
    TVV2 = f[V2]

    m[CL] = TVCL * EXP(r[CL_isv])
    m[V1] = TVV1
    m[Q]  = TVQ  * EXP(r[Q_isv])
    m[V2] = TVV2

    m[PNOISE_var] = f[PNOISE_var]
    m[ANOISE_var] = f[ANOISE_var]





Note in the above Nonmem specifies ‘S1 = V1’, to scale the amounts in compartment one. This is not necessary in PoPy, as the compartment amounts are converted to concentrations in the PREDICTIONS section explicitly.

Also note that PoPy requires the lines:-

m[PNOISE_var] = f[PNOISE_var]
m[ANOISE_var] = f[ANOISE_var]





To propagate the f[X] noise fixed effects which are similar to the Nonmem builtin sigma variables.

Note in this example the Nonmem ‘NEWIND’ keyword is superfluous, as the c[CLC] covariate and BSA variable are constant within each individual.

The Nonmem control file prescribes the compartment model on this line:-

$SUBROUTINE ADVAN3 TRANS4





That uses the inbuilt ‘ADVAN3’ model with ‘TRANS4’ parametrisations. This uses the analytic solution for a two compartment model that expects the CL, V1, Q, V2 parameters to be defined in the Nonmem PK section.

The PoPy control file here specifies the compartment model equations explicitly in the DERIVATIVES section:-

DERIVATIVES: |
    dose[DOSE_bolus] = @bolus{amt:c[AMT], lag:0.0}
    dose[DOSE_infrate] = @inf_rate{amt:c[AMT], lag:0.0, rate:c[RATE]}
    d[CENTRAL] = dose[DOSE_bolus] + dose[DOSE_infrate] - s[CENTRAL]*m[Q]/m[V1] + s[PERI]*m[Q]/m[V2] - s[CENTRAL]*m[CL]/m[V1]
    d[PERI]    =                                         s[CENTRAL]*m[Q]/m[V1] - s[PERI]*m[Q]/m[V2]





Note that PoPy has an equivalent builtin version of ‘ADVAN3 TRANS4’ as follows:-

DERIVATIVES: |
    s[CENTRAL, PERI] = @iv_two_cmp_cl{ dose: @bolus{amt:c[AMT]}, CL: m[CL], V1: m[V1], Q: m[Q], V2: m[V2] }





However this function is unable to process two different types of dose (bolus + infusion), unlike the long hand version above. Note that PoPy will be using an ordinary differential equation solver here (instead of a built in analytic solution), so we also need to specify this PoPy field:-

ODE_SOLVER: {SCIPY_ODEINT: {}}





Which tells PoPy to use the scipy ‘odeint’ solver, which is based on LSODA (like Nonmem Advan13).

The Nonmem ERROR section is as follows:-

$ERROR
    Y = F*EXP(ERR(1)) + ERR(2)
    IPRED=F
    IRES=DV-IPRED





The PoPy equivalent is shown below in the PREDICTIONS section:-

PREDICTIONS: |
    p[DV_CENTRAL] = s[CENTRAL]/m[V1]
    var = m[PNOISE_var] * p[DV_CENTRAL]**2 + m[ANOISE_var]
    c[DRUG_CONC] ~ norm(p[DV_CENTRAL], var)





Note here the line ‘Y = F*EXP(ERR(1)) + ERR(2)’ defines an proportional exponential normal noise model with an additional additive normal noise component. It is not clear (to the PoPy developers) what the distribution of a log normal + a normal distribution is. PoPy requires a known distribution to calculate a likelihood. If you approximate the exponential (assuming ERR(1) is small) and get ‘Y = F*(1+ ERR(1)) + ERR(2)’. Then this is the standard proportional + additive noise model. In this case, the PoPy Fit Script return a very similar objective function to the DDMoRe Nonmem objective function. Indicating that Nonmem also makes the same approximation.

The Nonmem control file specifies using FOCE fitting (METHOD=1) below:-

$ESTIMATION MAXEVALS=0 SIG=3 PRINT=10 METHOD=1 INTER





The PoPy equivalent, specifying the JOE fitting method (roughly equivalent to FOCE) is:-

FIT_METHODS: [JOE: {max_n_main_iterations: 0}]





Setting ‘max_n_main_iterations’ to zero, means that PoPy will optimise the r[X] parameters and leave the f[X] unchanged.







          

      

      

    

  

    
      
          
            
  
DDMoRe0093 Conversion Example


Overview

A real world model, based on a QT study [Cheung2015]. Circadian function with covariates, 59 individuals. 5790 total data rows. No compartment derivatives etc. See DDMoRe: 0093 [http://repository.ddmore.eu/model/DDMODEL00000093]




Data Conversion

We describe the conversion of this data set in Nonmem format:-

c:\PoPy\validation\ddmore0093\Simulated_dataset.csv





To this data set in PoPy format:-

c:\PoPy\validation\ddmore0093\popy\popy_data.csv





Using the N2PDat Script located here:-

c:\PoPy\validation\ddmore0093\popy\n2p_script.pyml





The final data set looks something like Table 50.


Table 50 Main data fields for Nonmem and PoPy











	ID

	TIME

	AMT

	EVID

	QTCF

	MDV

	CPP

	TYPE



	1001

	0

	0

	2

	0

	1

	0

	pred



	1001

	31.2575

	0

	0

	351.7

	0

	0

	obs



	1001

	31.2655556

	0

	0

	343.7

	0

	0

	obs



	1001

	31.2736111

	0

	0

	354.1

	0

	0

	obs



	1001

	31.4072222

	0

	0

	351.5

	0

	0

	obs



	1001

	31.4152778

	0

	0

	359

	0

	0

	obs



	1001

	33.6672222

	600

	1

	0

	1

	0

	dose:dose_bolus



	1001

	34.1683333

	0

	2

	0

	1

	1083

	pred



	1001

	34.5841667

	0

	0

	353.6

	0

	1447

	obs






Note the main output of the data conversion is the ‘TYPE’ field which has the correct entries for PoPy corresponding to the Nonmem ‘EVID’ field. as follows:-

2 -> pred
0 -> obs
1 -> dose:dose_bolus





Note however that in this model the dosing is not actually used in the Nonmem control file.




Script Conversion

We describe the manual conversion of the Nonmem script file:-

c:\PoPy\validation\ddmore0093\Executable_run7b.ctl





To create the PoPy Fit Script here:-

c:\PoPy\validation\ddmore0093\popy\fit_script.pyml





The Nonmem script loads the data as follows:-

$DATA Simulated_dataset.csv
   IGNORE = #
   IGNORE = (EVID == 1)





Note the ‘IGNORE’ syntax removes the dosing rows from the data set.

Whereas the PoPy script uses this syntax:-

FILE_PATHS: {input_data_file: output_popy_data.csv}
PREPROCESS: |
    if c[TYPE] == 'dose:dose_bolus': return





Which loads the PoPy data and also excludes the dosing rows.

In the Nonmem script, the theta/omega/sigma variable definitions are:-

$THETA (0, 372.6)      ; 1 Baseline QTcF [ms]
$THETA (0, 0.01844)    ; 2 Amplitude  24h
$THETA (0, 3.62)       ; 3 Peak shift 24h
$THETA (0, 0.01392)    ; 4 Amplitude  12h circadian rhythm
$THETA (0, 1.301)      ; 5 Peak shift 12h circadian rhythm
$THETA (0, 0.003441)   ; 6 Slope (linear effect) parameter
$OMEGA  0.0392         ; 1 Baseline QTcF - (BSV)
$OMEGA  0.3523         ; 2 Amplitude 24h  - BSV
$OMEGA  2.007          ; 3 Peak shift 24h - BSV
$OMEGA  0.3848         ; 4 Amplitude 12h  - BSV
$OMEGA  0.993          ; 5 Peak shift 12h - BSV
$OMEGA  0.0001         ; 6 Slope          - BSV
$SIGMA  0.01802        ; 1 Proportional residual error [ms]





The equivalent f[X] in the PoPy script are:-

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[BASE] ~ P 372.6
            f[AMP24] ~ P 0.01844
            f[SHFT24] ~ P 3.62
            f[AMP12] ~ P 0.01392
            f[SHFT12] ~ P 1.301
            f[SLOPE] ~ P 0.003441
            f[BASE_bsv,AMP24_bsv,SHFT24_bsv,AMP12_bsv,SHFT12_bsv,SLOPE_bsv] ~ diag_matrix() [
                [ 0.0392, 0.3523, 2.007, 0.3848, 0.993, 0.0001 ]
            ]
            f[NOISEVAR] ~ P 0.01802





Additionally PoPy has the ‘INDIV’ section of the LEVEL_PARAMS:-

LEVEL_PARAMS:
    INDIV:
        params: |
            r[ BASE, AMP24, SHFT24, AMP12, SHFT12, SLOPE ] ~ mnorm(
                [0,0,0,0,0,0],
                f[BASE_bsv,AMP24_bsv,SHFT24_bsv,AMP12_bsv,SHFT12_bsv,SLOPE_bsv]
            )
        split_field: ID
        split_dict: "*"





This section defines r[BASE] and r[AMP24] etc. These r[X] definitions are a more explicit version of Nonmem implicitly creating ETA(X) variables for each of the omega variables. With Nonmem you have to remember what each of the ETA indices represent. Hence the heavily commented ‘PRED’ block below, which defined the variables for each individual in the Nonmem script:-

$PRED
   BASE   = THETA(1) * EXP(ETA(1))                       ; Baseline QTcF with between subject varaibility (BSV)
   AMP24  = THETA(2) * EXP(ETA(2))                       ; The amplitude of the 24h circadian rhythm
   SHFT24 = THETA(3) + ETA(3)                            ; The peak shift of the 24h circadian rhythm
   AMP12  = THETA(4) * EXP(ETA(4))                       ; The amplitude of the 12h circadian rhythm
   SHFT12 = THETA(5) + ETA(5)                            ; The peak shift of the 12h circadian rhythm

   CIRC24 = AMP24 * COS(2 * 3.14 * (TIME - SHFT24)/24)   ; 24 hour circadian rhythm
   CIRC12 = AMP12 * COS(2 * 3.14 * (TIME - SHFT12)/12)   ; 12 hour circadian rhythm

   RYTM   = BASE * (1 + CIRC24 + CIRC12)                 ; Change in baseline QTcF over the day due to circadian rhythm

   SLOPE  = THETA(6) + ETA(6)                            ; Linear effect
   EFF    = SLOPE * CPP                                  ; Linear effect





The MODEL_PARAMS section of the PoPy script is very similar:-

MODEL_PARAMS: |

    BASE   = f[BASE] * exp(r[BASE])
    AMP24  = f[AMP24] * exp(r[AMP24])
    SHFT24 = f[SHFT24] + r[SHFT24]
    AMP12  = f[AMP12] * exp(r[AMP12])
    SHFT12 = f[SHFT12] + r[SHFT12]

    CIRC24 = AMP24 * COS(2 * 3.14 * (c[TIME] - SHFT24)/24)
    CIRC12 = AMP12 * COS(2 * 3.14 * (c[TIME] - SHFT12)/12)
    m[RYTM] = BASE * (1 + CIRC24 + CIRC12)

    SLOPE = f[SLOPE] + r[SLOPE]
    m[EFF] = SLOPE * c[CPP]
    m[NOISEVAR] = f[NOISEVAR]





The above is almost identical apart from the line ‘m[NOISEVAR] = f[NOISEVAR]’. Note in MODEL_PARAMS it is necessary to define m[X] variables that you wish to use in subsequent sections, e.g. DERIVATIVES or PREDICTIONS.

The Nonmem error model (also here part of the ‘PRED’ section) is defined as follows:-

IPRED  = RYTM  + EFF                                  ; Linear direct effect model
W      = IPRED * SIGMA(1,1)
IWRES  = (QTCF - IPRED)/W

Y      = IPRED + IPRED*EPS(1)





The equivalent in PoPy is the PREDICTIONS block:-

PREDICTIONS: |
    p[CONC_PLASMA] = m[RYTM] + m[EFF]
    var = m[NOISEVAR] * p[CONC_PLASMA]**2
    c[QTCF] ~ norm(p[CONC_PLASMA], var)





Note PoPy explicitly defines the likelihood by comparing c[QTCF] from the data file with the predicition p[CONC_PLASMA], using a normal distribution with proportional variance.

This is more explicit than the Nonmem line ‘Y      = IPRED + IPRED*EPS(1)’, which implicitly uses the ‘DV’ Nonmem magic variable for Y. The likelihood is expressed as a function of EPS normal distributions.

The Nonmem control file specifies using FOCE fitting (METHOD=1) below:-

$ESTIMATION METHOD=1 MAXEVALS=99999 INTER NOABORT PRINT=5





The PoPy equivalent, specifying the JOE fitting method (roughly equivalent to FOCE) is:-

FIT_METHODS: [JOE: {max_n_main_iterations: 100}]











          

      

      

    

  

    
      
          
            
  
DDMoRe0238 Conversion Example


Overview

A real world model, based on a gentamicin PK study [Germovsek2017]. Population PK, 205 individuals. 2788 total data rows. Infusion dosing, IOV + custom derivative equations to implement PK. See DDMoRe: 0238 [http://repository.ddmore.eu/model/DDMODEL00000238]




Data Conversion

We describe the conversion of this data set in Nonmem format:-

c:\PoPy\validation\ddmore0238\Simulated_simdataDDM.csv





To this data set in PoPy format:-

c:\PoPy\validation\ddmore0238\popy\output_popy_data.csv





Using the N2PDat Script located here:-

c:\PoPy\validation\ddmore0238\popy\n2p_script.pyml





The original Nonmem data set looks something like Table 51.


Table 51 Main data fields for Nonmem (first 8 rows)












	ID

	TIME

	RATE

	EVID

	AMT

	WT

	CREAT

	DV

	OCC



	1001

	0

	72

	1

	6

	2120

	78

	0

	1



	1001

	11.5

	0

	0

	0

	2120

	78

	1.109

	1



	1001

	12

	72

	1

	6

	2120

	78

	0

	2



	1001

	12.5

	0

	0

	0

	2120

	78

	7.0181

	2



	1001

	24

	48

	1

	4

	2120

	78

	0

	2



	1001

	36

	48

	1

	4

	2120

	78

	0

	2



	1001

	48

	48

	1

	4

	2120

	78

	0

	3



	1001

	58.5

	0

	0

	0

	2120

	78

	2.2136

	3






The final data set looks something like Table 52.


Table 52 Extra data fields for PoPy (first 8 rows)






	DV_CENTRAL

	DV_CENTRAL_FLAG

	TYPE



	0

	0

	dose:DOSE_infrate



	1.109

	1

	obs



	0

	0

	dose:DOSE_infrate



	7.0181

	1

	obs



	0

	0

	dose:DOSE_infrate



	0

	0

	dose:DOSE_infrate



	0

	0

	dose:DOSE_infrate



	2.2136

	1

	obs






Here the PoPy ‘TYPE’ field is a more explicit version of the Nonmem ‘EVID’ field. The PoPy ‘DV_CENTRAL’ field is a copy of the Nonmem ‘DV’ field, with an additional ‘DV_CENTRAL_FLAG’ field to make the true observed values more obvious. Note here PoPy could also use the Nonmem ‘DV’ field because it is always defined for all rows with c[EVID] =0 or equivalently c[TYPE] =’obs’.




Script Conversion

We describe the manual conversion of the Nonmem script file:-

c:\PoPy\validation\ddmore0238\Executable_run35b_ddm2.ctl





To create the PoPy Fit Script here:-

c:\PoPy\validation\ddmore0238\popy\fit_script.pyml





The Nonmem script loads the data as follows:-

$DATA simdataDDM.csv IGNORE=@





Whereas the PoPy script uses this syntax:-

FILE_PATHS:
    # path to input comma separated value file in popy data format
    input_data_file: output_popy_data.csv





In the Nonmem script, the theta variable definitions are:-

$THETA  (0,6.20684) ; 1. TVCL (lower bound,initial estimate)
$THETA  (0,26.5004) ; 2. TVV1  (lower bound,initial estimate)
$THETA  (0,2.15099) ; 3. TVQ
$THETA  (0,21.151) ; 4. TVV2
$THETA  (0,0.270697) ; 5. TVQ2
$THETA  (0,147.893) ; 6. TVV3
$THETA  55.4 FIX ; 7. T50
$THETA  3.33 FIX ; 8. Hill
$THETA  -0.129934 ; 9. power exponent on creatinine
$THETA  (0,1.70302) ; 10. PNA50





In the PoPy script the equivalent f[X] variables are:-

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[TVCL] ~ P 6.20684
            f[TVV1] ~ P 26.5004
            f[TVQ] ~ P 2.15099
            f[TVV2] ~ P 21.151
            f[TVQ2] ~ P 0.270697
            f[TVV3] ~ P 147.893
            f[T50] = 55.4
            f[HILL] = 3.33
            f[CRPWR] = -0.129934
            f[P50] ~ P 1.70302





Notice that PoPy uses the natural equal sign for f[X] that are fixed and the ‘~’ for f[X] that need to be estimated.

In the Nonmem script, the omega variable definitions are:-

$OMEGA  BLOCK(2)
 0.175278  ; variance for ETA(1), initial estimate
 0.115896 0.112362  ; COvariance ETA(1)-ETA(2), var for ETA(2), initial estimate
$OMEGA  0  FIX
$OMEGA  0.131759
$OMEGA  0  FIX
$OMEGA  0.177214
$OMEGA  BLOCK(1)
 0.0140684  ;  7. IOV_CL
$OMEGA  BLOCK(1) SAME
$OMEGA  BLOCK(1) SAME
$OMEGA  BLOCK(1) SAME
$OMEGA  BLOCK(1) SAME
$OMEGA  BLOCK(1) SAME
$OMEGA  BLOCK(1) SAME
$OMEGA  BLOCK(1) SAME
$OMEGA  BLOCK(1) SAME
$OMEGA  BLOCK(1) SAME
$OMEGA  BLOCK(1) SAME
$OMEGA  BLOCK(1) SAME
$OMEGA  BLOCK(1) SAME
$OMEGA  BLOCK(1) SAME
$OMEGA  BLOCK(1) SAME
$OMEGA  BLOCK(1) SAME
$OMEGA  BLOCK(1) SAME
$OMEGA  BLOCK(1) SAME
$OMEGA  BLOCK(1) SAME
$OMEGA  BLOCK(1) SAME
$OMEGA  BLOCK(1) SAME
$OMEGA  BLOCK(1) SAME





The ugly code above defines a 2x2 matrix of omega fixed effects, followed by 4 scalar omega fixed effects. The
‘$OMEGA  BLOCK(1)’ + ‘$OMEGA  BLOCK(1) SAME’ lines defines a single IOV omega fixed effects to be estimated over up to 22 occasions. Nonmem creates an ETA normal variable for each individual corresponding to each $OMEGA above. Hence each individual will have 4 ETAs (with 2 set to zero) and an additional 22 occasion ETAS.

You just have to do all the indexing in your head to use the ETAs in the subsequent PK block. In contrast the PoPy script defines the equivalent var f[X] variables as:-

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[TCVL_isv, TVV1_isv] ~ spd_matrix() [
                [ 0.175278 ],
                [ 0.115896, 0.112362 ]
            ]
            f[TVQ_isv] = 0
            f[TVV2_isv] ~ P 0.131759
            f[TVQ2_isv] = 0
            f[TVV3_isv] ~ P 0.177214
            f[TVCL_iov] ~ P 0.0140684





Here the inter-subject variability (isv) variables are just more f[X] variables with convenient labels. Note in contrast to Nonmem the f[TVCL_iov] occasion variance is just defined once here (it being one fixed effect).

In PoPy the mechanism for creating the appropriate number of r[X] variables given the var f[X] is as shown in the ‘INDIV’ and ‘OCCASION’ sections:-

LEVEL_PARAMS:
    INDIV:
        split_field: ID
        split_dict: "*"
        params: |
            r[TVCL_isv, TVV1] ~ mnorm([0,0], f[TCVL_isv, TVV1_isv])
            r[TVQ] ~ norm(0, f[TVQ_isv])
            r[TVV2] ~ norm(0, f[TVV2_isv])
            r[TVQ2] ~ norm(0, f[TVQ2_isv])
            r[TVV3] ~ norm(0, f[TVV3_isv])
    OCCASION:
        split_field: OCC
        split_dict: "*"
        params: |
            r[TVCL_iov] ~ norm(0, f[TVCL_iov])





This syntax means that each individual has one r[TVCL_isv, TVV1] and one r[TVQ] instance etc. However the number of instances of r[TVCL_iov] are dependent on the number of values of the ‘OCC’ field for each individual in the data file. i.e. Each individual will have a different sample of r[TVCL_iov] for each occasion. You do not need to know the highest occasion number here (unlike in Nonmem).

In the Nonmem script, the sigma variable definitions are:-

$SIGMA  0.036033  ; variance PROP res error, initial estimate
$SIGMA  0.0164023 ; additional res error, initial estimate





In the PoPy script the equivalent noise f[X] variables are:-

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[PNOISE_var] ~ P 0.036033
            f[ANOISE_var] ~ P 0.0164023





The Nonmem ‘PK’ section is defined as follows:-

$PK
    ; Three-comp model
    IF(NEWIND.NE.2)OTIM1=0
    IF(NEWIND.NE.2)OCOV1=0
    IF(NEWIND.NE.2)OTIM2=0
    IF(NEWIND.NE.2)OCOV2=0
    ;
    STUDY=0
    IF(ID.LT.2000) STUDY=1                     ;Glasgow, Thomson1988
    IF(ID.GE.2000.AND.ID.LT.3000) STUDY=2      ;Uppsala, Nielsen2009
    IF(ID.GE.3000) STUDY=3                     ;Estonia, unpublished
    ;
    WTKG = WT/1000
    ;
    T50  = THETA(7)
    HILL = THETA(8)
    MF   = PMA**HILL/(PMA**HILL+T50**HILL)
    ;
    CREAT2 = CREAT
    IF(CREAT.LT.0) CREAT2 = TCREA       ; when SCr is NA=-99, it is the typical SCr
    ;OF = (CREAT2/TCREA)**(THETA(9))
    ;
    P50  = THETA(10)
    ;PNAF = PNA/(P50+PNA)
    ;
    CRPWR = THETA(9)
    ;IOV code
    BOVC = 0
    IF(OCC.EQ.1)  BOVC = ETA(7)
    IF(OCC.EQ.2)  BOVC = ETA(8)
    IF(OCC.EQ.3)  BOVC = ETA(9)
    IF(OCC.EQ.4)  BOVC = ETA(10)
    IF(OCC.EQ.5)  BOVC = ETA(11)
    IF(OCC.EQ.6)  BOVC = ETA(12)
    IF(OCC.EQ.7)  BOVC = ETA(13)
    IF(OCC.EQ.8)  BOVC = ETA(14)
    IF(OCC.EQ.9)  BOVC = ETA(15)
    IF(OCC.EQ.10) BOVC = ETA(16)
    IF(OCC.EQ.11) BOVC = ETA(17)
    IF(OCC.EQ.12) BOVC = ETA(18)
    IF(OCC.EQ.13) BOVC = ETA(19)
    IF(OCC.EQ.14) BOVC = ETA(20)
    IF(OCC.EQ.15) BOVC = ETA(21)
    IF(OCC.EQ.16) BOVC = ETA(22)
    IF(OCC.EQ.17) BOVC = ETA(23)
    IF(OCC.EQ.18) BOVC = ETA(24)
    IF(OCC.EQ.19) BOVC = ETA(25)
    IF(OCC.EQ.20) BOVC = ETA(26)
    IF(OCC.EQ.21) BOVC = ETA(27)
    IF(OCC.EQ.22) BOVC = ETA(28)
    ;
    TVCL = THETA(1)*MF*(WTKG/70)**(0.632)   ; typical value of CL
    TVV1 = THETA(2)*(WTKG/70)                       ; typical value of V1
    TVQ  = THETA(3)*(WTKG/70)**(0.75)               ; ty. value of intercompartmental CL
    TVV2 = THETA(4)*(WTKG/70)                       ; ty. value of V2
    TVQ2 = THETA(5)*(WTKG/70)**(0.75)               ; ty value of CL3
    TVV3 = THETA(6)*(WTKG/70)                       ; ty value of V3
    ;
    CL   = TVCL*EXP(ETA(1)+BOVC)  ; individual value of CL
    V1   = TVV1*EXP(ETA(2))
    Q    = TVQ*EXP(ETA(3))
    V2   = TVV2*EXP(ETA(4))
    Q2   = TVQ2*EXP(ETA(5))
    V3   = TVV3*EXP(ETA(6))
    ;
    K    = CL/V1
    K12  = Q/V1
    K21  = Q/V2
    K13  = Q2/V1
    K31  = Q2/V3
    ;
    IF(EVID.EQ.1) TM=TIME
    IF(EVID.EQ.1) TAD=0
    IF(EVID.NE.1) TAD=TIME-TM
    ;
    SL1 = 0
    IF(TIME.GT.OTIM1) SL1 = (PNA-OCOV1)/(TIME-OTIM1)
    A_0(4) = PNA
    ;
    SL2 = 0
    IF(TIME.GT.OTIM2) SL2 = (CREAT2-OCOV2)/(TIME-OTIM2)
    A_0(5) = CREAT2





The equivalent in PoPy is the MODEL_PARAMS section:-

MODEL_PARAMS: |

    WTKG = c[WT] / 1000
    MF = c[PMA]**f[HILL]/(c[PMA]**f[HILL] + f[T50]**f[HILL])
    TVCL = f[TVCL] * (WTKG/70)**(0.632) * MF
    TVV1 = f[TVV1] * (WTKG/70)
    TVQ  = f[TVQ]  * (WTKG/70)**(0.75)
    TVV2 = f[TVV2] * (WTKG/70)
    TVQ2 = f[TVQ2] * (WTKG/70)**(0.75)
    TVV3 = f[TVV3] * (WTKG/70)
    BOVC = r[TVCL_iov]
    CL = TVCL * exp(r[TVCL_isv] + BOVC)
    V1 = TVV1 * exp(r[TVV1])
    Q  = TVQ * exp(r[TVQ])
    V2 = TVV2 * exp(r[TVV2])
    Q2 = TVQ2 * exp(r[TVQ2])
    V3 = TVV3 * exp(r[TVV3])
    m[K]   = CL/V1
    m[K12] = Q/V1
    m[K21] = Q/V2
    m[K13] = Q2/V1
    m[K31] = Q2/V3
    m[CRPWR] = f[CRPWR]
    m[P50] = f[P50]
    m[SL1] = 0
    if c[CREAT] < 0:
        m[CREAT2] = c[TCREA]
    else:
        m[CREAT2] = c[CREAT]
    m[SL2] = 0
    m[V1] = V1
    m[PNOISE_var] = f[PNOISE_var]
    m[ANOISE_var] = f[ANOISE_var]





The PoPy version is shorter, mainly because it does not have to write an if statement for all values of the OCC variable i.e. ‘IF(OCC.EQ.1) BOVC = ETA(7)’ etc.

Note that the Nonmem $PK section contains the lines:-

A_0(4) = PNA
A_0(5) = CREAT2





These are necessary to provide initial values for the $DES section. The equivalent in PoPy is the STATES section:-

STATES: |
    s[COVCMT1] = c[PNA]
    s[COVCMT2] = m[CREAT2]





which provides s[X] values at t=0.0 for the PoPy DERIVATIVES section. Note by default in both PoPy s[X] =0.0, unless the STATES section says otherwise. A similar convention is used in Nonmem.

The Nonmem $DES section is as follows:-

$DES
    TCOV1 = A(4)
    TCOV2 = A(5)
    PNAF = TCOV1/(P50+TCOV1)
    OF = (TCOV2/TCREA)**CRPWR

    DADT(1) = A(3)*K31+A(2)*K21-A(1)*(K*PNAF*OF+K12+K13)
    DADT(2) = A(1)*K12-A(2)*K21
    DADT(3) = A(1)*K13-A(3)*K31
    DADT(4)= SL1
    DADT(5)= SL2





This is very similar to the PoPy DERIVATIVES section:-

DERIVATIVES: |
    TCOV1 = s[COVCMT1]
    TCOV2 = s[COVCMT2]
    PNAF = TCOV1 / (m[P50]+TCOV1)
    OF = (TCOV2/c[TCREA])**m[CRPWR]
    dose[DOSE_infrate] = @inf_rate{ amt: c[AMT], rate: c[RATE], lag: 0 }
    d[CENTRAL] = dose[DOSE_infrate] + m[K31]*s[PERIPH2] + m[K21]*s[PERIPH1] - (m[K]*PNAF*OF+m[K12]+m[K13])*s[CENTRAL]
    d[PERIPH1] = - m[K21]*s[PERIPH1] + m[K12] *s[CENTRAL]
    d[PERIPH2] = - m[K31]*s[PERIPH2] + m[K13] *s[CENTRAL]
    d[COVCMT1] =   m[SL1]
    d[COVCMT2] =   m[SL2]





except that in PoPy the dose[DOSE_infrate] is defined and explicitly placed in the s[CENTRAL] compartment. Nonmem puts all boluses/infusions in compartment one by convention, unless a CMT field is defined in the data set (it isn’t in this case). In Nonmem you have to examine the data file to determine the type of dose, however in the PoPy syntax above it’s pretty clear it’s an infusion defined by the c[AMT] and c[RATE] data entries in each dosing data row.

The ordinary differential equation solver parameters for Nonmem are set here:-

$SUBROUTINE ADVAN6 TOL=6





Here ‘ADVAN6’ is the Nonmem ode solver for non-stiff systems. With a relative tolerance of 1e-6. Note this solver is different from the scipy Odeint LSODA method employed by PoPy which is similar to selecting ‘ADVAN13’ in Nonmem. In this case the ordinary differential equation solver method makes little difference, as both PoPy and Nonmem return similar objective values for this model.

In PoPy the ordinary differential equation solver parameters are defined as follows:-

ODE_SOLVER:
    SCIPY_ODEINT:
        # Absolute tolerance of ode solver.
        atol: 1e-12

        # Relative tolerance of ode solver.
        rtol: 1e-12

        # Maximum number of steps allowed in ode solver.
        max_nsteps: 10000000





The $ERROR block in the Nonmem script defines a proportional + additional noise model:-

$ERROR
    IPRED  = A(1)/V1
    Y      = IPRED*(1+EPS(1)) + EPS(2)





The PREDICTIONS section in the PoPy script defines the same error model:-

PREDICTIONS: |
    p[DV_CENTRAL] = s[CENTRAL]/m[V1]
    var = p[DV_CENTRAL]**2 * m[PNOISE_var] + m[ANOISE_var]
    c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)





The Nonmem script defines the FOCE fitting method (METHOD=1) here:-

$ESTIMATION METHOD=1 INTER MAXEVAL=0 PRINT=1





The equivalent in the PoPy script is here:-

FIT_METHODS: [JOE: {max_n_main_iterations: 0}]





Note both Nonmem and PoPy only optimize the r[X] in the fitting run as the number of main iterations is set to zero.
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Open a PoPy Command Prompt

To gain access to the Command Line Tools you need to invoke the PoPy command prompt environment.

There are two ways of doing this, Windows Shortcut Method and Windows Terminal Method.


Windows Shortcut Method

Select the ‘PoPy Command Prompt’ shortcut that should be on both your Desktop and Start Menu (in the PoPy folder). This will open a PoPy command prompt in your user home directory.

The terminal should look something like Fig. 45:-


[image: ../../_images/dos_popy.png]
Fig. 45 PoPy dos prompt






Windows Terminal Method

Open a standard terminal (either a Powershell in Windows 10 or a standard cmd.exe in Windows 7/8) in any folder on your computer. For example, in Windows 10, from within Windows explorer do:-

shift key + right mouse button -> "Open powershell window here"





A powershell should appear like this Fig. 46:-


[image: ../../_images/powershell_plain.png]
Fig. 46 Plain PowerShell prompt



Then type:-

$ popy_env





You should see the text:-

Welcome to PoPy Binary





After running ref:popy_env the terminal should look something like Fig. 47:-


[image: ../../_images/powershell_popy.png]
Fig. 47 PoPy PowerShell prompt



Note the colour of the text will change from white to pale blue (if you started in a dos prompt). The text is pale blue by default in a windows powershell.




Verify PoPy Environment

The light blue text signifies that you are within a PoPy environment. You can verify this further by running popy_info:-

$ popy_info





You can also verify that the system path has changed. e.g in a command prompt:-

$ echo %PATH%





Or in a powershell:-

$ $env:path





You should be able to run all the Command Line Tools now.







          

      

      

    

  

    
      
          
            
  
PoPy Activation

PoPy comes with a 60 day trial period. To continue using PoPy after this period has expired, you will need a licence to activate the product.

You should have been supplied with a free activation code if you signed up for the PoPy academic version.

To obtain a valid PoPy licence see Licensing.


Activation Status

To check the current activation status and licencing of your PoPy installation, Open a PoPy Command Prompt and type:-

popy_info





If you see output like this:-

INFO - product_key=None





Then PoPy is not yet activated. The trial period may or may not be active, which determines if PoPy will run without a product key. If you see the following:-

INFO - should_run=True





then PoPy is within the trial period.

If you have a product key, but this line is displayed:-

INFO - should_run=False





Then the product key is invalid and you need to obtain a new product key to successfully Activate PoPy.




Activate PoPy

To activate PoPy Open a PoPy Command Prompt and type:-

popy_activate XXXX-XXXX-XXXX-XXXX-XXXX-XXXX-XXXX





Where XXXX etc., is the product key supplied by Wright Dose Ltd. Just cut and paste the product key from the email.


Verify Activation

Run:-

popy_info





and you should see something like this:-

INFO - In a PoPy Binary environment
INFO - popy_flavour=binary
INFO - popy_python_path=C:\PoPy\
INFO - popy_release=1.0.0
INFO - popy_version=academic
INFO - python_version=3.5.1
INFO - windows_version=('10', '10.0.17134', 'SP0', 'Multiprocessor Free')
INFO - machine_name=saruman
INFO - product_key=XXXX-XXXX-XXXX-XXXX-XXXX-XXXX-XXXX
status=Product key is activated and within licence period
Licence has been running for 3613 days
Licence needs renewing in 1868 days
INFO - name=David Cristinacce
INFO - email=david@popypkpd.com
INFO - company=Wright Dose Ltd
INFO - licence_start_date=2009-02-12 00:00:00
INFO - licence_end_date=2024-02-16 00:00:00
INFO - should_run=True





showing the paths used by PoPy, a few internal variables, and details about the licence (if you have run popy_activate successfully).






Deactivate PoPy

To remove a PoPy product key from your machine Open a PoPy Command Prompt and type:-

popy_deactivate






Verify Deactivation

Run:-

popy_info





and you should see something like this:-

INFO - product_key=None










Transfer Product Key Between Machines

If you wish to move a PoPy licence from one computer to another. Then you simply need to Deactivate PoPy on the current machine, noting the current product key. And then Activate PoPy on the new machine, using the same product key.

Note if you activate the same product key on multiple machines and you exceed the number of activations associated with the product key, this will invalidate your licence and may cause problems.




Licensing

There are currently two licences for PoPy:-


	PoPy Academic Licence

	A free licence for PoPy distributed to academics, which may not be used for commercial analyses.



	PoPy Commercial Licence

	A paid licence granting the end user one year of PoPy usage on a single machine. A commercial license is required to use PoPy in regulator submissions or publications regarding work that is sponsored or funded by drug companies i.e. research that leads to profit.





Both licences comes with a 60 day trial period, so you can try out PoPy before obtaining a product key.

All versions of PoPy have the same functionality. There are no crippled versions. Any version of PoPy can be upgraded to the latest version of PoPy at any time. The terms of the licence (i.e. duration etc.) are unaffected by upgrading PoPy.

Please email the following address for further information:-

info@popypkpd.com

We will endeavour to respond promptly to questions regarding our licencing.







          

      

      

    

  

    
      
          
            
  
Configure PoPy


PoPy Config File

The local settings of your PoPy installation can be altered by editing this file:-

C:\popy\popy_config.pyml





We recommend that you do not alter this file unless you know exactly what you are doing.




Configuration Options

You should probably restrict yourself to editing the following two paths:-

# path to text editor invoked using popy_edit
text_editor_path: "C:/Program Files/Notepad++/notepad++.exe"

# path to Inkscape binary invoked using popy_imconv
inkscape_exe_path: "C:/Program Files/Inkscape/inkscape.exe"





You should change these paths if you have installed Notepad++ or Inkscape to non-standard locations.




Factory Reset Options

If you edit your ‘popy_config.pyml’ and PoPy no longer functions correctly, please restore to the following default settings:-

# path to favicon
favicon_path: ${POPY_PYTHON_PATH}/conf/4p_white_border.ico

# path to graphviz dot.exe for creating diagrams
graphviz_dot_path: ${POPY_PYTHON_PATH}/thirdparty/graphviz/bin/dot.exe

# path to sphinx confuration options - used when generating html or latex
sphinx_conf_folder: ${POPY_PYTHON_PATH}/conf

# path to memcached executable
memcached_path: ${POPY_PYTHON_PATH}/thirdparty/memcached-amd64/memcached.exe

# path rabbitmq sbin folder
rabbitmq_sbin_folder: ${POPY_PYTHON_PATH}/thirdparty/RabbitMQ Server/rabbitmq_server-3.5.1/sbin

# path to text editor invoked using popy_edit
text_editor_path: "C:/Program Files/Notepad++/notepad++.exe"

# path to Inkscape binary invoked using popy_imconv
inkscape_exe_path: "C:/Program Files/Inkscape/inkscape.exe"








Inkscape

We recommend Inkscape, an open source graphics tool, for converting between image file formats.


Install Inkscape

Download it from:-

https://inkscape.org/en/release/

If you install the 64bit binary installer the default install directory is:-

C:\Program Files\Inkscape








Configure Inkscape Path

Note that to use Inkscape with popy_imconv you need to make sure PoPy Config File contains this entry:-

inkscape_exe_path: "C:/Program Files/Inkscape/inkscape.exe"





With this path set correctly you can now Open a PoPy Command Prompt and do:-

$ popy_imconv *.svg png





To convert .svg images to .png format. See popy_imconv.






Uninstall PoPy

Note that if you are moving your product key to another machine, it is wise to Deactivate PoPy before uninstalling. If you are upgrading PoPy then it is best to keep the current product key.


Run the uninstaller

You can click on the shortcut at:-

Start Menu > PoPy > popy_uninstall





Or you could, instead, run the .exe at:-

C:\PoPy\popy_uninstall.exe





The uninstaller will remove the PoPy desktop shortcut and Windows start menu items, but does not change the Windows Registry.









          

      

      

    

  

    
      
          
            
  
PoPy Website


PoPy introductory site

We have an introductory site here:-

https://popypkpd.com/

This website describes the main features of PoPy and why you should use it.




PoPy product website

The main website to support PoPy is here:-

https://product.popypkpd.com/

This site contains the binary downloads and up-to-date documentation for PoPy.




Obtain a website account

If you want to try out PoPy please contact:-

info@popypkpd.com

Your website account consists of an email address and password, and will permit access to the latest binary installer and up-to-date PoPy documentation.




Website Structure


Overview

Introduction to PoPy PK/PD system.




News

Recent news about PoPy. E.g. up-coming conferences + new releases/features.




Downloads

Access to all PoPy binaries. Note we will keep all our release binaries online indefinitely to support reproducibility of your results.

However you are encouraged to update to the latest version to get the most out of PoPy.




Documentation

Documentation for all releases of PoPy. Note the online documentation (for the latest release) will be updated continuously. So the online documentation will be more up-to-date than the static html supplied with the PoPy binary.

To access the online documentation for your version of PoPy simply type:-

popy_doc -o





Where the “o” stands for online. If you type:-

popy_doc





You will see the local documentation under:-

c:\PoPy\html








About

Some information about the developers and contact email.









          

      

      

    

  

    
      
          
            
  
Validate PoPy

Before using PoPy for an important analysis it is best to run the validation process. This verifies that the outputs of your PoPy installation agree with the outputs obtained by the developers of PoPy.


Check the PoPy Configuration

To see the current configuration, Open a PoPy Command Prompt and type:-

popy_info





and you should see something like this:-

INFO - In a PoPy Binary environment
INFO - popy_flavour=binary
INFO - popy_python_path=C:\PoPy\
INFO - popy_release=1.0.0
INFO - popy_version=academic
INFO - python_version=3.5.1
INFO - windows_version=('10', '10.0.17134', 'SP0', 'Multiprocessor Free')
INFO - machine_name=saruman
INFO - product_key=XXXX-XXXX-XXXX-XXXX-XXXX-XXXX-XXXX
status=Product key is activated and within licence period
Licence has been running for 3613 days
Licence needs renewing in 1868 days
INFO - name=David Cristinacce
INFO - email=david@popypkpd.com
INFO - company=Wright Dose Ltd
INFO - licence_start_date=2009-02-12 00:00:00
INFO - licence_end_date=2024-02-16 00:00:00
INFO - should_run=True





showing the paths used by PoPy, a few internal variables, and details about the licence (if you have run popy_activate).




Run the Validator

Because computers vary in their architecture, it is possible that running the same code and the same script could give different results on different installations. We therefore bundle a tool, popy_validate, that runs PoPy on a suite of examples and compares the results you compute locally to some reference results generated at Wright Dose Ltd.

These Validation Examples are largely drawn from the DDMoRe repository and cover models with different features, e.g. inter-occasion variability.

To run this suite of examples Open a PoPy Command Prompt and type:-

$ popy_validate





Some of the examples take a few minutes to run, the full validation takes about 20 minutes, but you should only need to run the validation once.

If the validation is successful, you should get output on the command line as the validation examples are processed. The end of the output should look like:-

INFO - 
INFO - Validation results: 4 passed; 0 failed.
INFO - Passes:
INFO -   prob1100
INFO -   ddmore0061
INFO -   ddmore0093
INFO -   ddmore0238
INFO - 

    VALIDATION RESULT: PASS
    
INFO - 
INFO -  time to complete val  = 915.338s
INFO - Main script val completed.
INFO -  time to complete main + sub scripts = 916.993s
Finished: SUCCESS





which will also be written to the log file ‘validation_script.pyml.run.main.log’ in the ‘validation’ subdirectory of your PoPy installation, which is normally located here:-

c:\PoPy\validation\validation_script.pyml.run.main.log





This log file can be used as a form of verification for a validation report, if PoPy is to be used in a commercial setting.




Validation Examples

The validation examples are often taken from the publicly available DDMoRe repository. Typically these are a Nonmem control file and Nonmem data file that together illustrate fitting a PK/PD model.

You can see the validation examples supplied with PoPy here:-

c:\PoPy\validation





Each subdirectory contains a ‘readme.txt’ file that gives a brief overview of the example and how it was created from the DDMoRe equivalent.

Table 53 lists each of the models in this folder:-


Table 53 Validation Models







	Name

	Summary

	Link

	Citation





	prob1100

	Synthetic Weibull dosing PopPK model.

	N/A

	N/A



	ddmore0061

	Combined bolus + infusion PK model.

	DDMoRe: 0061 [http://repository.ddmore.eu/model/DDMODEL00000061]

	[Harling2015]



	ddmore0093

	Circadian function with covariates.

	DDMoRe: 0093 [http://repository.ddmore.eu/model/DDMODEL00000093]

	[Cheung2015]



	ddmore0238

	Population PK with infusion dosing + IOV

	DDMoRe: 0238 [http://repository.ddmore.eu/model/DDMODEL00000238]

	[Germovsek2017]









Troubleshoot

If the validation fails for any reason, please contact the PoPy developers at info@popypkpd.com.







          

      

      

    

  

    
      
          
            
  
Command Line Tools

The PoPy tools and their functions are summarised in Table 54:-


Table 54 PoPy Command Line Tools






	Name

	Example

	Function





	popy_env

	popy_env

	invoke the PoPy environment



	popy_run

	popy_run my_script.pyml

	run a PoPy script



	popy_check

	popy_check my_script.pyml

	check a PoPy script



	popy_create

	popy_create fit my_script.pyml

	create an example PoPy script



	popy_format

	popy_format my_script.pyml

	update PoPy script format



	popy_edit

	popy_edit my_script.pyml

	open PoPy script in editor



	popy_doc

	popy_doc

	open PoPy documentation in browser



	popy_view

	popy_view my_script.pyml.html

	open PoPy html output in browser



	popy_info

	popy_info

	display PoPy install details



	popy_validate

	popy_validate

	run validation



	popy_activate

	popy_activate XXXX

	Activate PoPy using a product key



	popy_deactivate

	popy_deactivate

	Deactivate PoPy a product key



	popy_imconv

	popy_imconv *.svg png

	convert images using Inkscape













          

      

      

    

  

    
      
          
            
  
popy_env

For all the Command Line Tools to work, we must first update the internal paths on your computer and set some environment variables. To do this, we provide a popy_env tool that you run from a command prompt (or Powershell):-

$ popy_env





If the command is successful, the text in the command prompt should change from white to light blue (if in a dos prompt).

You can achieve the same thing by opening the Open a PoPy Command Prompt from your desktop or the Start Menu - the shortcut starts a new DOS prompt then automatically calls ‘popy_env’.

The settings initialised by popy_env are summarised by the popy_info tool.





          

      

      

    

  

    
      
          
            
  
popy_run

The most important command in the suite of Command Line Tools is popy_run. To run a PoPy script Open a PoPy Command Prompt and type:-

$ popy_run my_script.pyml





What happens with the script depends on its type. There are many script formats:-


	fit - Fit a model to data


	gen - Generate data from a model


	sim - Simulate PK/PD curves


	tut - gen data and fit and compare the results


	comp - Compare gen and fit results


	mfit - Fit a model to multiple data sets


	mgen - Generate multiple data from a model


	msim - Simulate multiple PK/PD curves


	mtut - mgen multiple data and mfit and compare


	mcomp - Compare mgen and mfit results


	grph - Plot graphs


	vpc - Plot VPCs


	fitsum - HTML summary of fit results


	gensum - HTML summary of gen results


	tutsum - HTML summary of tut results


	n2pdat - converts Nonmem to PoPy data


	p2ndat - converts PoPy to Nonmem data




See Script File Formats for more information.

When popy_run processes a script file, it creates a log file:-

my_script.pyml.run.main.log





as a record of the output. If a runtime error occurs during processing, a stack trace is sent to:-

my_script.pyml.run.error.log





as a record of what went wrong.


Command line options

usage: popy_run [-h] [-a] [-c] [-f] [-i] [-l] [-m] [-o] [-r] [-s] [-t]
                [-v {noset,info,debug,warning,error,critical}]
                input_file

Runs a PoPy script

positional arguments:
  input_file            Required path to input configuration file.

optional arguments:
  -h, --help            show this help message and exit
  -a, --all_config      Optionally output all possible config file entries in
                        output script files. If set to false, the default
                        entries with default values are suppressed for the
                        sake of brevity.
  -c, --comment_scripts
                        Optionally add explanatory comments to all entries in
                        output script files.
  -f, --format_on_fly   Optionally attempt to format the input config file
                        during run. And switch to the new formatted verison of
                        the file. Note this re-formatting is only useful if
                        the input config is a valid version of an older PoPy
                        format.
  -i, --i_am_feeling_lucky
                        Optionally do NOT run the PoPy script checking i.e
                        silence the warnings and errors output at the start
                        this option is not recommended, but you can use if you
                        do not believe the warnings/errors and want to run
                        your script regardless.
  -l, --line_breaks     Optionally enforce line breaks in the config file.
                        This increases the length of files, but may improve
                        clarity. If set to False, short dictionary lines are
                        compacted instead using {} notation.
  -m, --manual_mode     Optionally do NOT run output scripts automatically,
                        even if 'output_mode: gen_script_and_run' set in
                        config file. Effectively uses 'output_mode:
                        gen_script_only' instead. Then user has to run output
                        scripts manually.
  -o, --overwrite       Optionally overwrite existing output files without
                        asking.
  -r, --replicate_scripts
                        Optionally replicate input config files in log files.
  -s, --spaces          Optionally add more spaces to the output config file
                        for greater clarity, but longer config files. Off by
                        default.
  -t, --timestamp       Optionally included timestamp string in log file name
                        and output folder name.
  -v {noset,info,debug,warning,error,critical}, --verbosity {noset,info,debug,warning,error,critical}
                        verbosity of output in log file











          

      

      

    

  

    
      
          
            
  
popy_check

When developing a PoPy script file it is sometimes useful to sanity check the input and automatically detect common errors.

Note this checking process also happens when using popy_run, however the popy_check enables you to check before you are ready to run a script.

Check a script by opening a Open a PoPy Command Prompt and typing:-

$ popy_check my_script.pyml





this will output the results of the check to the terminal and also to a log file called:-

my_script.pyml.check.log





Hopefully the various error and warning messages will enable you to more easily edit and fix a broken script file.


Command line options

usage: popy_check [-h] [-o] input_file

Checks PoPy script for consistency and returns errors + warnings. Can use
optionally prior to running script.

positional arguments:
  input_file       Required path to input configuration file.

optional arguments:
  -h, --help       show this help message and exit
  -o, --overwrite  Optionally overwrite existing output files without asking.











          

      

      

    

  

    
      
          
            
  
popy_create

To help you get started with a new script, we provide a tool called popy_create that generates an example of one of the Script File Formats. You do this by opening a Open a PoPy Command Prompt and typing:-

$ popy_create [script_type] my_script.pyml





where [script_type] is one of the script names (“fit”, “gen”, “tut”, and so on.). See Script File Formats for a list of all script types.

Typically, the new script can then be edited using popy_edit to suit current requirements or immediately run using popy_run. See Creating Example Scripts for more information.


Command line options

usage: popy_create [-h] [-a] [-c] [-l] [-o] [-s]
                   [-v {noset,info,debug,warning,error,critical}]
                   {fit,fitsum,gen,gensum,grph,n2pdat,p2ndat,msim,rst,sim,sumdoc,tut,tutsum,val,vpc,mfit,mgen,mtut,mcomp}
                   output_file

Creates an example PoPy script

positional arguments:
  {fit,fitsum,gen,gensum,grph,n2pdat,p2ndat,msim,rst,sim,sumdoc,tut,tutsum,val,vpc,mfit,mgen,mtut,mcomp}
                        type of script to create
  output_file           path to output configuration file

optional arguments:
  -h, --help            show this help message and exit
  -a, --all_config      Optionally output all possible config file entries in
                        output script files. If set to false, the default
                        entries with default values are suppressed for the
                        sake of brevity.
  -c, --comment_scripts
                        Optionally add explanatory comments to all entries in
                        output script files.
  -l, --line_breaks     Optionally enforce line breaks in the config file.
                        This increases the length of files, but may improve
                        clarity. If set to False, short dictionary lines are
                        compacted instead using {} notation.
  -o, --overwrite       Optionally overwrite existing output files without
                        asking.
  -s, --spaces          Optionally add more spaces to the output config file
                        for greater clarity, but longer config files. Off by
                        default.
  -v {noset,info,debug,warning,error,critical}, --verbosity {noset,info,debug,warning,error,critical}
                        verbosity of output in log file











          

      

      

    

  

    
      
          
            
  
popy_format

Occasionally, we make changes to the Script File Formats that render old script files defunct. So that you do not need to rewrite all of your old script files, we provide a tool called popy_format that reads in the old-style script file and outputs it with the new format.

Do this by opening a Open a PoPy Command Prompt and typing:-

$ popy_format my_script.pyml





which will output a new version of my_script.pyml called:-

my_script_formatted.pyml





The output of popy_format may need to be manually edited to obtain desired results (e.g. to change from the default value for newly added options).

As usual, a log file will be created to document the formatting process.


Command line options

usage: popy_format [-h]
                   [-f {no_change,fit,fitsum,gen,gensum,grph,n2pdat,p2ndat,msim,rst,sim,sumdoc,tut,tutsum,val,vpc,mfit,mgen,mtut,mcomp}]
                   [-a] [-c] [-l] [-o] [-s]
                   [-v {noset,info,debug,warning,error,critical}]
                   input_file

Tries to reformat an old version of a PoPy script

positional arguments:
  input_file            Required path to input configuration file.

optional arguments:
  -h, --help            show this help message and exit
  -f {no_change,fit,fitsum,gen,gensum,grph,n2pdat,p2ndat,msim,rst,sim,sumdoc,tut,tutsum,val,vpc,mfit,mgen,mtut,mcomp}, --force_type {no_change,fit,fitsum,gen,gensum,grph,n2pdat,p2ndat,msim,rst,sim,sumdoc,tut,tutsum,val,vpc,mfit,mgen,mtut,mcomp}
                        Optionally force the input config file to be a certain
                        type of script, by default no change.
  -a, --all_config      Optionally output all possible config file entries in
                        output script files. If set to false, the default
                        entries with default values are suppressed for the
                        sake of brevity.
  -c, --comment_scripts
                        Optionally add explanatory comments to all entries in
                        output script files.
  -l, --line_breaks     Optionally enforce line breaks in the config file.
                        This increases the length of files, but may improve
                        clarity. If set to False, short dictionary lines are
                        compacted instead using {} notation.
  -o, --overwrite       Optionally overwrite existing output files without
                        asking.
  -s, --spaces          Optionally add more spaces to the output config file
                        for greater clarity, but longer config files. Off by
                        default.
  -v {noset,info,debug,warning,error,critical}, --verbosity {noset,info,debug,warning,error,critical}
                        verbosity of output in log file











          

      

      

    

  

    
      
          
            
  
popy_edit

To edit a script in a text editor, Open a PoPy Command Prompt and call:-

$ popy_edit my_script.pyml





The editor invoked by popy_edit is defined in the PoPy Config File file. Also see Configure Editor.


Examples

You can open a script using:-

$ popy_edit my_script.pyml





By default this uses the entry text_editor_path in this file:-

c:\PoPy\popy_config.pyml





If the default editor does not exist then the chosen editor is the first binary found in this list:-


	C:\Program Files\Notepad++\notepad++.exe


	C:\Program Files (x86)\Notepad++\notepad++.exe


	C:\Windows\notepad.exe







Command line options

usage: popy_edit [-h] input_file

Opens a PoPy .pyml script file with an appropriate editor. By default uses
editor specified in $POPY_PYTHON_PATH\popy_config.pyml. Alternatively will
look in the following paths:- C:\Program
Files\Notepad++\notepad++.exe,C:\Program Files
(x86)\Notepad++\notepad++.exe,C:\Windows\notepad.exe

positional arguments:
  input_file  Required path to input configuration file.

optional arguments:
  -h, --help  show this help message and exit











          

      

      

    

  

    
      
          
            
  
popy_doc

For convenient access to PoPy’s documentation, Open a PoPy Command Prompt and type:-

$ popy_doc





This opens the The PoPy Manual HTML documentation page.


Examples

You can access the online documentation as follows (default is locally installed .html files):-

$ popy_doc -o





Alternatively you can open documentation for a specific tool (e.g., popy_run) with the -t or –tool option:-

$ popy_doc --tool run





You can also open documentation for specific Script File Formats (e.g., a Fit Script) with the -s or –script option:-

$ popy_doc --script fit








Command line options

usage: popy_doc [-h] [-o]
                [-s {none,fit,fitsum,gen,gensum,grph,n2pdat,p2ndat,msim,rst,sim,sumdoc,tut,tutsum,val,vpc,mfit,mgen,mtut,mcomp}]
                [-t {none,activate,create,check,deactivate,doc,edit,env,fix,info,run}]

Opens PoPy html documentation in web browser.

optional arguments:
  -h, --help            show this help message and exit
  -o, --online          Optionally access online documentation instead of
                        local.
  -s {none,fit,fitsum,gen,gensum,grph,n2pdat,p2ndat,msim,rst,sim,sumdoc,tut,tutsum,val,vpc,mfit,mgen,mtut,mcomp}, --script {none,fit,fitsum,gen,gensum,grph,n2pdat,p2ndat,msim,rst,sim,sumdoc,tut,tutsum,val,vpc,mfit,mgen,mtut,mcomp}
                        Optionally open documentation for a specific script
                        type.
  -t {none,activate,create,check,deactivate,doc,edit,env,fix,info,run}, --tool {none,activate,create,check,deactivate,doc,edit,env,fix,info,run}
                        Optionally open documentation for a specific PoPy tool











          

      

      

    

  

    
      
          
            
  
popy_view

For convenient access to PoPy’s html output, Open a PoPy Command Prompt and type:-

$ popy_view my_tut.pyml.html





This opens a html page in your browser.

It is a fast way of viewing local .html files output by PoPy.


Examples

You can use the * symbol to display a html file too:-

$ popy_view *.html





Here the first HTML file that is found in local directory opens in your default browser.




Command line options

usage: popy_view [-h] url

Opens local PoPy html summary output in web browser.

positional arguments:
  url         Url path, you can use *.html.

optional arguments:
  -h, --help  show this help message and exit











          

      

      

    

  

    
      
          
            
  
popy_info

A handy tool, popy_info, displays information about the installation so that you can check at a glance that the installation worked.

Open a PoPy Command Prompt and type:-

$ popy_info





and you should see something like this:-

INFO - In a PoPy Binary environment
INFO - popy_flavour=binary
INFO - popy_python_path=C:\PoPy\
INFO - popy_release=1.0.0
INFO - popy_version=academic
INFO - python_version=3.5.1
INFO - windows_version=('10', '10.0.17134', 'SP0', 'Multiprocessor Free')
INFO - machine_name=saruman
INFO - product_key=XXXX-XXXX-XXXX-XXXX-XXXX-XXXX-XXXX
status=Product key is activated and within licence period
Licence has been running for 3613 days
Licence needs renewing in 1868 days
INFO - name=David Cristinacce
INFO - email=david@popypkpd.com
INFO - company=Wright Dose Ltd
INFO - licence_start_date=2009-02-12 00:00:00
INFO - licence_end_date=2024-02-16 00:00:00
INFO - should_run=True





The exact details will depend on where you installed PoPy and the PoPy Activation status of PoPy on your machine.





          

      

      

    

  

    
      
          
            
  
popy_validate

A tool to Validate PoPy. To run popy_validate, Open a PoPy Command Prompt and type:-

$ popy_validate





See Validate PoPy for more information.





          

      

      

    

  

    
      
          
            
  
popy_activate

A tool to Activate PoPy. To run popy_activate, Open a PoPy Command Prompt and type:-

$ popy_activate [product key]





where [product key] is the product key supplied by Wright Dose Ltd.

See Activate PoPy for more information.


Command line options

usage: popy_activate [-h] product_key

Activates a PoPy install using a product key.

positional arguments:
  product_key  A bare product key, cut and paste to the command line.

optional arguments:
  -h, --help   show this help message and exit











          

      

      

    

  

    
      
          
            
  
popy_deactivate

A tool to Deactivate PoPy. To run popy_deactivate, Open a PoPy Command Prompt and type:-

$ popy_deactivate





See Deactivate PoPy for more information.





          

      

      

    

  

    
      
          
            
  
popy_imconv

A convenient multi-image conversion tool. Open a PoPy Command Prompt and type:-

$ popy_imconv *.svg png





This relies on Inkscape to convert all images on disk matching the pattern *.svg to .png format.

A .png file is created for each .svg file in the folder.

Note to get this working correctly you need Inkscape installed and configured on your machine.


Examples

You can convert to many output formats using Inkscape:-

$ popy_imconv *.svg jpg





You can also just convert a single image:-

$ popy_imconv graph.svg tiff








Command line options

usage: popy_imconv [-h] input_images {png,jpg,emf,svg,pdf,wmf,tiff}

Converts images using inkscape.

positional arguments:
  input_images          input images path, you can use *.svg.
  {png,jpg,emf,svg,pdf,wmf,tiff}
                        image output format

optional arguments:
  -h, --help            show this help message and exit











          

      

      

    

  

    
      
          
            
  
Script File Formats

The PoPy script formats are shown in Table 55:-


Table 55 Script Format






	Name

	Purpose

	Child Scripts





	fit

	Fit a model to data

	grph/sim/msim/fitsum



	gen

	Generate data from a model

	grph/sim/gensum



	sim

	Simulate PK/PD curves

	grph



	tut

	Gen data and fit + compare

	grph/fit/comp/tutsum



	comp

	Compare gen and fit results

	none



	mfit

	Fit a model to multiple data sets

	none



	mgen

	Generate multiple data from a model

	none



	msim

	Simulate multiple PK/PD curves

	vpc



	mtut

	Gen multiple data and fit + compare

	mgen/mfit/mcomp



	mcomp

	Compare mgen and mfit results

	none



	grph

	Plot graphs

	none



	vpc

	Plot VPCs

	none



	fitsum

	HTML summary of fit results

	none



	gensum

	HTML summary of gen results

	none



	tutsum

	HTML summary of tut results

	none



	n2pdat

	converts Nonmem to PoPy data

	none



	p2ndat

	converts PoPy to Nonmem data

	none






A PoPy script file is a text file that defines how PoPy works with a PK/PD model. Each configuration file typically has a ‘.pyml’ file extension. The file suffix .pyml stands for PoPy YAML format.

To run a PoPy command on a particular script, Open a PoPy Command Prompt in the directory containing the script file and type:-

$ popy_XXXX YYYY.pyml





Where XXXX is one of the Command Line Tools, such as ‘run’, ‘create’, ‘check’ or ‘format’. And YYYY.pyml is the file name of the script itself. For example:-

$ popy_run my_fit_file.pyml





for running a script to fit PK/PD parameters to a pre-existing data set, or:-

$ popy_create gen my_gen_file.pyml





for creating a new script file that will generate synthetic PK/PD data.

PoPy will first parse the script to check it is in the correct format. If so, PoPy will then process the script.

A PoPy script file can be one of multiple formats, as specified at the start of each script, in METHOD_OPTIONS. For example a Fit Script starts with:-

METHOD_OPTIONS: {py_module: fit}





And a Gen Script starts with:-

METHOD_OPTIONS: {py_module: gen}












          

      

      

    

  

    
      
          
            
  
Fit Script

The fit script is probably the script you will use most often, as it performs the most common form of PK/PD analysis - finding parameter estimates for a PK/PD model given a set of observations.

See Fitting a Simple PopPK Model using PoPy or Fitting a Two Compartment PopPK Model for walk through examples.


Main Sections of a Fit Script


	METHOD_OPTIONS


	DESCRIPTION


	FILE_PATHS


	DATA_FIELDS


	PREPROCESS


	LEVEL_PARAMS


	MODEL_PARAMS


	STATES


	DERIVATIVES


	PREDICTIONS


	ODE_SOLVER


	FIT_METHODS


	COVARIANCE


	OUTPUT_SCRIPTS










          

      

      

    

  

    
      
          
            
  
Gen Script

Generates example synthetic observations from a PopPK/PD model.

Note that running PoPy on a Gen Script creates similar outputs to running it on a Sim Script. However, a Gen Script also generates the time point and dose data to simulate the entire data file not just the observations.


Main Sections of a Gen Script


	METHOD_OPTIONS


	DESCRIPTION


	FILE_PATHS


	DATA_FIELDS


	LEVEL_PARAMS


	MODEL_PARAMS


	STATES


	DERIVATIVES


	PREDICTIONS


	ODE_SOLVER


	OUTPUT_SCRIPTS










          

      

      

    

  

    
      
          
            
  
Sim Script

Running PoPy on a Sim Script generates dense time point simulations of PK/PD curves given a PopPK/PD model and an input data set.


Main Sections of a Sim Script


	METHOD_OPTIONS


	DESCRIPTION


	FILE_PATHS


	DATA_FIELDS


	PREPROCESS


	STATES


	DERIVATIVES


	PREDICTIONS


	ODE_SOLVER


	OUTPUT_OPTIONS


	OUTPUT_SCRIPTS










          

      

      

    

  

    
      
          
            
  
Tut Script

This script performs data generation using a Gen Script, then fits the model using a Fit Script and compares the fitting parameters to the true parameters using a Comp Script.

See Generate data and Fit using Simple PopPK Model and Generate data and Fit using a Two Compartment Model for walk through examples.


Main Sections of a Tut Script


	METHOD_OPTIONS


	DESCRIPTION


	FILE_PATHS


	DATA_FIELDS


	LEVEL_PARAMS


	MODEL_PARAMS


	STATES


	DERIVATIVES


	PREDICTIONS


	ODE_SOLVER


	FIT_METHODS


	COVARIANCE


	OUTPUT_SCRIPTS










          

      

      

    

  

    
      
          
            
  
Comp Script

A comp script compares the outputs of a Gen Script and a Fit Script. Usually a Comp Script is created automatically using a Tut Script.





          

      

      

    

  

    
      
          
            
  
MFit Script

Fits a PK/PD model to multiple data sets. A multi population version of Fit Script.

A MFit Script can be created by a MTut Script in a similar fashion to how a Fit Script can be created by a Tut Script.


Main Sections of a MFit Script


	METHOD_OPTIONS


	DESCRIPTION


	FILE_PATHS


	DATA_FIELDS


	PREPROCESS


	LEVEL_PARAMS


	MODEL_PARAMS


	STATES


	DERIVATIVES


	PREDICTIONS


	ODE_SOLVER


	FIT_METHODS










          

      

      

    

  

    
      
          
            
  
MGen Script

Simulates multiple datasets from a PopPK/PD model. A multi population version of Gen Script.

Note that running PoPy on a MGen Script creates similar outputs to running it on a MSim Script. However, a MGen Script also generates new time points and dose data for each data set.

A MGen Script can be created by a MTut Script in a similar fashion to how a Gen Script can be created by a Tut Script.


Main Sections of a MGen Script


	METHOD_OPTIONS


	DESCRIPTION


	FILE_PATHS


	DATA_FIELDS


	LEVEL_PARAMS


	MODEL_PARAMS


	STATES


	DERIVATIVES


	PREDICTIONS


	ODE_SOLVER


	OUTPUT_OPTIONS










          

      

      

    

  

    
      
          
            
  
MSim Script

Generates multiple simulations of PK/PD curves from given a PopPK/PD model and an input data set.

An MSim Script often outputs a Vpc Script, which generates a VPC plot from the multiple population simulations.

See Visual Predictive Check for Two Compartment PopPK Model for a working example.


Main Sections of a MSim Script


	METHOD_OPTIONS


	DESCRIPTION


	FILE_PATHS


	DATA_FIELDS


	PREPROCESS


	LEVEL_PARAMS


	MODEL_PARAMS


	STATES


	DERIVATIVES


	PREDICTIONS


	ODE_SOLVER


	OUTPUT_OPTIONS


	OUTPUT_SCRIPTS










          

      

      

    

  

    
      
          
            
  
MTut Script

Generates multiple synthetic populations sets from a PK/PD model, then fits the same model to each population. A multi population version of Tut Script.

Generates a MGen Script and a MFit Script. Also creates a MComp Script to compare the true parameters from the synthetic populations with the fitted parameters.

See Generate multiple data sets and Fit using Simple PopPK Model and Generate multiple data sets and Fit using a Two Compartment Model for walk through examples.


Main Sections of a MTut Script


	METHOD_OPTIONS


	DESCRIPTION


	FILE_PATHS


	DATA_FIELDS


	LEVEL_PARAMS


	MODEL_PARAMS


	STATES


	DERIVATIVES


	PREDICTIONS


	ODE_SOLVER


	FIT_METHODS


	OUTPUT_OPTIONS


	OUTPUT_SCRIPTS










          

      

      

    

  

    
      
          
            
  
MComp Script

A MComp Script compares the outputs of a MGen Script with a MFit Script. Usually a MComp Script is created automatically using a MTut Script.

A MComp Script is a multiple population version of a Comp Script.





          

      

      

    

  

    
      
          
            
  
Grph Script

Outputs basic plots given input data sets and fitting results.





          

      

      

    

  

    
      
          
            
  
Vpc Script

Creates VPC plots. The visual predictive check is designed to plot a population of PK/PD curves on one graph.

A Vpc Script is usually created as a child script of a MSim Script.

See Visual Predictive Check for Simple PopPK Model and Visual Predictive Check for Two Compartment PopPK Model for working examples.





          

      

      

    

  

    
      
          
            
  
FitSum Script

A FitSum Script generates a HTML report on the results of a Fit Script.





          

      

      

    

  

    
      
          
            
  
GenSum Script

A GenSum Script generates a HTML report on the results of a Gen Script.





          

      

      

    

  

    
      
          
            
  
TutSum Script

A TutSum Script generates a HTML report on the results of a Tut Script.





          

      

      

    

  

    
      
          
            
  
N2PDat Script

Converts a data set in Nonmem format to PoPy format. See Nonmem to PoPy Data conversions using P2NDAT and N2PDAT Scripts for a walk through example.





          

      

      

    

  

    
      
          
            
  
P2NDat Script

Converts a data set in PoPy format to Nonmem format. See Nonmem to PoPy Data conversions using P2NDAT and N2PDAT Scripts for a walk through example.





          

      

      

    

  

    
      
          
            
  
Script File Sections

A PoPy script file is hierarchical and based on YAML.

The file is indented with the main sections defined at the start of a line. Subsections are indented within the main sections.

In Table 56 we list the main sections that are common to many Script File Formats.


Table 56 Common Script Sections





	Section

	Purpose





	METHOD_OPTIONS

	Script type and run options



	DESCRIPTION

	Title and summary of model



	FILE_PATHS

	Paths to load and output data



	DATA_FIELDS

	Define type/id/time fields for data



	PREPROCESS

	Filter or expand the input data



	LEVEL_PARAMS

	Define population f[X] and r[X] variable structure



	MODEL_PARAMS

	Define m[X] for each data row, given f[X], r[X] and c[X]



	STATES

	Define initial value s[X], given m[X] and c[X]



	DERIVATIVES

	Define d[X] wrt time, given m[X], c[X] and s[X]



	PREDICTIONS

	Define p[X] for each data row, given m[X], c[X] and s[X]



	ODE_SOLVER

	Define ordinary differential equation method and parameters



	FIT_METHODS

	Define fit methods and parameters



	COVARIANCE

	Define a method for computing standard errors



	OUTPUT_SCRIPTS

	Declare child scripts for post processing



	OUTPUT_OPTIONS

	Miscellaneous output parameters













          

      

      

    

  

    
      
          
            
  
METHOD_OPTIONS

This details the methods to be used in the script and is a required section.


Example METHOD_OPTIONS from a Fit Script

METHOD_OPTIONS:
    # Python module required to process this script file
    py_module: fit

    # Option to set seed to make run result
    # reproducible -e.g. when debugging.
    # rand_seed: 12345
    rand_seed: auto

    # Format string for numerical output
    # float_format: nonmem
    float_format: default








Main METHOD_OPTIONS Fields


py_module

When calling this script using popy_run, PoPy needs to know which type of script is being called. This is determined by the ‘py_module’ field.

In the example above a ‘fit’ script is specified. Other possible entries are ‘fit’, ‘tut’, ‘gen’, ‘mtut’ etc. See Script File Formats for more information.




rand_seed

There are two types of scripts run by PoPy:-


	Deterministic - given the same inputs the same outputs are always returned


	Stochastic -  given the same inputs the result are dependent on a random number generator




For example a Gen Script is inherently stochastic. Whereas a Fit Script using the ‘JOE’ fitting method is inherently deterministic.

When running a stochastic method you have two options, this setting:-

rand_seed: auto





Will ensure that the random number generator is seeded with a different random number, every time the script is run. This will generate different output each time. Alternatively you set the seed explicitly:-

rand_seed: 314159





This will initialise the pseudorandom number generator with the value ‘314159’, which will then generate the same output every time, given the same inputs. For more information on seeding and pseudorandom number generators, see Wikipedia page:-

http://en.wikipedia.org/wiki/Random_seed

Note if your script is deterministic then the ‘rand_seed’ setting will have no effect.




float_format

This field allows you to control how numbers output by PoPy are rendered as strings. If you leave this field out it defaults to:-

float_format: default





This has the effect of outputting float values to 5 significant figures. Table 57 shows both named float formats.


Table 57 float format options







	Entry

	Format String

	Example Input

	Example Output





	default

	.5G

	1.0123456

	‘1.0123’



	nonmem

	.2E

	1.0123456

	‘1.01E+00’






You can also specify your own custom format, e.g. ‘.3G’ for 3 significant figures in general format or ‘.4E’ for 4 significant figures in exponent format. Examples of different format strings on the Python command prompt are:-

>>> '{:.3G}'.format(1.0123456)
'1.01'
>>> '{:.4E}'.format(1.0123456)
'1.0123E+00'





You can experiment with your own formatting. See the rather esoteric instructions here:-

https://docs.python.org/3.4/library/string.html#format-specification-mini-language

Note that PoPy adds the prefix ‘{:’ and the suffix ‘}’ to your ‘float_format’ config file entry.









          

      

      

    

  

    
      
          
            
  
DESCRIPTION

This optional section is an opportunity to provide notes about the model. The script is given a (short) name and a (longer) title. The author of the model can be named and the abstract is used to describe the model. You can define keywords to aid future searches.


Example DESCRIPTION

DESCRIPTION:
    # Unique name used to distinguish script
    name: builtin_fit_example

    # A longer text string that could serve as a title
    title: First order absorption model with peripheral compartment

    # Author of the model
    author: J.R. Hartley

    # Abstract paragraph describing model
    abstract: |
        A two compartment PK model with bolus dose and
        first order absorption, similar to a Nonmem advan4trans4 model.

    # Keywords list used to categorise models.
    keywords: ['fitting', 'pk', 'advan4', 'dep_two_cmp', 'first order']








Main DESCRIPTION Fields


name

The optional name entry is used as an identifier for the script. It is also used to form the name of child scripts. For example when specifying the name:-

If you do not specify a name the field defaults to:-

name: builtin_fit_example





the child Sim Script will be named ‘builtin_fit_example_sim.pyml’ and the child FitSum Script will be named ‘builtin_fit_example_fitsum.pyml’ etc.. For this reason it’s a good idea to keep the name short and only use alpha numeric characters and underscores.

If you do not specify a name the field defaults to:-

name: example





For more info see Files Generated by Fit Script.




title

The title field is optional, but otherwise appears in the summary output and on graphical plots.




author

The author field is optional but allows you to store the name of the person who created the script.




abstract

The abstract field is optional, but allows a longer description of the purpose of the script.

This field is verbatim, so it is suffixed with a ‘|’ symbol. See:-

abstract: |
    A two compartment PK model with bolus dose and
    first order absorption, similar to a Nonmem advan4trans4 model.





The abstract is included in the summary output. It can contain any text you like. Note it is indented relative to the ‘abstract’ field name, like all verbatim sections.




keywords

The keywords field is optional and contains a list of strings, for example:-

keywords: ['fitting', 'pk', 'advan4', 'dep_two_cmp', 'first order']





Here the Python notation for a list is used, i.e. an opening square bracket ‘[‘ followed by comma separated strings and a closing square bracket ‘]’.

Note it’s intended that the keywords will eventually form part of a publicly available index of PoPy script files.









          

      

      

    

  

    
      
          
            
  
FILE_PATHS

This required field, defines where any input files can be found and where the results of the computation are to be stored.


Example from FILE_PATHS from a Fit Script

FILE_PATHS:
    # path to input comma separated value file in popy data format
    input_data_file: builtin_fit_example_data.csv

    # Output folder - results of computation stored here
    output_folder: auto

    # Temp folder - temporary files stored here
    temp_folder: auto

    # Output file extension - determines graphical output file format.
    output_file_ext: ['svg', 'pdf']

    # Solution containing f[X] values from a previous run.
    input_solution_file: none








Main FILE_PATH Fields


input_file

Required path to input a .csv file in popy data format:-

input_data_file: builtin_fit_example_data.csv





Note that this field is required and the .csv file must exist else PoPy will throw an error message.




output_folder

Optional field that specifies the output folder, where the results of computation are stored.

The default is:-

output_folder: auto





Using auto will specify an output folder based on the script name. E.g if your script is called ‘my_fit_script.pyml’, the output folder will be:-

my_fit_script.pyml.output





Using auto is safest, as then it is impossible to over-write the output from other scripts.




temp_folder

Optional field that specifies the temp folder, where temporary functions generated by PoPy are stored.

The default is:-

temp_folder: auto





The default folder name is ‘_temp’ within the output_folder. If you have a script named ‘my_fit_script.pyml’ and miss out the ‘output_folder’ and ‘temp_folder’ you will end up with temporary functions in this folder:-

my_fit_script.pyml.output
    /fit
        /_temp





Note the subfolders within ‘_temp’ have random names, this is to avoid re-using old temporary functions if the same script is run twice (and altered slightly).




output_file_ext

This is an optional list of file types to output when plotting. The default is:-

output_file_ext: ['svg']





This outputs plots in .svg format, which stands for scalable vector graphics, see:-

https://en.wikipedia.org/wiki/Scalable_Vector_Graphics

.svg is a good format because it can be displayed at any resolution without being pixelated. For example if you used .png or any other raster format.

The input is a Python list. This is to enable you to output plots in multiple formats. For example many of the documentation examples use the following:-

output_file_ext: ['svg', 'pdf']





To generate plots in .svg and also .pdf format. We do this with the documentation so that the HTML documentation can display .svg and the pdf version can use .pdf plots.




input_solution_file

This field is only available in the Fit Script. It is an optional link to a ‘solution.pyml’ file to initialise the f[X] starting values during a fit. The default is:-

input_solution_file: none





This does nothing and uses the f[X] starting values specified in the LEVEL_PARAMS section of the script.

If a solution file is specified, e.g.:-

input_solution_file: ./previous_fit_script.pyml_output/fit/solN/solution.pyml





Then the ‘solution.pyml’ file will be loaded, specifically the ‘fx_params.csv’ part of the solution.

FILE_PATHS:
    fx_params_path: fx_params.csv





The f[X] params are used as new starting values.

You can use the ‘input_solution_file’ to restart a Fit Script from a previous fitting script. This is useful if the previous script fails, for example if the machine is accidentally switched off or some other system failure.









          

      

      

    

  

    
      
          
            
  
DATA_FIELDS

An optional section where the names of the type_field, id_field and time_field can be redefined.


Example Data Fields

DATA_FIELDS:
    # Field name in data file that contains row type info, e.g. obs/dose etc
    type_field: TYPE

    # Field name in data file that contains identity string for each data row e.g. obs/dose etc
    id_field: ID

    # Field name in data file that contains time or event for each data row
    time_field: TIME








Main Fields


type_field

By default this field is:-

type_field: TYPE





This means the ‘TYPE’ field in data file specifies the type of row e.g. ‘dose’, ‘obs’, ‘reset’ etc.




id_field

By default this field is:-

id_field: ID





This means the ‘ID’ field in the data file specifies the identity of each subject in the population.




time_field

By default this field is:-

time_field: TIME





This means the ‘TIME’ field in data file specifies the time stamp of each observation, dose etc.









          

      

      

    

  

    
      
          
            
  
PREPROCESS

An optional verbatim section that creates extra c[X] variables after loading in a input data file and can also remove some rows from the data. A kind of flexible filter implemented in Python.

The PREPROCESS is available in the following scripts:-


	Fit Script


	Sim Script


	MFit Script


	MSim Script




i.e. where there is a data file loaded by the script.


Example PREPROCESS section

PREPROCESS: |
    # exclude negative concentrations
    if c[CONC] < 0.0: return
    # create new OCCASION variable
    if c[DAY] <= 3:
        c[OCCASION] = 1
    elif 3 < c[DAY] <= 6:
        c[OCCASION] = 2
    elif 6 < c[DAY] <= 8:
        c[OCCASION] = 3
    else:
        c[OCCASION] = 4





The example above shows the two operations a PREPROCESS section can perform, namely:-


	Exclude data rows


	Create extra c[X] data columns




The line:-

if c[CONC] < 0.0: return





Removes all rows from the data set with CONC less than zero. The null return is a PoPy convention for ignoring a particular row.

The other rows create a new c[OCCASION] variable, as follows:-

if c[DAY] <= 3:
    c[OCCASION] = 1
elif 3 < c[DAY] <= 6:
    c[OCCASION] = 2
elif 6 < c[DAY] <= 8:
    c[OCCASION] = 3
else:
    c[OCCASION] = 4





The simple Python assignment to c[OCCASION] creates the ‘OCCASION’ field. The if/elif/else statements are standard Python syntax and partition the data rows into occasions according to the existing c[DAY] data field.

Note that the remaining sections of the script file, e.g. LEVEL_PARAMS, DERIVATIVES etc are able to use the new c[OCCASION] variable as though it already existed in the data file.

The use of Python syntax here means the above can be expanded in arbitrary complex ways to add more c[X] variables or exclude other rows from the data set.

Note a common usage of the PREPROCESS section is to remove an individual from the analysis as follows:-

PREPROCESS: |
    # exclude an individual
    if c[ID] == '7': return





Or potentially multiple individuals:-

PREPROCESS: |
    # exclude multiple individuals
    if c[ID] in ['7','9','41']: return





Note here the ‘ID’ field is a Python string not a float or integer.




Rules for PREPROCESS section

Like all verbatim sections the PREPROCESS section of the config file accepts free form pseudo Python code, but there are some rules regarding which variables are allowed in a PREPROCESS section as follows:-


	Only c[X] variables and local Python variables are allowed


	c[X] on the right hand side and within if statements must be previously defined on the left hand side or in the data file


	c[X] declared on the left hand side must not already exist in the data file


	return must always be null




So you can not use m[X], f[X], r[X], d[X] etc variables in this section.

The PREPROCESS function is run once, shortly after loading in the data file, so it is efficient to create required c[X] variables in this section, as opposed to creating temporary variables in the MODEL_PARAMS or DERIVATIVES sections.

Like all verbatim sections it is possible to introduce syntax errors by writing malformed Python. This will hopefully be picked up when PoPy attempts to compile or run the PREPROCESS function as a temporary .py file.







          

      

      

    

  

    
      
          
            
  
LEVEL_PARAMS

A required verbatim section that defines fixed effects and random effects for use in mixed effects models. The LEVEL_PARAMS defines a level structure, which dictates the number of instances of the f[X] and r[X] effect variables.

For example, f[X] variables representing fixed effects are usually declared at the GLOBAL level, so there is only one value of each f[X]. Whereas r[X] variables representing random effects are usually declared at the INDIV level, so each individual has a sample from each random effect. It’s also possible to define further sub levels below the INDIV level, for example within individual occasions which have there own r[X] variables, see Inter-Occasion Variation (IOV).

The LEVEL_PARAMS section is required by the following scripts:-


	Tut Script


	Gen Script


	Fit Script


	MTut Script


	MGen Script


	MFit Script


	MSim Script




i.e. Any script that defines a mixed effect model.


LEVEL_PARAMS with two levels from a fit_script

The example below is used in Fitting a Two Compartment PopPK Model.

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[KA] ~ P1.0
            f[CL] ~ P1.0
            f[V1] ~ P20
            f[Q] ~ P0.5
            f[V2] ~ P100
            f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] ~ spd_matrix() [
                [0.05],
                [0.01, 0.05],
                [0.01, 0.01, 0.05],
                [0.01, 0.01, 0.01, 0.05],
                [0.01, 0.01, 0.01, 0.01, 0.05],
            ]
            f[PNOISE] ~ P0.1
        split_field: None
        split_dict: {}
    INDIV:
        params: |
            r[KA, CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])
        split_field: ID
        split_dict: "*"





The example above defines two levels:-


	GLOBAL - single value of each f[X] variable


	INDIV - one value per individual for each r[X] variable




This example defines 5 mean fixed effect parameters i.e. f[KA], f[CL], f[V1], f[Q], f[V2], a 5x5 covariance matrix f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv], a proportional noise variable f[PNOISE] and a 5 element vector r[KA, CL, V1, Q, V2] of random effects defined for each individual.

Note each level has the following (required) sections:-


	params - A verbatim section where f[X] and r[X] variables are declared


	split_field - The name of the variable used to partition the data


	split_dict - A Python dictionary specifying the partition of the data




Note the GLOBAL level has these null entries:-

GLOBAL:
    split_field: None
    split_dict: {}





Here the ‘split_field’ is null, so the GLOBAL level is not partitioned. Every variable declared at the GLOBAL level has one shared value over the whole population.

The INDIV level has the following entries:-

INDIV:
    split_field: ID
    split_dict: "*"





This means that the INDIV level is split using the ‘ID’ field. The “*” indicates that a partition is created for every distinct value of the ‘ID’ field present in the data file. This is similar to the factor concept in R. The structure of the mixed effects is a tree, see Fig. 48.


[image: ../../_images/two_level_tree.svg]Fig. 48 LEVEL_PARAMS structure with two levels



Here the number of r[X] values is dependent on the number of individuals in the data file.




LEVEL_PARAMS with three levels from a fit_script

It is possible to add a further level as follows:-

LEVEL_PARAMS:
    GLOBAL:
        params: |
            f[KA] ~ P1.0
            f[CL] ~ P1.0
            f[V1] ~ P20
            f[Q] ~ P0.5
            f[V2] ~ P100
            f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] ~ spd_matrix() [
                [0.05],
                [0.01, 0.05],
                [0.01, 0.01, 0.05],
                [0.01, 0.01, 0.01, 0.05],
                [0.01, 0.01, 0.01, 0.01, 0.05],
            ]
            f[KA_iov,CL_iov,V1_iov,Q_iov,V2_iov] ~ spd_matrix() [
                [0.05],
                [0.01, 0.05],
                [0.01, 0.01, 0.05],
                [0.01, 0.01, 0.01, 0.05],
                [0.01, 0.01, 0.01, 0.01, 0.05],
            ]
            f[PNOISE] ~ P0.1
        split_field: None
        split_dict: {}
    INDIV:
        params: |
            r[KA, CL, V1, Q, V2] ~ mnorm(
                [0,0,0,0,0], 
                f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv]
            )
        split_field: ID
        split_dict: "*"
    IOV:
        params: |
            r[KA_iov, CL_iov, V1_iov, Q_iov, V2_iov] ~ mnorm( 
                [0,0,0,0,0], 
                f[KA_iov, CL_iov, V2_iov, Q_iov, V3_iov] 
            )
        split_field: OC
        split_dict: "*"





The example above defines three levels:-


	GLOBAL - single value of each f[X] variable


	INDIV - one value per individual for each r[X] variable


	IOV - one value per iov per individual for each r[X] variable




The IOV level creates an extra level of r[KA_iov, CL_iov, V1_iov, Q_iov, V2_iov] variables. If there are say 2 different values of c[OC] in the data file (i.e. two occasions) then each individual has a 5 element vector r[KA, CL, V1, Q, V2] at the INDIV level and additionally two 5 element vectors r[KA_iov, CL_iov, V1_iov, Q_iov, V2_iov] (one for each occasion) at the IOV level.

The structure of the mixed effects is now as show in Fig. 49.


[image: ../../_images/three_level_tree.svg]Fig. 49 LEVEL_PARAMS structure with three levels



For more information on this topic see Inter-Occasion Variation (IOV).




LEVEL_PARAMS with two levels from a gen_script

The example below is used in Generate a Two Compartment PopPK Data Set.

LEVEL_PARAMS:
    GLOBAL:
        params: |
            c[AMT] = 100.0
            f[KA] = 0.2
            f[CL] = 2.0
            f[V1] = 50
            f[Q] = 1.0
            f[V2] = 80
            f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
                [0.1],
                [0.01, 0.03],
                [0.01, -0.01, 0.09],
                [0.01, 0.02, 0.01, 0.07],
                [0.01, 0.02, 0.01, 0.01, 0.05],
            ]
            f[PNOISE] = 0.15
        split_field: None
        split_dict: {}
    INDIV:
        params: |
            c[ID] = sequential(50)
            t[DOSE] = 2.0
            t[OBS] ~ unif(1.0, 50.0; 5)
            # t[OBS] = range(1.0, 50.0; 5)
            r[KA, CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])
        split_field: ID
        split_dict: "*"





The example above defines two levels and is similar to the LEVEL_PARAMS with two levels from a fit_script section. The Fit Script defines f[X] and r[X] variables. Additionally this Gen Script version defines c[X] variables and additionally t[DOSE] and t[OBS] variables that define the dosing and observation rows of the generated data file.

In the GLOBAL section:-

GLOBAL:
   params: |
        c[AMT] = 100.0





This syntax creates a c[AMT] field in the data file which is constant over all rows. In the INDIV section:-

INDIV:
    params: |
        c[ID] = sequential(50)





This syntax creates a c[ID] field in the data file which has values of [1,50]. i.e. 50 individuals. Also in the INDIV sections these t[X] variables are declared:-

INDIV:
    params: |
        t[DOSE] = 2.0
        t[OBS] ~ unif(1.0, 50.0; 5)





The t[DOSE] creates a dose row at time 2.0 for all individuals. The t[OBS] line creates 5 observation rows at random time points in the range [1,50.0].




LEVEL_PARAMS with three levels from a gen_script

It is possible to add a further level to the Gen Script LEVEL_PARAMS as follows:-

LEVEL_PARAMS:
    GLOBAL:
        params: |
            c[AMT] = 100.0
            f[KA] = 0.2
            f[CL] = 2.0
            f[V1] = 50
            f[Q] = 1.0
            f[V2] = 80
            f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
                [0.1],
                [0.01, 0.03],
                [0.01, -0.01, 0.09],
                [0.01, 0.02, 0.01, 0.07],
                [0.01, 0.02, 0.01, 0.01, 0.05],
            ]
            f[KA_iov,CL_iov,V1_iov,Q_iov,V2_iov] = [
                [0.1],
                [0.01, 0.03],
                [0.01, -0.01, 0.09],
                [0.01, 0.02, 0.01, 0.07],
                [0.01, 0.02, 0.01, 0.01, 0.05],
            ]
            f[PNOISE] = 0.15
        split_field: None
        split_dict: {}
    INDIV:
        params: |
            c[ID] = sequential(50)
            r[KA, CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])
        split_field: ID
        split_dict: "*"
    IOV:
        params: |
            c[OC] = sequential(2)
            t[DOSE] = 2.0
            t[OBS] ~ unif(1.0, 50.0; 5)
            # t[OBS] = range(1.0, 50.0; 5)
            r[KA_iov, CL_iov, V1_iov, Q_iov, V2_iov] ~ mnorm( 
                [0,0,0,0,0], 
                f[KA_iov, CL_iov, V2_iov, Q_iov, V3_iov] 
            )
        split_field: OC
        split_dict: "*"





The obvious difference between LEVEL_PARAMS with two levels from a gen_script and the three level version above is the addition of the third section:-

IOV:
    params: |
        c[OC] = sequential(2)
        t[DOSE] = 2.0
        t[OBS] ~ unif(1.0, 50.0; 5)
        # t[OBS] = range(1.0, 50.0; 5)
        r[KA_iov, CL_iov, V1_iov, Q_iov, V2_iov] ~ mnorm(
            [0,0,0,0,0],
            f[KA_iov, CL_iov, V2_iov, Q_iov, V3_iov]
        )
    split_field: OC
    split_dict: "*"





This denotes an IOV level with two occasions for each individual. Note that this line creates two occasions:-

IOV:
    params: |
        c[OC] = sequential(2)





i.e. rows with c[OC] taking the values [1,2] are created. Within each occasion the t[DOSE] and t[OBS] create a dosing row and 5 observation rows. Note it is necessary to move the t[X] variables from the INDIV level to the IOV level. In a Gen Script it usually makes sense to place the t[X] variables at the lowest level.




LEVEL_PARAMS with two levels from a tut_script

The example below is used in Generate data and Fit using a Two Compartment Model.

LEVEL_PARAMS:
    GLOBAL:
        split_field: None
        split_dict: {}
        gen_params: |
            c[AMT] = 100.0
            f[KA] = 0.2
            f[CL] = 2.0
            f[V1] = 50
            f[Q] = 1.0
            f[V2] = 80
            f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
                [0.1],
                [0.01, 0.03],
                [0.01, -0.01, 0.09],
                [0.01, 0.02, 0.01, 0.07],
                [0.01, 0.02, 0.01, 0.01, 0.05],
            ]
            f[PNOISE] = 0.15
        fit_params: |
            f[KA] ~ P1.0
            f[CL] ~ P1.0
            f[V1] ~ P20
            f[Q] ~ P0.5
            f[V2] ~ P100
            f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] ~ spd_matrix() [
                [0.05],
                [0.01, 0.05],
                [0.01, 0.01, 0.05],
                [0.01, 0.01, 0.01, 0.05],
                [0.01, 0.01, 0.01, 0.01, 0.05],
            ]
            f[PNOISE] ~ P0.1
    INDIV:
        split_field: ID
        split_dict: "*"
        gen_params: |
            c[ID] = sequential(50)
            t[DOSE] = 2.0
            t[OBS] ~ unif(1.0, 50.0; 5)
            # t[OBS] = range(1.0, 50.0; 5)
            r[KA, CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])
        fit_params: |
            r[KA, CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])





The Tut Script combines the Gen Script and Fit Script levels. It does this by each level having the following (required) sections:-


	gen_params - A verbatim section where f[X], r[X], t[X] and c[X] variables are declared for the child Gen Script


	fit_params - A verbatim section where f[X] and r[X] variables are declared for the child Fit Script


	split_field - The name of the variable used to partition the data


	split_dict - A dictionary specifying the partition of the data







LEVEL_PARAMS with three levels from a tut_script

It is possible to add the third level to a Tut Script as follows:-

LEVEL_PARAMS:
    GLOBAL:
        split_field: None
        split_dict: {}
        gen_params: |
            c[AMT] = 100.0
            f[KA] = 0.2
            f[CL] = 2.0
            f[V1] = 50
            f[Q] = 1.0
            f[V2] = 80
            f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
                [0.1],
                [0.01, 0.03],
                [0.01, -0.01, 0.09],
                [0.01, 0.02, 0.01, 0.07],
                [0.01, 0.02, 0.01, 0.01, 0.05],
            ]
            f[KA_iov,CL_iov,V1_iov,Q_iov,V2_iov] = [
                [0.1],
                [0.01, 0.03],
                [0.01, -0.01, 0.09],
                [0.01, 0.02, 0.01, 0.07],
                [0.01, 0.02, 0.01, 0.01, 0.05],
            ]
            f[PNOISE] = 0.15
        fit_params: |
            f[KA] ~ P1.0
            f[CL] ~ P1.0
            f[V1] ~ P20
            f[Q] ~ P0.5
            f[V2] ~ P100
            f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] ~ spd_matrix() [
                [0.05],
                [0.01, 0.05],
                [0.01, 0.01, 0.05],
                [0.01, 0.01, 0.01, 0.05],
                [0.01, 0.01, 0.01, 0.01, 0.05],
            ]
            f[KA_iov,CL_iov,V1_iov,Q_iov,V2_iov] ~ spd_matrix() [
                [0.05],
                [0.01, 0.05],
                [0.01, 0.01, 0.05],
                [0.01, 0.01, 0.01, 0.05],
                [0.01, 0.01, 0.01, 0.01, 0.05],
            ]
            f[PNOISE] ~ P0.1
    INDIV:
        split_field: ID
        split_dict: "*"
        gen_params: |
            c[ID] = sequential(50)
            r[KA, CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])
        fit_params: |
            r[KA, CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])
    IOV:
        gen_params: |
            c[OC] = sequential(2)
            t[DOSE] = 2.0
            t[OBS] ~ unif(1.0, 50.0; 5)
            # t[OBS] = range(1.0, 50.0; 5)
            r[KA_iov, CL_iov, V1_iov, Q_iov, V2_iov] ~ mnorm( 
                [0,0,0,0,0], 
                f[KA_iov, CL_iov, V2_iov, Q_iov, V3_iov] 
            )
        fit_params: |
            r[KA_iov, CL_iov, V1_iov, Q_iov, V2_iov] ~ mnorm( 
                [0,0,0,0,0], 
                f[KA_iov, CL_iov, V2_iov, Q_iov, V3_iov] 
            )
        split_field: OC
        split_dict: "*"





This is similar to the LEVEL_PARAMS with three levels from a fit_script and LEVEL_PARAMS with three levels from a gen_script examples. The Tut Script incorporates the Gen Script ‘params’ into ‘gen_params’ and the Fit Script ‘params’ into ‘fit_params, over all three levels.




Rules for LEVEL_PARAMS->params section

Each individual level of the LEVEL_PARAMS includes a verbatim section called ‘params’, as follows:-

LEVEL_PARAMS:
    <level_name>:
        params: |





However the ‘params’ section is limited in what expressions it can accept. For example it is not pseudo Python code, unlike the PREPROCESS, MODEL_PARAMS or DERIVATIVES sections, which act more like Python functions.

Generally only declarative expressions of the type:-

x[VAR] = <some definition>





Or

x[VAR] ~ <some definition>





Are allowed. You cannot use if statements for example. And all ‘params’ sections are declarative and unordered. i.e. the order of the statements in a single ‘params’ section makes no difference to the mixed effect model.

The variables you are allowed to declare on the left hand side depends on which type of script you are running:-


	In a Fit Script you are allowed to declare f[X] and r[X] only.


	In a Gen Script you are allowed to declare f[X], r[X], c[X] and t[X]


	All variables must have a unique name, i.e. no duplicate c[X] or f[X] or r[X]


	If a variable is on the right hand side of an expression it must be defined in a level above the current level




You can not use m[X], d[X], p[X] etc variables in LEVEL_PARAMS.

Like all verbatim sections it is possible to introduce syntax errors by writing malformed code in LEVEL_PARAMS. Any errors will be brought to the users attention when PoPy attempts to interpret the ‘params’ sections and form a tree structure to manage the fixed effect and random effect variables.







          

      

      

    

  

    
      
          
            
  
MODEL_PARAMS

A required verbatim section that creates m[X] variables for each row of the data set. Taking the previously defined f[X], r[X] and c[X] as input.

The MODEL_PARAMS section is used in the following scripts:-


	Tut Script


	Gen Script


	Fit Script


	MTut Script


	MGen Script


	MFit Script


	MSim Script




i.e. Any script that defines a mixed effect model.


Example MODEL_PARAMS section

The example below is used in Fitting a Two Compartment PopPK Model.

MODEL_PARAMS: |
    m[KA] = f[KA] * exp(r[KA])
    m[CL] = f[CL] * exp(r[CL])
    m[V1] = f[V1] * exp(r[V1])
    m[Q] = f[Q] * exp(r[Q])
    m[V2] = f[V2] * exp(r[V2])
    m[ANOISE] = 0.001
    m[PNOISE] = f[PNOISE]





In the example above the main parameters are defined with the following structure:-

MODEL_PARAMS: |
    m[X] = f[X] * exp(r[X])





This form ensures that the m[X] have a log normal distribution and are therefore constrained to be positive, assuming the f[X] input is positive.  An alternative formulation is:-

MODEL_PARAMS: |
    m[X] = f[X] + r[X]





Which means the m[X] values have a ~norm() distribution. However if the variance of the r[X] is large (relative to f[X]) this can result in m[X] having negative values sometimes. Often negative values are not physically sensible in PK/PD models (e.g. a negative clearance).

Parameters can also be defined here in terms of c[X] values from the data file. For example, if an individual’s weight has an effect on the volume of distribution, it could be defined as:-

MODEL_PARAMS: |
    m[V] = (f[V] + c[WT]*f[WT_EFF]) * exp(r[V])





Here the f[WT_EFF] is an extra parameter to be estimated by PoPy that needs to be defined in the LEVEL_PARAMS section.

Another common pattern in MODEL_PARAMS is the incorporation of IOV r[X] variables. This can be done using declarations like:-

MODEL_PARAMS: |
    m[X] = f[X] * exp(r[X] + r[X_iov])





Where in LEVEL_PARAMS:-


	f[X] is typically defined in the first GLOBAL level


	r[X] is typically defined in the second INDIV level


	r[X_iov] is typically defined in the third IOV level




This is a common pattern in PoPy. It allows the simple combination of r[X] from different levels, without using cumbersome and error prone if statements. Although you can use if statements if you wish. For example a more complex covariate example:-

if c[GENDER] == "male":
    m[Y] = f[Y_male] * exp(r[Y])
else:
    m[Y] = f[Y_female] * exp(r[Y])





Here the c[GENDER] field from the data file is used as a switch to decide whether to use f[Y_male] or f[Y_female] for each row as appropriate.




Static Workspace Variables in MODEL_PARAMS

The MODEL_PARAMS function operates independently on each row of the data file and relies on the LEVEL_PARAMS to arrange the f[X] and r[X] correctly in each data row (which PoPy handles for you).

However, there may be times when you want a variable’s value to persist from one row to the next. In the MODEL_PARAMS you can explicitly define static workspace variables using the notation w[X]. For example:-

if c[TIME] < 0.0:
    w[PERSISTENT] = 1.0
else:
    w[PERSISTENT] *= 1.1





This fairly artificial example keeps updating the variable w[PERSISTENT] between rows. Here the Python notation ‘*=’ multiplies the variable w[PERSISTENT] by itself and the number 1.1. Note by default all variables in PoPy are local, so a naive attempt to do this say:-

if c[TIME] < 0.0:
    PERSISTENT = 1.0
else:
    PERSISTENT *= 1.1





Would fail with a Python error, because in the line ‘PERSISTENT *= 1.1’, the local variable ‘PERSISTENT’ has not been previously defined, so can not multiply itself by 1.1.

The w[X] notation provides a means of remembering variable values between rows. Note having all variables as static by default (like in Nonmem) is a bad idea as it makes it easier to introduce hard to find coding errors.




Rules for MODEL_PARAMS section

Like all verbatim sections the MODEL_PARAMS section of the config file accepts free form Python pseudocode, but there are some rules regarding which variables are allowed in a MODEL_PARAMS section as follows:-


	Only new m[X] variables and local Python variables can be defined on the left hand side


	f[X], r[X], c[X] and m[X] are allowed on the right hand side of expressions


	c[X] on the right hand side and within if statements must be in the data file or defined in the PREPROCESS section, in a Fit Script


	c[X] on the right hand side must be defined within the LEVEL_PARAMS in a Gen Script or Tut Script.


	newly declared m[X] on the left hand side must have unique names




So you can not use d[X], p[X], s[X] or t[X] etc variables in this section.

Like all verbatim sections it is possible to introduce syntax errors by writing malformed Python. Any coding errors will be reported by PoPy when attempting to compile or run the MODEL_PARAMS function as a temporary .py file.







          

      

      

    

  

    
      
          
            
  
STATES

An optional verbatim section that defines initial s[X] variables for the DERIVATIVES block. The ordinary differential equation model in PoPy is typically a initial value problem. The STATES section defines the initial values.

Note the STATES section is optional. If it is not provided, then by default all s[X] variables are initialised to zero. In PK problems this is often sufficient, but a STATES section is often required for PD models.

The STATES section takes as input the previously defined m[X] and c[X] variables and computes the initial s[X] variables. The STATES function is run on the first row of each individual and for every reset row in the data file. The STATES section is available in the following scripts:-


	Tut Script


	Gen Script


	Fit Script


	Sim Script


	MTut Script


	MGen Script


	MFit Script


	MSim Script




i.e. Any script that contains a DERIVATIVES ordinary differential equation model.


Example STATES for PK Model

In Fitting a Two Compartment PopPK Model, a null states section is used:-

STATES: |





This is equivalent to just removing the STATES section altogether. It is also equivalent to writing this:-

STATES: |
    s[DEPOT] = 0.0
    s[CENTRAL] = 0.0
    s[PERI] = 0.0





The form of the STATES section is very dependent on the DERIVATIVES section that it is initialising. The s[X] variables that  are defined in STATES must exist in the DERIVATIVES section.

DERIVATIVES: |
    # s[DEPOT,CENTRAL,PERI] = @dep_two_cmp_cl{dose:@bolus{amt:c[AMT]}}
    d[DEPOT] = @bolus{amt:c[AMT]} - m[KA]*s[DEPOT]
    d[CENTRAL] = m[KA]*s[DEPOT] - s[CENTRAL]*m[CL]/m[V1] - s[CENTRAL]*m[Q]/m[V1]  + s[PERI]*m[Q]/m[V2]
    d[PERI] = s[CENTRAL]*m[Q]/m[V1] - s[PERI]*m[Q]/m[V2]





Setting all amounts to zero in the PK compartments is fairly common. As before any dose is administered no drug is expected to be present in the body.

The steady state is therefore zero. The amounts in each compartment only become positive after a dose is administered. As the drug is excreted from the body the amount of drug in each compartment converges back to zero.

Note a reset row in the data file short cuts the wash out process by removing all of the drug from the body, by calling the null STATES function above.




Example STATES for PD Model

See Direct PD Model for example Tut Script, using the following STATES and DERIVATIVES sections for a PD model:-

STATES: |
    s[CENTRAL] = 0.0
    s[MARKER] = m[BASE]





DERIVATIVES: |
    d[CENTRAL] = @bolus{amt:c[AMT]} - s[CENTRAL]*c[CL]/c[V]
    d[MARKER] = m[BASE]*m[KOUT] - (1+s[CENTRAL]/c[V])*m[KOUT]*s[MARKER]





In this example the s[MARKER] initial value is set to m[BASE]. This is in order to make sure that the ‘MARKER’ PD compartment is at equilibrium, when the ‘CENTRAL’ PK compartment is zero.

You can usually deduce the equilibrium conditions for a PD compartment by setting the d[X] variables to zero and solving for s[X], with the PK compartments set to zero.

For example in this case, setting d[CENTRAL] to zero:-

0.0 = -s[CENTRAL]*c[CL]/c[V]





implies:-


s[CENTRAL] = 0.0




Then setting d[MARKER] to zero:-

0.0 = m[BASE]*m[KOUT] - (1+0.0)*m[KOUT]*s[MARKER]





implies:-

s[MARKER] = m[BASE]





These equilibrium conditions ensures that the amounts in ‘CENTRAL’ and ‘MARKER’ are fixed until the system is disrupted by a drug dose being administered. As the drug is washed out of the system, the system should smoothly return back to equilibrium.

Alternatively if a reset row is encountered in the data file then the system is jolted back to the equilibrium by running the STATES function.

The non-zero equilibrium value of s[MARKER] is meant to model the endogenous amount of a substance within the body. i.e. a substance that is naturally present without drug intervention. This biological fact makes PD models inherently more complex than PK models and they usually require a more complex STATES section.




Rules for STATES section

Like all verbatim sections the STATES section of the config file accepts free form Python pseudocode, but there are some rules regarding which variables are allowed in a STATES section as follows:-


	Only s[X] and local variables can be defined on the left hand side


	s[X] variables defined on the left hand side must also exist in the DERIVATIVES section


	s[X] variables present in DERIVATIVES but not in STATES are initialised to zero.


	c[X] and m[X] are only allowed on the right hand side of expressions


	c[X] must be defined in the data file or created in the PREPROCESS section in a Fit Script


	c[X] must be defined within the LEVEL_PARAMS in a Gen Script or Tut Script.


	m[X] must be defined in the MODEL_PARAMS




You can not use d[X], p[X], r[X], f[X] or t[X] etc. variables at all in this section.

Like all verbatim sections it is possible to introduce syntax errors by writing malformed Python. Coding errors will be reported when PoPy attempts to compile or run the STATES function as a temporary .py file.







          

      

      

    

  

    
      
          
            
  
DERIVATIVES

An optional verbatim section that defines an ordinary differential equation model in a PoPy script.

The DERIVATIVES section computes s[X] state amounts at multiple time points using ordinary differential equations given initial s[X] from the STATES section and previously compute m[X] and c[X] parameters for each row in the data file.

Note the DERIVATIVES section is optional. It is possible to not have a compartment model in your script. For example you can just directly use individual m[X] variables in the PREDICTIONS section instead of generating s[X] values.

The DERIVATIVES section is available in the following scripts:-


	Tut Script


	Gen Script


	Fit Script


	Sim Script


	MTut Script


	MGen Script


	MFit Script


	MSim Script




i.e. Any script that processes PK/PD models.


Example DERIVATIVES for PK Model

The example below is used in Fitting a Two Compartment PopPK Model.

DERIVATIVES: |
    # s[DEPOT,CENTRAL,PERI] = @dep_two_cmp_cl{dose:@bolus{amt:c[AMT]}}
    d[DEPOT] = @bolus{amt:c[AMT]} - m[KA]*s[DEPOT]
    d[CENTRAL] = m[KA]*s[DEPOT] - s[CENTRAL]*m[CL]/m[V1] - s[CENTRAL]*m[Q]/m[V1]  + s[PERI]*m[Q]/m[V2]
    d[PERI] = s[CENTRAL]*m[Q]/m[V1] - s[PERI]*m[Q]/m[V2]





The example above defines a two compartment PK model with a Depot compartment. The same model can be expressed as:-

DERIVATIVES: |
    s[DEPOT,CENTRAL,PERI] = @dep_two_cmp_cl{
        dose:@bolus{amt:c[AMT]},
        KA: m[KA],
        CL: m[CL],
        V1: m[V1],
        Q: m[Q],
        V2: m[V2],
    }





Where @dep_two_cmp_cl is a analytic compartment function. That uses the analytic solution to the ordinary differential equation instead of using a numerical ODE_SOLVER.

Note you can also write:-

DERIVATIVES: |
    s[DEPOT,CENTRAL,PERI] = @dep_two_cmp_cl{ dose:@bolus{amt:c[AMT]} }





As the default values for ‘KA’, ‘CL’ etc are the equivalent m[X] variables. You still need to have all the appropriate m[X] variables defined in MODEL_PARAMS and c[AMT] defined in your data file.

PoPy also provides multiple alternative ways of formulating the d[X] equations as follows:-

DERIVATIVES: |
    
    d[DEPOT] = @bolus{amt:c[AMT]}
    d[CENTRAL] = 0.0
    d[PERI] = 0.0
        
    d[DEPOT] -= m[KA]*s[DEPOT]
    d[CENTRAL] += m[KA]*s[DEPOT]
    
    d[CENTRAL] -= s[CENTRAL]*m[CL]/m[V1]
    
    d[CENTRAL] -= s[CENTRAL]*m[Q]/m[V1]
    d[PERI] += s[CENTRAL]*m[Q]/m[V1]
    
    d[CENTRAL] += s[PERI]*m[Q]/m[V2]
    d[PERI] -= s[PERI]*m[Q]/m[V2]





The syntax above is standard Python, but makes the inputs and outputs of each compartment clear. You can also use this flow based syntax:-

DERIVATIVES: |
    
    d[DEPOT] = @bolus{amt:c[AMT]}
    d[CENTRAL] = 0.0
    d[PERI] = 0.0
        
    d[DEPOT->CENTRAL] += m[KA]*s[DEPOT]
   
    d[CENTRAL] -= s[CENTRAL]*m[CL]/m[V1]
    
    d[CENTRAL->PERI] += s[CENTRAL]*m[Q]/m[V1]
    d[PERI->CENTRAL] += s[PERI]*m[Q]/m[V2]





This expresses the flows between compartments explicitly and avoids having to manually pair up the positive and negative flows. Note an unintentional mis-match between inputs and outputs in compartment models usually leads to mass balance issues and models that are difficult to interpret and fit.

Note a sanity check on the DERIVATIVES section is to view the compartment diagram that is automatically created by PoPy, see Fig. 50.


[image: ../../_images/compartment_diagram6.svg]Fig. 50 Two compartment model with depot dosing, computed automatically from DERIVATIVES section.



All the example DERIVATIVES sections presented here generate the same diagram. If you make a mass balance error your diagram may well not look like you expect. This is a useful safety feature built into PoPy.




Example DERIVATIVES for PD Model

See Direct PD Model for example Tut Script, using the following DERIVATIVES section for a PD model:-

DERIVATIVES: |
    d[CENTRAL] = @bolus{amt:c[AMT]} - s[CENTRAL]*c[CL]/c[V]
    d[MARKER] = m[BASE]*m[KOUT] - (1+s[CENTRAL]/c[V])*m[KOUT]*s[MARKER]





As discussed in Example STATES for PD Model. The following STATES section is required to initialise the derivative model in an equilibrium state:-

STATES: |
    s[CENTRAL] = 0.0
    s[MARKER] = m[BASE]





Note it’s possible to split this DERIVATIVES model up into separate flows:-

DERIVATIVES: |
    
    d[CENTRAL] = @bolus{amt:c[AMT]} 
    d[MARKER] = 0.0 
    
    d[CENTRAL] -= s[CENTRAL]*c[CL]/c[V]
    
    d[MARKER] += m[BASE]*m[KOUT] 
    d[MARKER] -= (1+s[CENTRAL]/c[V])*m[KOUT]*s[MARKER]





It’s also possible to mix and match s[X] and d[X] variables, by using a analytic compartment function for the PK compartment:-

DERIVATIVES: |
    s[CENTRAL] = @iv_one_cmp_cl{ dose:@bolus{amt:c[AMT]}, CL:c[CL], V:c[V]}
    d[MARKER] = m[BASE]*m[KOUT] - (1+s[CENTRAL]/c[V])*m[KOUT]*s[MARKER]





Note in the above if you use a analytic compartment function then you need s[X] on the left hand side (see Central compartment). If you use numerical equations then you need d[X] on the left hand side and s[X] variables on the right hand side (see Marker compartment).

All of the above DERIVATIVES sections should result in the same compartment diagram as shown in Fig. 51.


[image: ../../_images/compartment_diagram11.svg]Fig. 51 direct PD model, computed automatically from DERIVATIVES section.






Example DERIVATIVES using x[TIME]

See Sine circadian model for example Tut Script, using the following DERIVATIVES section:-

DERIVATIVES: |
    conc_central = s[CENTRAL]/c[V]
    circ = exp(m[AMP] * sin(2*pi*(x[TIME]-m[INT])/12))
    d[CENTRAL] = @bolus{lag:0, amt:c[AMT]} - c[CL]*conc_central  # PK
    d[MARKER] =  m[KIN]*conc_central + circ - m[KOUT]*s[MARKER]  # PD





This PK model has a circadian input to the ‘MARKER’ compartment, so is in a equilibrium oscillating about a mean value, until a dose is administered in the PK compartment, which then causes an effect in the PD compartment through the ‘conc_central’ variable.

The main point of interest in this model is that the variable x[TIME] is used within the DERIVATIVES section. x[TIME] is a special variable that uses the continuous time when solving the ordinary differential equations. This is distinct from using c[TIME], which is constant at time points between data rows.

Note you can use c[TIME] as an approximation if you have lots of data rows, but generally it’s better to use x[TIME] to model explicit time dependent components such as circadian variation within the DERIVATIVES section.

The compartment diagram for this PK/PD model is as shown in Fig. 52.


[image: ../../_images/compartment_diagram12.svg]Fig. 52 circadian PD model, computed automatically from DERIVATIVES section.






Rules for DERIVATIVES section

Like all verbatim sections the DERIVATIVES section of the config file accepts free form Python pseudocode, but there are some rules regarding which variables are allowed in a DERIVATIVES section as follows:-


	Only d[X] and local variables can be defined on the left hand side without using Analytic Compartment Functions.


	s[X] variables are usually on the right hand side and must have a corresponding d[X] variable


	s[X] variables can only be defined on the left hand side if you use a analytic compartment function


	s[X] variables present in DERIVATIVES but not in STATES are initialised to zero.


	c[X] and m[X] are only allowed on the right hand side of expressions


	c[X] must be defined in the data file or PREPROCESS section in a Fit Script


	c[X] must be defined within the LEVEL_PARAMS in a Gen Script or Tut Script.


	m[X] must be defined in the MODEL_PARAMS


	x[TIME] can be used to model continuous time, as opposed to discrete c[TIME]




You can not use p[X], r[X], f[X] or t[X] etc. variables at all in this section.

Like all verbatim sections it is possible to introduce syntax errors by writing malformed Python. Any coding errors will be reported when PoPy attempts to compile or run the DERIVATIVES function as a temporary .py file.







          

      

      

    

  

    
      
          
            
  
PREDICTIONS

A required verbatim section that defines model p[X] prediction variables, but also compares p[X] variables to c[X] data and evaluates likelihoods or samples new c[X] data.

The PREDICTIONS section takes as input c[X], m[X] and s[X] variables and outputs p[X] data. The PREDICTIONS section is required in the following scripts:-


	Tut Script


	Gen Script


	Fit Script


	Sim Script


	MTut Script


	MGen Script


	MFit Script


	MSim Script




i.e. Any Gen Script/Sim Script that samples new data points or any Fit Script that evaluates likelihoods requires a PREDICTIONS section.


Example PREDICTIONS for PK Model

The example below is used in Fitting a Two Compartment PopPK Model.

PREDICTIONS: |
    p[DV_CENTRAL] = s[CENTRAL]/m[V1]
    var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
    c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)





In a Fit Script the PREDICTIONS section above computes a likelihood by comparing the p[DV_CENTRAL] predictions computed by the model and the c[DV_CENTRAL] values found in the data file.

The noise model is a combined additive and proportional noise model. See Residual Error Model for more details on types of noise model.

Note that in Generate a Two Compartment PopPK Data Set, the PREDICTIONS section is exactly the same as above, however the interpretation of this line is different:-

c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)





In a Gen Script this line is now used to sample new values of c[DV_CENTRAL] when creating a new data set.

The dual nature of the ‘~’ symbol allows the same PREDICTIONS section to be re-used throughout multiple scripts.




Example PREDICTIONS for PD Model

See Direct PD Model for an example Tut Script, using the following PREDICTIONS section for a PD model:-

PREDICTIONS: |
    clabel[TIME] = "Time (minutes)"
    plabel[MARKER] = "Biomarker concentration (mg/L)"
    p[MARKER] = s[MARKER]
    var = m[ANOISE]**2
    c[MARKER] ~ norm(p[MARKER], var)





In the above example the structure of the PREDICTIONS section is the same as the Example PREDICTIONS for PK Model, however this time the likelihood/sampling is between the c[MARKER] data and p[MARKER] predictions, using an additive noise model.

A more complex PREDICTIONS section is shown below. See Direct PD Model Simultaneous PK/PD Parameter fit:-

PREDICTIONS: |
    clabel[TIME] = "Time (minutes)"
    plabel[MARKER] = "Biomarker concentration (mg/L)"
    plabel[CENTRAL] = "Drug concentration (mg/L)"
    p[CENTRAL] = s[CENTRAL]/m[V]
    c[CENTRAL] ~ norm(p[CENTRAL], m[PK_ANOISE]**2)
    p[MARKER] = s[MARKER]
    c[MARKER] ~ norm(p[MARKER], m[PD_ANOISE]**2)





If the PREDICTIONS block occurs in a Gen Script then both the c[CENTRAL] and c[MARKER] fields are sampled. If this PREDICTIONS section is included in a Fit Script then there are two different data fields that contribute to the likelihood, namely ‘CENTRAL’ and ‘MARKER’.

In the Fit Script case the likelihood is evaluated for a particular ‘~’ expression for every observation row in the data set. The contribution to the likelihood of a particular c[X] variable can also be controlled by the c[X_FLAG] field, if present in the data file. This mechanism avoids erroneously computing likelihoods against null values. This is similar to Nonmem’s MDV flag, but each PoPy c[X] variable is allowed to have it’s own c[X_FLAG].

Note that Nonmem is restricted to a single DV field. The only way to perform a simultaneous fit within Nonmem is to mangle the data set by concatenating different fields into one column, because you can only have one likelihood per data row. This is unpleasant and error prone. The PoPy syntax above avoids this nightmare and handles any number of fields elegantly without changing the natural data file structure.




Rules for PREDICTIONS section

Like all verbatim sections, the PREDICTIONS section of the configuration file accepts free form Python pseudocode, but there are some rules regarding which variables are allowed in a PREDICTIONS section as follows:-


	Only p[X] and local variables can be defined on the left hand side using ‘=’


	Only c[X] can be defined on the left hand side using ‘~’


	m[X] and s[X] are only allowed on the right hand side of expressions


	c[X] must be in the data file or defined in the PREPROCESS section in a Fit Script


	c[X] must be defined within the LEVEL_PARAMS in a Gen Script or Tut Script.


	m[X] must be defined in the MODEL_PARAMS section


	s[X] must be defined in the DERIVATIVES section




You can not use f[X], r[X] or t[X] etc. variables at all in this section.

Like all verbatim sections it is possible to introduce syntax errors by writing malformed Python. Such errors will be reported when PoPy attempts to compile or run the PREDICTIONS function as a temporary .py file.







          

      

      

    

  

    
      
          
            
  
ODE_SOLVER

An optional section that defines how an PoPy will solve the ordinary differential equations in the DERIVATIVES section.

Note the ODE_SOLVER section is optional, if you have no DERIVATIVES section then you do not need to have an ODE_SOLVER section.

The ODE_SOLVER section is available in the following scripts:-


	Tut Script


	Gen Script


	Fit Script


	Sim Script


	MTut Script


	MGen Script


	MFit Script


	MSim Script




i.e. Any script that processes PK/PD models and may have a DERIVATIVES section, may also have an ODE_SOLVER section.


ODE_SOLVER Options

There are three principle ODE_SOLVER options available:-


	NO_SOLVER - use if there is no DERIVATIVES section


	ANALYTIC - use if DERIVATIVES contains only analytic compartment functions


	SCIPY_ODEINT - numerical solver - use if DERIVATIVES contains d[X] equations




The options above are tied to the nature of the DERIVATIVES section. Some examples of DERIVATIVES sections and appropriate ODE_SOLVER settings are shown below.




Example ODE_SOLVER using NO_SOLVER

In the case where the PoPy script contains no DERIVATIVES section or the DERIVATIVES section is null:-

DERIVATIVES: |





Then the PoPy script should contain no ODE_SOLVER section or the ODE_SOLVER should also be null:-

ODE_SOLVER:
    NO_SOLVER: {}





If the DERIVATIVES section is null and ODE_SOLVER is set to ‘ANALYTIC’ or ‘SCIPY_ODEINT’, then PoPy should issue a warning, but the ODE_SOLVER section will otherwise have no effect.

Note, the simplest solution if you have no compartment model is to just remove the DERIVATIVES and ODE_SOLVER sections from the script completely.




Example ODE_SOLVER using ANALYTIC

In the case where the PoPy script contains a DERIVATIVES section consisting of only an analytic compartment function:-

DERIVATIVES: |
    s[DEPOT,CENTRAL,PERI] = @dep_two_cmp_cl{dose:@bolus{amt:c[AMT]}





Then the ODE_SOLVER section should be:-

ODE_SOLVER:
    ANALYTIC: {}





If the DERIVATIVES section contains only an analytic compartment function and ODE_SOLVER is set to ‘NO_SOLVER’ or ‘SCIPY_ODEINT’, then PoPy should issue a warning, but the ODE_SOLVER section will otherwise automatically switch to ‘ANALYTIC’.




Example ODE_SOLVER using SCIPY_ODEINT

In the case where the PoPy script contains a DERIVATIVES section consisting of ordinary differential equations with d[X] variables on the left hand side and s[X] on the right hand side, for example:-

DERIVATIVES: |
    # s[DEPOT,CENTRAL,PERI] = @dep_two_cmp_cl{dose:@bolus{amt:c[AMT]}}
    d[DEPOT] = @bolus{amt:c[AMT]} - m[KA]*s[DEPOT]
    d[CENTRAL] = m[KA]*s[DEPOT] - s[CENTRAL]*m[CL]/m[V1] - s[CENTRAL]*m[Q]/m[V1]  + s[PERI]*m[Q]/m[V2]
    d[PERI] = s[CENTRAL]*m[Q]/m[V1] - s[PERI]*m[Q]/m[V2]





Then the ODE_SOLVER section should use ‘SCIPY_ODEINT’, for example:-

ODE_SOLVER:
    SCIPY_ODEINT:
        atol: 1e-06
        rtol: 1e-06
        max_nsteps: 10000000





If the DERIVATIVES section contains d[X] equations and ODE_SOLVER is set to ‘NO_SOLVER’ or ‘ANALYTIC’, then PoPy should issue an error when checking the script, because a numerical solver is required.

SCIPY_ODEINT is a wrapper around the following Python numerical ordinary differential equation solver from the SciPy package:-

scipy.integrate.odeint





Which in turn is a wrapper around the Fortran LSODA solver [Radhakrishnan1994]. The same ordinary differential equation solver that is used by the Nonmem ADVAN13 routine. You can read more about this integrator here in the SciPy documentation:-

http://lagrange.univ-lyon1.fr/docs/scipy/0.17.1/generated/scipy.integrate.odeint.html

Note that PoPy exposes the following parameters of LSODA:-


	atol - Additive tolerance of the LSODA error control


	rtol - Relative tolerance of the LSODA error control


	max_nsteps - Maximum number of steps for LSODA integrator (called ‘mxstep’ in link above)




All of the parameters above are optional with the following default values:-


	atol: 1e-12


	rtol: 1e-12


	max_nsteps: 10000000




Hence the following ODE_SOLVER section:-

ODE_SOLVER: {SCIPY_ODEINT: {}}





Is equivalent to:-

ODE_SOLVER:
    SCIPY_ODEINT:
        atol: 1e-12
        rtol: 1e-12
        max_nsteps: 10000000











          

      

      

    

  

    
      
          
            
  
FIT_METHODS

A required section that defines how PoPy estimates the f[X] and r[X] model parameters given a data file.

The FIT_METHODS section is required in the following scripts:-


	Tut Script


	Fit Script


	MTut Script


	MFit Script




i.e. Any script that estimates PK/PD model parameters is required to have a FIT_METHODS section.


FIT_METHODS Structure

The FIT_METHODS section is a list of fitting methods to be applied in order to estimate the f[X] and r[X] variables of a PK/PD model, for example:-

FIT_METHODS:
    - <fitter1>: {}
    - <fitter2>: {}
    - <fitter3>: {}





This allows in this case <fitter1> to initialise the f[X] for <fitter2> and for <fitter2> to then initialise the f[X] for  <fitter3> etc..

In the long term it will be possible to apply multiple fitting methods, for example methods that globally initialise the f[X] followed by local fitting methods such as JOE and maybe later more time consuming fitting approaches such as IMP.

With the first release of PoPy the only available fitting method is JOE.




JOE Fitting Method

JOE stands for Joint Optimisation and Estimation and is PoPy’s approximate equivalent of Nonmem’s ITS (Iterative Two Stage) or FOCE (First Order Conditional Estimation) fitting methods.

All these methods use a first order version of the Laplace approximation to make the computation of the likelihood function tractable. See [Wang2007] for details. We refer to this likelihood as the FOCE ObjV, which was first described in [Lindstrom1990], but is now most commonly associated with the popular FOCE fitting method in Nonmem.

Given the same PK/PD model, data file and same f[X] and r[X] variables. JOE, ITS and FOCE will return the same FOCE ObjV.

The methods differ in how they update the f[X] provided in a Fit Script by the modeller to estimate the final optimised f[X]. Given the same f[X] values all three methods obtain empirical bayes estimates of the r[X] variables in a very similar way.

In a Nonmem model FOCE sometimes obtains better f[X] estimates than ITS and vice versa. Hence the existence of two fitting methods for the same FOCE ObjV in Nonmem. In PoPy we provide JOE as one unified approach to optimising the FOCE ObjV for a given Fit Script and data file.

Note JOE, ITS and FOCE fitting methods are deterministic and fundamentally different from the stochastic sampling methods such as SAEM and IMP. SAEM and IMP that also estimate f[X] for PK/PD models, but the stochastic Objective Value is not based on the Laplace approximation used in the FOCE ObjV.


JOE Fitting Example

The simplest way to use JOE in a Fit Script is as follows:-

FIT_METHODS: [JOE:{}]





This single line, runs the JOE fitting method with the default settings. Note that the square bracket notation ‘[]’ is required because ‘FIT_METHODS’ expects a list. Or equivalently:-

FIT_METHODS:
    - JOE: {}





Where the ‘-‘ is YAML notation for a list item.

One of the simplest JOE parameters is ‘max_n_main_iterations’:-

FIT_METHODS:
    - JOE:
        max_n_main_iterations: 100





Which sets the number of times the f[X] parameters are updated. The JOE fitting proceeds iteratively with interleaved f[X] and r[X] updates. Setting this limit forces PoPy to stop after a finite number of iterations.

If you miss out ‘max_n_main_iterations’ it defaults to 50. Another option is as follows:-

FIT_METHODS:
    - JOE:
        max_n_main_iterations: 0





This only updates the r[X] parameters and leaves the f[X] fixed. In Nonmem this is achieved using the EONLY flag.

Another common setting is the ‘CONVERGER’ field. There are three possible settings:-


	NONE - no convergence termination - estimation stops when ‘max_n_main_iterations’ is reached


	OBJ_INC - terminate convergence if the ObjV increases


	OBJ_SIM - terminate convergence if the ObjV is similar between iterations




These settings decide when a Fit Script will return the final f[X] estimates.

The default setting for JOE fitting is ‘OBJ_INC’, hence:-

FIT_METHODS:
    - JOE:
        max_n_main_iterations: 100





Is the same as:-

FIT_METHODS:
    - JOE:
        max_n_main_iterations: 100
        CONVERGER: {OBJ_INC: {}}





And the fit estimation will stop as soon as any iteration increases the ObjV. To allow the ObjV to increase during fitting, i.e. if the likelihood gets worse between iterations, but you wish the search to continue, use:-

FIT_METHODS:
    - JOE:
        max_n_main_iterations: 100
        CONVERGER: {OBJ_SIM: {}}





Here ‘OBJ_SIM’ will terminate the estimation when two consecutive iterations return similar objective values (within a relative tolerance of 1e-06).

Note that when fitting complex models the ObjV usually decreases at each iteration, but occasionally increases. This is due to fact that f[X] and r[X] are optimised separately. Separate optimisation is necessary for computational efficiency. However optimising components of the likelihood independently can mean the combined ObjV increases. The ‘OBJ_SIM’ option above is designed to allow the search to continue in these cases.









          

      

      

    

  

    
      
          
            
  
COVARIANCE

An optional section that requests PoPy to compute Standard Errors of the f[X] variables, after running a Fit Script.

The COVARIANCE option is only available in a Fit Script or Tut Script. The Tut Script simply passes the COVARIANCE section to the Fit Script. The MFit Script and MTut Script do not currently include this option.


COVARIANCE Example

If you miss out the ‘COVARIANCE’ field, that is equivalent to putting:-

COVARIANCE: {NO_COVARIANCE: {}}





In the Fit Script and no standard errors are computed.

If you use this setting:-

COVARIANCE: {FINITE_DIFF: {}}





After the Fit Script outputs the final f[X] estimates, PoPy will compute the standard errors using a similar method to that employed by Nonmem when using the ‘$COVARIANCE’ flag. See Standard Errors for more details.

By default PoPy computes standard errors using only the main f[X] estimates and excludes the variance f[X].

You can include the variance f[X] using the following setting:-

COVARIANCE: {FINITE_DIFF: {var_covariance_flag: True}}





This will compute standard error estimates for all f[X] however it will take a long time if you have large variance f[X] matrices in your model. Also note that the standard error estimates will be different if the variances are included in the computation.







          

      

      

    

  

    
      
          
            
  
OUTPUT_SCRIPTS

An optional section that controls the child scripts that are created and possibly run after a parent script has finished running.

The OUTPUT_SCRIPTS section is available in the following scripts:-


	Tut Script


	Gen Script


	Fit Script


	Sim Script


	MSim Script


	MTut Script




i.e. Any script that can generate child scripts may have an OUTPUT_SCRIPTS section.


Structure of OUTPUT_SCRIPTS

The OUTPUT_SCRIPTS in all Script File Formats share a common format, as follows:-

OUTPUT_SCRIPTS:
    <child_script1>: {output_mode: gen_script_and_run}
    <child_script2>: {output_mode: gen_script_only}
    <child_script3>: {output_mode: no_output}





The OUTPUT_SCRIPTS section is a dict record. i.e it is a Python dictionary with child script names as keys.

All child script sections share the ‘output_mode’ field, which can take the following values:-


	gen_script_and_run - create the child script and run it


	gen_script_only - create the child script, but do not run it


	no_output - do not create the child script




Generally if a child script is not mentioned in the parent script the ‘output_mode’ defaults to ‘no_output’.

The available child scripts are dependent on the parent script type. Also there maybe additional options for each child script, see examples below for more concrete details.




Example OUTPUT_SCRIPTS for tut_script

The example below is used in Generate data and Fit using a Two Compartment Model.

OUTPUT_SCRIPTS:
    GEN: {output_mode: gen_script_and_run, sim_time_step: 1.0, share_axes: True}
    FIT: {output_mode: gen_script_and_run, sim_time_step: 1.0, share_axes: True}
    COMP: {output_mode: gen_script_and_run}
    TUTSUM: {output_mode: gen_script_and_run}





This specifies that a child Gen Script, Fit Script, Comp Script and TutSum Script are all run.

Note it’s possible to miss out the OUTPUT_SCRIPTS section from a Tut Script, then the default settings are run, which is equivalent to:-

OUTPUT_SCRIPTS:
    GEN: {output_mode: gen_script_and_run, sim_time_step: -1.0, share_axes: True}
    FIT: {output_mode: gen_script_and_run, sim_time_step: -1.0, share_axes: True}
    COMP: {output_mode: no_output}
    TUTSUM: {output_mode: gen_script_and_run}





This results in more limited tutorial outputs compared to the previous example.




Example OUTPUT_SCRIPTS for gen_script

The example below is used in Generate a Two Compartment PopPK Data Set.

OUTPUT_SCRIPTS:
    SIM: {output_mode: gen_script_and_run, sim_time_step: 1.0, share_axes: True}
    GENSUM: {output_mode: gen_script_and_run}





This specifies that a child Sim Script and GenSum Script are run.

Note it’s possible to miss out the OUTPUT_SCRIPTS section from a Gen Script, then the default settings are run, which is equivalent to:-

OUTPUT_SCRIPTS:
    GRPH: {output_mode: no_output}
    SIM: {output_mode: no_output}
    GENSUM: {output_mode: no_output}





i.e. if you miss out the OUTPUT_SCRIPTS then you just get the Gen Script output and no further processing, as you might expect.




Example OUTPUT_SCRIPTS for fit_script

The example below is used in Fitting a Two Compartment PopPK Model.

OUTPUT_SCRIPTS:
    SIM: {output_mode: gen_script_and_run, sim_time_step: 1.0}
    MSIM: {output_mode: gen_script_only}
    FITSUM: {output_mode: gen_script_and_run}





This specifies that a child Sim Script and FitSum Script are run and a MSim Script is created on disk but not run automatically.

Note it’s possible to miss out the OUTPUT_SCRIPTS section from a Fit Script, then the default settings are run, which is equivalent to:-

OUTPUT_SCRIPTS:
    GRPH: {output_mode: no_output}
    SIM: {output_mode: no_output}
    MSIM: {output_mode: no_output}
    FITSUM: {output_mode: no_output}





i.e. if you miss out the OUTPUT_SCRIPTS then you just get the Fit Script output and no further processing, as you might expect.




Example OUTPUT_SCRIPTS for sim_script

The example below is from a Sim Script generated by a Fit Script in Fitting a Two Compartment PopPK Model.

OUTPUT_SCRIPTS:
    GRPH:
        output_mode: gen_script_and_run
        grph_list: ['SPAG_GRPH', 'COMB_SPAG_GRPH']
        x_var: TIME
        y_var_list: ['DV_CENTRAL', 'DV_CENTRAL', 'DV_CENTRAL']
        y_var_src_list: ['observed_data', 'initial', 'final']
        y_var_label_list: ['DV_CENTRAL', 'DV_CENTRAL', 'DV_CENTRAL']





The single ‘GRPH’ child script above, is used to plot the results of the Sim Script simulated PK curves.

You can edit the ‘GRPH’ options to control the graphical output.




Example OUTPUT_SCRIPTS for msim_script

The example below is from a MSim Script generated by a Fit Script in Fitting a Two Compartment PopPK Model.

OUTPUT_SCRIPTS:
    VPC:
        output_mode: gen_script_and_run
        vpc_list: ['COMB_QUANT_SIM_VPC']
        y_var_src_list: ['sim', 'orig']
        y_var_list: ['DV_CENTRAL_sim', 'DV_CENTRAL']
        x_var: TIME_SINCE_LAST_DOSE





The single ‘VPC’ child script above, is used to plot a VPC using the results of the MSim Script multi population simulated PK curves.

You can edit the ‘VPC’ options to control the graphical output.




Example OUTPUT_SCRIPTS for mtut_script

The example below is used in Generate multiple data sets and Fit using a Two Compartment Model.

OUTPUT_SCRIPTS:
    MGEN: {output_mode: gen_script_and_run}
    MFIT: {output_mode: gen_script_and_run}
    MCOMP: {output_mode: gen_script_and_run, dot_size: 12}





This MTut Script outputs and runs a MGen Script,  MFit Script and MComp Script.

Notice you can optionally alter the size of the dots on the MComp Script scatter plots using the ‘dot_size’ field.







          

      

      

    

  

    
      
          
            
  
OUTPUT_OPTIONS

An optional section that controls the output from a script.

The OUTPUT_OPTIONS section is available in the following scripts:-


	Sim Script


	MSim Script


	MGen Script


	MTut Script




The OUTPUT_OPTIONS contain a script type specific set of extra options.


Example OUTPUT_OPTIONS for sim_script

The OUTPUT_OPTIONS in a Sim Script contain a single field ‘sim_time_step’. For example the following:-

OUTPUT_OPTIONS:
    sim_time_step: 0.5





means that PoPy will simulate a p[X] value at every 0.5 time units when simulating from a PK/PD model.

An alternative (and default setting) is:-

OUTPUT_OPTIONS:
    sim_time_step: -1.0





Which only simulates p[X] model predictions for time points present in the data file, i.e. dense time point sampling is switched off by using a negative ‘sim_time_step’.




Example OUTPUT_OPTIONS for msim_script

The OUTPUT_OPTIONS in a MSim Script contain the ‘sim_time_step’ and ‘n_pop_samples’ fields. For example the following:-

OUTPUT_OPTIONS:
    sim_time_step: -1.0
    n_pop_samples: 100





In a MSim Script it is simpler to keep ‘sim_time_step’ set to -1.0. As you usually want the noise c[X] samples to be at the same time points as the original data file when creating a VPC.

The ‘n_pop_samples’ allows you to vary the number of population samples you collect for your VPC. Generally the more the better, but you have to wait longer for more samples.




Example OUTPUT_OPTIONS for mtut_script and mgen_script

The OUTPUT_OPTIONS in a MTut Script and  MGen Script allow you to control the number of population samples, for example:-

OUTPUT_OPTIONS: {n_pop_samples: 30}





The more population samples the more comprehensive your data, but the longer the computation will take.







          

      

      

    

  

    
      
          
            
  
Script File Elements

See Table 58 for more detail on various script file elements.


Table 58 Script File Elements





	Name

	Purpose





	Variable Types

	PoPy variables and their usage



	Probability Distributions

	Probability functions for verbatim sections



	Matrices

	Matrix functions for verbatim sections



	Dosing Functions

	Dosing functions in DERIVATIVES section



	Analytic Compartment Functions

	Analytic compartment models in DERIVATIVES section



	Script Nodes

	Elements of a YAML file













          

      

      

    

  

    
      
          
            
  
Variable Types

Table 59 shows the different type of script variables that are available in the verbatim sections of PoPy scripts:-


Table 59 PoPy Variable Types







	Type

	Description

	Defined

	Used





	c[X]

	covariates (fit)

	data file/PREPROCESS

	main sections



	c[X]

	covariates (gen)

	LEVEL_PARAMS

	main sections



	f[X]

	fixed effects

	LEVEL_PARAMS

	MODEL_PARAMS



	r[X]

	random effects

	LEVEL_PARAMS

	MODEL_PARAMS



	m[X]

	Model parameters

	MODEL_PARAMS

	main sections



	w[X]

	Workspace Variables

	MODEL_PARAMS

	MODEL_PARAMS



	x[NEWIND]

	First row for individual

	N/A

	MODEL_PARAMS



	d[X]

	Derivatives wrt time

	DERIVATIVES

	N/A



	s[X]

	States

	DERIVATIVES/STATES

	DERIVATIVES/PREDICTIONS



	x[TIME]

	Continuous time

	N/A

	DERIVATIVES



	p[X]

	Predictions

	PREDICTIONS

	PREDICTIONS






In Table 59, the ‘Defined’ column shows where a variable of particular type is first declared, typically on the left hand side of an ‘=’ or ‘~’ operator. The ‘Used’ column shows where a variable may be used, typically on the right hand side of an ‘=’ or ‘~’ operator.

Note the entry ‘main sections’ in table Table 59 above means the following sections - MODEL_PARAMS/STATES/DERIVATIVES/PREDICTIONS.





          

      

      

    

  

    
      
          
            
  
Probability Distributions

The distributions available for use in PoPy models are shown in Table 60:-


Table 60 Probability Distributions






	Name

	Syntax

	Type





	Uniform

	x ~ unif(min_x, max_x) init_x

	continuous univariate



	Normal

	y ~ norm(mean, var)

	continuous univariate



	Multi Normal

	y_vec ~ mnorm(mean_vec, var_mat)

	continuous multivariate



	Bernoulli

	y ~ bernoulli(p)

	discrete univariate



	Poisson

	y ~ poisson(p)

	discrete univariate



	Negative Binomial

	y ~ negbinomial(p, r)

	discrete univariate







Uniform Distribution

Uniform is a continuous univariate distribution, written as:-

x ~ unif(min_x, max_x) init_x





The uniform distribution is used to define a range of values for an unknown scalar that you wish PoPy to estimate.

The input parameters are:-


	min_x - the minimum value that variable ‘x’ is allowed to take during estimation.


	max_x - the maximum value that variable ‘x’ is allowed to take during estimation.


	init_x - the initial value that variable ‘x’ takes at the start of estimation.




The output ‘x’ and inputs ‘min_x’, ‘max_x’, ‘init_x’ are all continuous values.

For more information see Uniform Distribution on Wikipedia [https://en.wikipedia.org/wiki/Uniform_distribution].


Uniform Distribution Examples

You use the Uniform Distribution in the LEVEL_PARAMS section of a PoPy Fit Script as follows:-

f[KE] ~ unif(0.001, 100) 0.05





The above expressions limits the f[KE] variable to the range [0.001, 100] with an initial starting value of 0.05.

Alternatively you can do:-

f[KE] ~ unif(0.001, +inf) 0.05





Which limits f[KE] to be greater than 0.001. Note the an equivalent shortcut is available as follows:-

f[KE] ~ P 0.05





Where ‘P’ stands for +ve. You can also have an unconstrained variable as follows:-

f[KE] ~ U 0.05





Where ‘U’ stands for unlimited. The equivalent long form is:-

f[KE] ~ unif(-inf, +inf) 0.05










Normal Distribution

The Normal distribution is used for continuous variables and written in PoPy as:-

x ~ norm(mean, var)





The Normal models a Gaussian distribution with two parameters ‘mean’ and ‘var’.

The input parameters are:-


	mean - the expected value of the Normal


	var - the variance of the Normal




The output ‘x’ and inputs ‘mean’, ‘var’ are all continuous values

For more information see Normal Distribution on Wikipedia [https://en.wikipedia.org/wiki/Normal_distribution].


Normal Random Effect Example

You can use the Normal Distribution in the LEVEL_PARAMS section of a PoPy script, to define a r[X] random effect variable as follows:-

LEVEL_PARAMS:
    INDIV:
        params: |
            r[KE] ~ norm(0, f[KE_isv])





Here the r[KE] scalar variable is defined as a normal with mean zero and positive scalar variance f[KE_isv].

r[KE] is defined at the ‘INDIV’ level, so each individual in the population has an independent sample of this normal distribution.




Normal Likelihood Example

You can use the Normal Distribution in the PREDICTIONS section of a PoPy Fit Script as follows:-

PREDICTIONS:
    p[DV_CENTRAL] = s[CENTRAL]/m[V1]
    var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
    c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)





The above syntax in a Fit Script specifies the likelihood of the observed c[DV_CENTRAL] observation from the data file, when modelled as a Normal variable, with mean p[DV_CENTRAL] and variance ‘var’.






Multivariate Normal Distribution

Multivariate-Normal distribution is used for vectors of continuous variables and written like this:-

output_vector ~ mnorm(mean_vector, covariance_matrix)





The Multivariate Normal is a generalisation of the Normal Distribution with two parameters ‘mean_vector’ and ‘covariance_matrix’, as follows:-


	mean_vector - the mean of the ‘output_vector’


	covariance_matrix - the covariance of the ‘output_vector’ elements




The ‘output_vector’ must have the same number of dimensions as the ‘mean_vector’. Also the ‘covariance_matrix’ needs to be symmetric positive definite with a matching dimensionality. See Matrices for examples of how to define the covariance matrix.

For more information see Multivariate Normal Distribution on Wikipedia [https://en.wikipedia.org/wiki/Multivariate_normal_distribution].


Multivariate Normal Random Effect Example

You can use the Multivariate Normal Distribution in the LEVEL_PARAMS section of a PoPy script, to define a vector of r[X] random effects variables as follows:-

LEVEL_PARAMS:
    INDIV:
        params: |
            r[KA,CL,V] ~ mnorm([0, 0, 0], f[KA_isv,CL_isv,V_isv])





Here the r[KA,CL,V] variable is defined as a 3 element vector with mean zero. [0,0,0] is a 3 element ‘mean_vector’ and f[KA_isv,CL_isv,V_isv] is a 3x3 ‘covariance_matrix’. The f[KA_isv,CL_isv,V_isv] matrix can be a diagonal or square symmetric matrix, see Matrices.

The r[KA,CL,V] is defined at the ‘INDIV’ level, so each individual in the population has an independent sample of this multivariate normal distribution.






Bernoulli Distribution

The Bernoulli is univariate discrete distribution used to model binary variables, and written in PoPy as:-

y ~ bernoulli(prob_success)





The Bernoulli models the distribution of a single Bernoulli trial.

The input parameters are:-


	prob_success - probability of success of the bernouilli trial




The output ‘y’ is a binary value, i.e. either 1 for success or 0 for failure. ‘prob_success’ is a real valued number in the range [0,1].

For more information see Bernoulli Distribution on Wikipedia [https://en.wikipedia.org/wiki/Bernoulli_distribution].


Bernoulli Likelihood Example

You can use the Bernoulli Distribution in the PREDICTIONS section of a PoPy Fit Script as follows:-

PREDICTIONS:
    conc = s[X]/m[V]
    p[DV_BERN] = 1.0 / (1.0+ exp(-conc))
    c[DV_BERN] ~ bernoulli(p[DV_BERN])





The above syntax in a Fit Script specifies the likelihood of the observed c[DV_BERN] binary observation from the data file, when modelled as a Bernoulli variable, with success rate dependent on ‘conc’ via a logistic transform.






Poisson Distribution

The Poisson is a discrete univariate distribution, to model discrete count variables, written in PoPy as:-

y ~ poisson(lambda)





The Poisson models the distribution of the number of events occurring within a fixed time interval, if each individual event occurs independently and at constant rate ‘lambda’.

The input parameters are:-


	lambda - the expected number of occurrences within the time interval




The output ‘y’ is the observed count, i.e. a non-negative integer value. ‘lambda’ is a positive real valued number, which represents the mean rate of event occurrence.

For more information see Poisson Distribution on Wikipedia [https://en.wikipedia.org/wiki/Poisson_distribution].


Poisson Likelihood Example

You can use the Poisson Distribution in the PREDICTIONS section of a PoPy Fit Script as follows:-

PREDICTIONS:
    c[COUNT] ~ poisson(m[LAMBDA])





The above syntax in a Fit Script specifies the likelihood of the observed c[COUNT] count observations from the data file, when modelled as a Poisson process with estimated rate parameter m[LAMBDA].






Negative Binomial Distribution

The negative binomial is a univarite discrete distribution, written in PoPy as:-

num_succeses ~ negbinomial(prob_success, num_of_fails)





The negative binomial models the distribution of the number of successes for a series of independent Bernoulli trials until the failure count reaches ‘num_of_fails’.

The input parameters are:-


	prob_success - probability of success of each bernouilli trial


	num_of_fails - number of unsuccessful bernouilli trials before num_successes output




Here the output ‘num_successes’ is an integer. ‘num_of_fails’ is also an integer and ‘prob_success’ is a real valued number in the range [0,1].

For more information see Negative Binomial Distribution on Wikipedia [https://en.wikipedia.org/wiki/Negative_binomial_distribution].


Negative Binomial Likelihood Example

You can use the Negative Binomial Distribution in PREDICTIONS section of a PoPy Fit Script as follows:-

PREDICTIONS:
    conc = s[X]/m[V]
    p[DV_NB] = 1.0 / (1.0 + exp(-conc))
    c[DV_NB] ~ negbinomial(p[DV_NB], 1)





The above syntax in a Fit Script specifies the likelihood of the observed c[DV_NB] count data from the data file when modelled as the number of successes of a Bernoulli variable (with success rate dependent on ‘conc’ via a logistic transform) until occurrence of first failure.









          

      

      

    

  

    
      
          
            
  
Matrices

The matrices available for use in PoPy models are shown in Table 61:-


Table 61 Matrices





	Name

	Syntax





	Constant Diagonal Matrix

	y_mat = [[x(1,1), x(2,2)]]



	Constant Square Matrix

	y_mat = [[x(1,1)], [x(2,1), x(2,2)]]



	SPD Diagonal Matrix

	y_mat ~ diag_matrix() [[x(1,1), x(2,2)]]



	SPD Square Matrix

	y_mat ~ spd_matrix() [[x(1,1)], [x(1,2), x(2,2)]]







Constant Diagonal Matrix

A constant nxn diagonal matrix is specified using the following syntax:-

y_mat = [[x(1,1), x(2,2), ... , x(n,n)]]





Where:-


	y_mat is a multi-element f[X] matrix label


	x(1,1) is the first element of the diagonal


	x(n,n) is the last element of the diagonal





Note

A diagonal matrix definition in PoPy starts with double opening square brackets ‘[[‘ and ends with matching double closing square brackets ‘]]’.

This is to distinguish from a list which uses single square brackets.



An example diagonal matrix is shown below:-

f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
        [ 0.1, 0.03, 0.09, 0.07, 0.05]
    ]





Here a 5x5 matrix called f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv] is created with the following values:-


[image: \begin{pmatrix} 0.1     & 0.0      & 0.0      & 0.0   & 0.0  \\ 0.0     & 0.03     & 0.0      & 0.0   & 0.0  \\ 0.0     & 0.0      & 0.09     & 0.0   & 0.0  \\ 0.0     & 0.0      & 0.0      & 0.07  & 0.0  \\ 0.0     & 0.0      & 0.0      & 0.0   & 0.05 \\ \end{pmatrix}]


In the definition above the number of f[X] labels on the left hand side must correspond to the number of list elements along the diagonal on the right hand side. i.e. in this case they both contain 5 elements.




Constant Square Symmetric Matrix

A constant nxn square symmetric matrix is specified using the following syntax:-

y_mat = [
    [x(1,1)],
    [x(2,1), x(2,2)],
    ...
    [x(n,1), x(n,2) ... , x(n,n)]
]





Where:-


	y_mat is a multi-element f[X] matrix label


	x(1,1) is the first element of the diagonal


	x(i,j) defines the element of the ith row and jth column


	x(n,n) is the last element of the diagonal




The definition above just requires the lower triangular elements to be defined, because the matrix is assumed to be square and symmetric.

An example of defining a square symmetric matrix is shown below:-

f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
        [0.1],
        [0.01, 0.03],
        [0.01, -0.01, 0.09],
        [0.01, 0.02, 0.01, 0.07],
        [0.01, 0.02, 0.01, 0.01, 0.05],
    ]





The number of elements in each row of the matrix definition need to be [1,2,3,4,5], because the f[X] variable contains 5 elements.

Therefore a 5x5 matrix called f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv] is created with the following values:-


[image: \begin{pmatrix} 0.1      & 0.01      & 0.01     & 0.01  & 0.01 \\ 0.01     & 0.03      & -0.01    & 0.02  & 0.02 \\ 0.01     & -0.01     & 0.09     & 0.01  & 0.01 \\ 0.01     & 0.02      & 0.01     & 0.07  & 0.01 \\ 0.01     & 0.02      & 0.01     & 0.01  & 0.05 \\ \end{pmatrix}]


Note you can also define the same matrix as follows:-

f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
        [0.1 , 0.01,  0.01, 0.01, 0.01],
        [0.01, 0.03, -0.01, 0.02, 0.02],
        [0.01, -0.01, 0.09, 0.01, 0.01],
        [0.01, 0.02,  0.01, 0.07, 0.01],
        [0.01, 0.02,  0.01, 0.01, 0.05],
    ]





However this format risks accidentally creating a non-symmetric matrix.

In PoPy, you can only specify square symmetric matrices. If the input matrix is non-square PoPy will report an error. If the input matrix is square, but non-symmetric then PoPy will average the upper and lower triangles and output a warning.




Positive Definite Diagonal Matrix

A positive definite nxn diagonal matrix for estimation is specified using the following syntax:-

y_mat ~ diag_matrix() [[x(1,1), x(2,2), ... , x(n,n)]]





Where:-


	y_mat is a multi-element f[X] matrix label


	x(1,1) is the first element of the diagonal


	x(n,n) is the last element of the diagonal





Note

The ‘~’ notation means that ‘y_mat’ is a diagonal matrix to be estimated, and only initialised with the diagonal matrix specified in square brackets.



An example diagonal matrix for estimation in a Fit Script is shown below:-

f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] ~ diag_matrix() [
        [ 0.1, 0.03, 0.09, 0.07, 0.05]
    ]





Here a 5x5 matrix variable f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv] is initialised with the following values:-


[image: \begin{pmatrix} 0.1     & 0.0      & 0.0      & 0.0   & 0.0  \\ 0.0     & 0.03     & 0.0      & 0.0   & 0.0  \\ 0.0     & 0.0      & 0.09     & 0.0   & 0.0  \\ 0.0     & 0.0      & 0.0      & 0.07  & 0.0  \\ 0.0     & 0.0      & 0.0      & 0.0   & 0.05 \\ \end{pmatrix}]


In the fitting process the diagonal elements are constrained to be positive and the off diagonal terms are fixed to zero.


Note

This matrix is defined using the ‘~’ notation, however it is not a true distribution in the sense that if you sample from the matrix distribution, only the current value is returned. This fact is only relevant for a Gen Script or MGen Script.






Symmetric Positive Definite Matrix

A symmetric positive definite nxn square symmetric matrix for estimation is specified using the following syntax:-

y_mat ~ spd_matrix() [
    [x(1,1)],
    [x(2,1), x(2,2)],
    ...
    [x(n,1), x(n,2) ... , x(n,n)]
]





Where:-


	y_mat is a multi-element f[X] matrix label


	x(1,1) is the first element of the diagonal


	x(i,j) defines the element of the ith row and jth column


	x(n,n) is the last element of the diagonal




An example of defining a square symmetric matrix to be estimated is shown below:-

f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] ~ spd_matrix() [
        [0.1],
        [0.01, 0.03],
        [0.01, -0.01, 0.09],
        [0.01, 0.02, 0.01, 0.07],
        [0.01, 0.02, 0.01, 0.01, 0.05],
    ]





Here we are only defining the lower triangle elements, as the upper triangle elements are the same in a symmetric matrix. The number of elements in each row of the initial matrix definition needs to be [1,2,3,4,5], because the f[X] variable contains 5 elements.

We are declaring a 5x5 matrix called f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv], that will be estimated by a Fit Script and is constrained to be symmetric positive definite. The matrix is initialised with the following values:-


[image: \begin{pmatrix} 0.1      & 0.01      & 0.01     & 0.01  & 0.01 \\ 0.01     & 0.03      & -0.01    & 0.02  & 0.02 \\ 0.01     & -0.01     & 0.09     & 0.01  & 0.01 \\ 0.01     & 0.02      & 0.01     & 0.07  & 0.01 \\ 0.01     & 0.02      & 0.01     & 0.01  & 0.05 \\ \end{pmatrix}]


Note that the symmetric ~spd_matrix() distribution is initialised here by defining just the lower triangular elements (without loss of generality), but it can also be initialised by carefully defining all 5*5 elements.




Covariance Matrix Usage

The most common use for matrices as defined above is to define a covariance matrix for a Multivariate Normal Distribution. For example in a LEVEL_PARAMS section:-

LEVEL_PARAMS:
    INDIV:
        params: |
            r[KA,CL,V1,Q,V2] ~ mnorm(
                [0, 0, 0, 0, 0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] )





Here the matrix f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv], can be defined in any of the ways specified above, i.e. constant/variable or square/diagonal.

In the definition of r[KA, CL, V1, Q, V2], the size of the variance matrix must agree with the size of the random vector and the mean vector of the ~mnorm() distribution. See Multivariate Normal Random Effect Example for more information.







          

      

      

    

  

    
      
          
            
  
Dosing Functions

Table 62 shows the dosing functions that are available in the DERIVATIVES section and their parameters:-


Table 62 Dosing Functions





	Name

	Parameters





	@bolus

	amt/lag



	@inf_rate

	amt/lag/rate



	@inf_dur

	amt/lag/dur



	@gamma

	amt/lag/alpha/beta



	@weibull

	amt/lag/lambda/kappa







@bolus

Example of Bolus dosing:-

DERIVATIVES: |
    d[DEPOT] = @bolus{amt: c[AMT], lag: m[LAG]} - m[KE] * s[DEPOT]





This bolus dose will be activated by the ‘dose’ entry in the TYPE field of the PoPy data file. Note it is also possible to specify a named bolus dose as follows:-

DERIVATIVES: |
    dose[my_bolus] = @bolus{amt: c[AMT], lag: m[LAG]}
    d[DEPOT] = dose[my_bolus] * s[DEPOT]





This bolus dose will be activated by the ‘dose:my_bolus’ entry in the TYPE field of the PoPy data file.




@inf_rate

Example of infusion rate dosing:-

DERIVATIVES: |
    d[DEPOT] = (
        @inf_rate{amt: c[AMT], lag: m[LAG], rate: c[RATE]}
        - m[KE] * s[DEPOT])





This infusion rate dose will be activated by the ‘dose’ entry in the TYPE field of the PoPy data file. Note it is also possible to specify a named infusion rate dose as follows:-

DERIVATIVES: |
    dose[my_inf_rate] = @inf_rate{amt: c[AMT], lag: m[LAG], rate: c[RATE]}
    d[DEPOT] = dose[my_inf_rate] * s[DEPOT]





This infusion rate dose will be activated by the ‘dose:my_inf_rate’ entry in the TYPE field of the PoPy data file.




@inf_dur

Example of infusion duration dosing:-

DERIVATIVES: |
    d[DEPOT] = (
        @inf_dur{amt: c[AMT], lag: m[LAG], dur: c[DUR]}
        - m[KE] * s[DEPOT])





This infusion duration dose will be activated by the ‘dose’ entry in the TYPE field of the PoPy data file. Note it is also possible to specify a named infusion duration dose as follows:-

DERIVATIVES: |
    dose[my_inf_dur] = @inf_dur{
        amt: c[AMT], lag: m[LAG], dur: c[DUR]}
    d[DEPOT] = dose[my_inf_dur] * s[DEPOT]





This infusion duration dose will be activated by the ‘dose:my_inf_dur’ entry in the TYPE field of the PoPy data file.




@gamma

Example of gamma dosing:-

DERIVATIVES: |
    d[DEPOT] = (
        @gamma{amt: c[AMT], lag: m[LAG],
            alpha: m[ALPHA], beta: m[BETA]}
        - m[KE] * s[DEPOT]
    )





This gamma dose will be activated by the ‘dose’ entry in the TYPE field of the PoPy data file. Note it is also possible to specify a named gamma dose as follows:-

DERIVATIVES: |
    dose[my_gamma] = @gamma{
        amt: c[AMT], lag: m[LAG],
        alpha: m[ALPHA], beta: m[BETA]}
    d[DEPOT] = dose[my_gamma] * s[DEPOT]





This gamma dose will be activated by the ‘dose:my_gamma’ entry in the TYPE field of the PoPy data file.




@weibull

Example of weibull dosing:-

DERIVATIVES: |
    d[DEPOT] = (
        @weibull{
            amt: c[AMT], lag: m[LAG],
            lambda: m[LAMBDA], kappa: m[KAPPA]}
        - m[KE] * s[DEPOT]
    )





This weibull dose will be activated by the ‘dose’ entry in the TYPE field of the PoPy data file. Note it is also possible to specify a named weibull dose as follows:-

DERIVATIVES: |
    dose[my_weibull] = @weibull{
        amt: c[AMT], lag: m[LAG],
        lambda: m[LAMBDA], kappa: m[KAPPA]}
    d[DEPOT] = dose[my_weibull] * s[DEPOT]





This weibull dose will be activated by the ‘dose:my_weibull’ entry in the TYPE field of the PoPy data file.







          

      

      

    

  

    
      
          
            
  
Analytic Compartment Functions

Table 63 shows the inbuilt compartment functions that are available in the DERIVATIVES section using the ‘_cl’ suffix:-


Table 63 Compartment Model Functions using ‘_cl’





	Name

	Parameters





	@iv_one_cmp_cl

	dose/CL/V



	@dep_one_cmp_cl

	dose/KA/CL/V



	@iv_two_cmp_cl

	dose/CL/V1/Q/V2



	@dep_two_cmp_cl

	dose/KA/CL/V1/Q/V2



	@iv_three_cmp_cl

	dose/CL/V1/Q2/V2/Q3/V3



	@dep_three_cmp_cl

	dose/KA/CL/V1/Q2/V2/Q3/V3






The ‘_cl’ suffix means that elimination rates between compartments (K) are generally parameterised as follows:-


[image: K = CL/V]


i.e. the ratio of the clearance and volume of distribution.


@iv_one_cmp_cl

Intra-venous one compartment model:-

DERIVATIVES: |
    s[CEN] = @iv_one_cmp_cl{
        dose: @bolus{amt:c[AMT]},
        CL: m[CL], V: m[V]}





This analytic model is equivalent to solving numerically:-

DERIVATIVES: |
    d[CEN] = @bolus{amt:c[AMT]} - s[CEN]*m[CL]/m[V]





See One Compartment Model with Intravenous Dosing for full example.




@dep_one_cmp_cl

Depot and one compartment model:-

DERIVATIVES: |
    s[DEP,CEN] = @dep_one_cmp_cl{
        dose: @bolus{amt:c[AMT]},
        KA: m[KA], CL: m[CL], V: m[V]}





Numerical ordinary differential equation equivalent is:-

DERIVATIVES: |
    d[DEP] = @bolus{amt:c[AMT]} - s[DEP]*m[KA]
    d[CEN] = s[DEP]*m[KA] - s[CEN]*m[CL]/m[V]





See One Compartment Model with Absorption for full example.




@iv_two_cmp_cl

Intra-venous two compartment model:-

DERIVATIVES: |
    s[CEN,PERI] = @iv_two_cmp_cl{
        dose: @bolus{amt:c[AMT]},
        CL: m[CL], V1: m[V1],
        Q: m[Q], V2: m[V2]}





Numerical ordinary differential equation equivalent is:-

DERIVATIVES: |
    d[CEN] = (
        @bolus{amt:c[AMT]} - s[CEN]*m[CL]/m[V1]
        - s[CEN]*m[Q]/m[V1] + s[PERI]*m[Q]/m[V2]
    )
    d[PERI] = s[CEN]*m[Q]/m[V1] - s[PERI]*m[Q]/m[V2]





See Two Compartment Model with Intravenous Dosing for full example.




@dep_two_cmp_cl

Depot and two compartment model:-

DERIVATIVES: |
    s[DEP,CEN,PERI] = @dep_two_cmp_cl{
        dose: @bolus{amt:c[AMT]},
        KA: m[KA],
        CL: m[CL], V1: m[V1],
        Q: m[Q], V2: m[V2]}





Numerical ordinary differential equation equivalent is:-

DERIVATIVES: |
    d[DEP] = @bolus{amt:c[AMT]} - s[DEP]*m[KA]
    d[CEN] = (
        s[DEP]*m[KA] - s[CEN]*m[CL]/m[V1]
        - s[CEN]*m[Q]/m[V1] + s[PERI]*m[Q]/m[V2]
    )
    d[PERI] = s[CEN]*m[Q]/m[V1] - s[PERI]*m[Q]/m[V2]





See Two Compartment Model with Absorption for full example.




@iv_three_cmp_cl

Intra-venous three compartment model:-

DERIVATIVES: |
    s[CEN,PERI1,PERI2] = @iv_three_cmp_cl{
        dose: @bolus{amt:c[AMT]},
        CL: m[CL], V1: m[V1],
        Q2: m[Q2], V2: m[V2],
        Q3: m[Q3], V3: m[V3]
    }





Numerical ordinary differential equation equivalent is:-

DERIVATIVES: |
    d[CEN] = (
        @bolus{amt:c[AMT]}  - s[CEN]*m[CL]/m[V1]
        - s[CEN]*m[Q2]/m[V1] + s[PERI1]*m[Q2]/m[V2]
        - s[CEN]*m[Q3]/m[V1] + s[PERI2]*m[Q3]/m[V3]
    )
    d[PERI1] = s[CEN]*m[Q2]/m[V1] - s[PERI1]*m[Q2]/m[V2]
    d[PERI2] = s[CEN]*m[Q3]/m[V1] - s[PERI2]*m[Q3]/m[V3]





See Three Compartment Model with Intravenous Dosing for full example.




@dep_three_cmp_cl

Depot and three compartment model:-

DERIVATIVES: |
    s[DEP,CEN,PERI1,PERI2] = @dep_three_cmp_cl{
        dose: @bolus{amt:c[AMT]},
        KA: m[KA],
        CL: m[CL], V1: m[V1],
        Q2: m[Q2], V2: m[V2],
        Q3: m[Q3], V3: m[V3]
    }





Numerical ordinary differential equation equivalent is:-

DERIVATIVES: |
    d[DEP] = @bolus{amt:c[AMT]} - s[DEP]*m[KA]
    d[CEN] = (
        s[DEP]*m[KA]  - s[CEN]*m[CL]/m[V1]
        - s[CEN]*m[Q2]/m[V1] + s[PERI1]*m[Q2]/m[V2]
        - s[CEN]*m[Q3]/m[V1] + s[PERI2]*m[Q3]/m[V3]
    )
    d[PERI1] = s[CEN]*m[Q2]/m[V1] - s[PERI1]*m[Q2]/m[V2]
    d[PERI2] = s[CEN]*m[Q3]/m[V1] - s[PERI2]*m[Q3]/m[V3]





See Three Compartment Model with Absorption for full example.

It is also possible to parametrise the rates directly using the ‘_k’ suffix, see Table 64:-


Table 64 Compartment Model Functions using ‘_k’





	Name

	Parameters





	@iv_one_cmp_k

	dose/KE



	@dep_one_cmp_k

	dose/KA/KE



	@iv_two_cmp_k

	dose/KE/K12/K21



	@dep_two_cmp_k

	dose/KA/KE/K12/K21



	@iv_three_cmp_k

	dose/KE/K12/K21/K13/K31



	@dep_three_cmp_cl

	dose/KA/KE/K12/K21/K13/K31









@iv_one_cmp_k

Intra-venous one compartment model:-

DERIVATIVES: |
    s[CEN] = @iv_one_cmp_k{
        dose: @bolus{amt:c[AMT]},
        KE: m[KE]}





Numerical ordinary differential equation equivalent is:-

DERIVATIVES: |
    d[CEN] = @bolus{amt:c[AMT]} - s[CEN]*m[KE]








@dep_one_cmp_k

Depot and one compartment model:-

DERIVATIVES: |
    s[DEP,CEN] = @dep_one_cmp_k{
        dose: @bolus{amt:c[AMT]},
        KA: m[KA], KE: m[KE]}





Numerical ordinary differential equation equivalent is:-

DERIVATIVES: |
    d[DEP] = @bolus{amt:c[AMT]} - s[DEP]*m[KA]
    d[CEN] = s[DEP]*m[KA] - s[CEN]*m[KE]








@iv_two_cmp_k

Intra-venous two compartment model:-

DERIVATIVES: |
    s[CEN,PERI] = @iv_two_cmp_k{
        dose: @bolus{amt:c[AMT]},
        KE: m[KE], K12: m[K12], K21: m[K21]}





Numerical ordinary differential equation equivalent is:-

DERIVATIVES: |
    d[CEN] = (
        @bolus{amt:c[AMT]} - s[CEN]*m[KE]
        - s[CEN]*m[K12] + s[PERI]*m[K21]
    )
    d[PERI] = s[CEN]*m[K12] - s[PERI]*m[K21]








@dep_two_cmp_k

Depot and two compartment model:-

DERIVATIVES: |
    s[DEP,CEN,PERI] = @dep_two_cmp_k{
        dose: @bolus{amt:c[AMT]},
        KA: m[KA], KE: m[KE],
        K12: m[K12], K21: m[K21]}





Numerical ordinary differential equation equivalent is:-

DERIVATIVES: |
    d[DEP] = @bolus{amt:c[AMT]} - s[DEP]*m[KA]
    d[CEN] = (
        s[DEP]*m[KA] - s[CEN]*m[KE]
        - s[CEN]*m[K12] + s[PERI]*m[K21]
    )
    d[PERI] = s[CEN]*m[K12] - s[PERI]*m[K21]








@iv_three_cmp_k

Intra-venous three compartment model:-

DERIVATIVES: |
    s[CEN,PERI1,PERI2] = @iv_three_cmp_k{
        dose: @bolus{amt:c[AMT]},
        KE: m[KE],
        K12: m[K12], K21: m[K21],
        K13: m[K13], K31: m[K31]}





Numerical ordinary differential equation equivalent is:-

DERIVATIVES: |
    d[CEN] = (
        @bolus{amt:c[AMT]} - s[CEN]*m[KE]
        - s[CEN]*m[K12] + s[PERI1]*m[K21]
        - s[CEN]*m[K13] + s[PERI2]*m[K31]
    )
    d[PERI1] = s[CEN]*m[K12] - s[PERI1]*m[K21]
    d[PERI2] = s[CEN]*m[K13] - s[PERI2]*m[K31]








@dep_three_cmp_k

Depot and three compartment model:-

DERIVATIVES: |
    s[DEP,CEN,PERI1,PERI2] = @dep_three_cmp_k{
        dose: @bolus{amt:c[AMT]},
        KA: m[KA], KE: m[KE],
        K12: m[K12], K21: m[K21],
        K13: m[K13], K31: m[K31]}





Numerical ordinary differential equation equivalent is:-

DERIVATIVES: |
    d[DEP] = @bolus{amt:c[AMT]} - s[DEP]*m[KA]
    d[CEN] = (
        s[DEP]*m[KA] - s[CEN]*m[KE]
        - s[CEN]*m[K12] + s[PERI1]*m[K21]
        - s[CEN]*m[K13] + s[PERI2]*m[K31]
    )
    d[PERI1] = s[CEN]*m[K12] - s[PERI1]*m[K21]
    d[PERI2] = s[CEN]*m[K13] - s[PERI2]*m[K31]











          

      

      

    

  

    
      
          
            
  
Script Nodes

A PoPy script file is in YAML format, which consists of nested dictionaries that form a tree structure.

Each node of the tree is either:-


	a dictionary (dict) with sub nodes


	or a leave node




A leave node has to be one of the script node types listed below.


	auto

	The word “auto”, indicating a preference for default behaviour.



	bool

	A boolean: “true”/”yes”/”y”/”1” or “False”/”no”/”n”/”0”



	dict

	A dictionary of unspecified structure - the user chooses the keys.

Many of the elements of a script file are known as dictionaries (also known as mappings or associative arrays). These are key:value pairs that can be written as follows using curly brackets:-

my_dictionary1: { key1: value1, key2: value2 }





or alternatively using spacing:-

my_dictionary2:
    key1: value1
    key2: value2





Whichever you use is a matter of convenience and space.



	dict_record

	A dictionary with a pre-determined structure (i.e. key names and corresponding types)



	float

	Any number



	input_file

	The path to a file that already exists. (An error occurs if it does not.)



	input_file_as_glob

	A pattern (e.g. *.csv) that has only a single match. (An error occurs if there are multiple matching filenames.)



	input_files_as_glob

	A pattern (e.g. "*.csv") that has at least one match. (An error occurs only if there are no matching filenames.)



	input_folder

	The path to a folder that already exists. (An error occurs if it does not.)



	int

	An integer (whole number)



	list

	A list of values of unspecified type.



	list_of

	A list of one or more strings taken from the list of options in brackets.



	list_record

	A list



	none

	The word “none”, indicating a file that does not exist.



	one_of

	A string, limited to one of the options given in brackets.



	one_of_record

	One from a selection of dict_records



	output_file

	The path to a file that may not yet exist (in contrast to input_file).



	output_folder

	The path to a folder that may not yet exist (in contrast to input_folder).



	pseudocode

	verbatim sections of the script file accept Python code with extra PoPy syntax added. For example special variable names such as f[X], r[X] etc. We refer to this code as ‘pseudocode’. Pseudocode is automatically translated into runnable Python functions that are executed by PoPy to process your script.



	repeat_record

	One or more of a selection of dict_records



	star

	The “*” character, shorthand for “all possibilities”.



	str

	A string.



	verbatim

	Several blocks in the script file (namely MODEL_PARAMS, STATES, DERIVATIVES and PREDICTIONS) are reserved for pseudocode of a relatively unstructured kind. This is translated into executable code.









          

      

      

    

  

    
      
          
            
  
Script File Outputs

The files generated by PoPy scripts are described in Table 65:-


Table 65 Script Outputs





	Script Name

	Outputs





	fit

	Files Generated by Fit Script



	gen

	Files Generated by Gen Script



	sim

	Files Generated by Sim Script



	tut

	Files Generated by Tut Script



	comp

	Files Generated by Comp Script



	mfit

	Files Generated by MFit Script



	mgen

	Files Generated by MGen Script



	msim

	Files Generated by MSim Script



	mtut

	Files Generated by MTut Script



	mcomp

	Files Generated by MComp Script



	fitsum

	Files Generated by Fitsum Script



	gensum

	Files Generated by Gensum Script



	tutsum

	Files Generated by Tutsum Script













          

      

      

    

  

    
      
          
            
  
Files Generated by Fit Script

You can examine the fit_script log file and the html output. However it is useful to also
understand the files output to disk by a fitting script.

The files generated in the same folder as ‘fit_example1.pyml’ are:-

fit_example1.pyml.html
fit_example1.pyml.run.main.log





Here ‘fit_example1.pyml.html’ is a shortcut to the web page output. ‘fit_example1.pyml.run.main.log’, contains a copy of the text output to the console whilst running popy_run. This text file acts as an audit trail if you want to review the output of running the fit script later, or text search the console output for example.

The main file outputs from ‘fit_example1.pyml’ are contained in the folder called:-

fit_example1.pyml_output





The default convention for most PoPy scripts is to generate an output folder for each individual script as follows:-

script_name + '_output'





This simple convention has the useful facility of guaranteeing a unique output folder for each PoPy script file, so you can run multiple *.pyml files in the same folder without worrying about over-writing output from other scripts (something other PopPK/PD systems struggle with).

Note if you attempt to run the same *.pyml file twice than PoPy will ask you if you want to over-write the previous output folder. You can force PoPy to over-write existing folders using:-

$ popy_run -o fit_example1.pyml





See popy_run for more command line switch options.

The contents of the ‘fit_example1.pyml_output’ are determined by the OUTPUT_SCRIPTS section of the ‘fit_example1.pyml’ script file:-

OUTPUT_SCRIPTS:
    SIM: {output_mode: gen_script_and_run, sim_time_step: 1.0}
    MSIM: {output_mode: gen_script_only}
    FITSUM: {output_mode: gen_script_and_run}





This section requests that a Sim Script, MSim Script and FitSum Script child script are created after the main Fit Script has finished. Note the Sim Script and FitSum Script will also be run automatically. So you end up with output folders on disk with this structure:-

fit_example1.pyml_output/
    fit/
    msim/
    sim/
    sum/





in which


	fit contains the results of running the Fit Script


	msim is a MSim Script that can be run later to generate a visual predictive check


	sim is the results of running Sim Script to create smoother profile curves from the fitted results


	sum is a html summary of the fitted model




This system of PoPy automatically generating new child scripts to process the results of an original parent script (which is called using popy_run) is key concept in how PoPy works, see Typical Workflows. It is hierarchical scripting of hierarchical PopPK/PD modelling!

Note the OUTPUT_SCRIPTS section is entirely optional. If you remove the OUTPUT_SCRIPTS section from the ‘fit_example1.pyml’, then you just end up with a single output folder as follows:-

fit_example1.pyml_output/fit





We will now look at the outputs of the individual scripts in each subfolder.


Fit Script Outputs

The ‘fit’ subfolder has the following structure:-

fit_example1.pyml_output/
    fit/
        _temp
        observed_data
        sol0
        sol00
        sol1
        solN
        compartment_diagram.dot
        compartment_diagram.svg
        OBJV_vs_time.csv





In this folder, the files are as follows:-


	‘compartment_diagram.dot’ - dot Graphviz file derived from DERIVATIVES


	‘compartment_diagram.svg’ - scalable vector graphics file displaying the compartment structure, derived from the .dot file


	‘OBJV_vs_time.csv’ - table showing objective value vs time, see OBJV_vs_time




The subfolders are:-


	_temp - Temporary folder used by PoPy to create Python functions


	observed_data - Contains filtered copy of ‘fit_example1_data.csv’ input data


	solX - Where X is one of [0,00,1,N]




You can examine the ‘_temp’ folder when debugging, if one of the ‘.py’ python functions derived from the ‘fit_example1.pyml’ script has not compiled properly. Or just for the curious.

The ‘observed data’ folder is a copy of the input data, which contains the original data set but may have been filtered using an optional PREPROCESS.

The solX folders each contain the current solution at each stage of processing. As follows:-


	sol00 - Solution using initial f[X] and all r[X] =0.0


	sol0 - Solution using initial f[X] and fitted r[X]


	sol1 - Solution for first fitting method


	sol2 - Solution for second fitting method (not present for ‘fit_example1.pyml’)


	solXXX - Solution for further fitting methods …


	solN - Final Solution (copy of sol1 folder for ‘fit_example1.pyml’)




Each solution folder contains multiple files the principle files being:-


	cur_fx_params.txt - f[X] parameters in human readable format


	cur_rx_params.txt - r[X] parameters in human readable format


	cur_obj_value.txt - current objective value




There are also various .csv files which are more verbose, but easier to load in to software programs, e.g. PoPy or R for example.

Note sol00, sol0 and solN each contain a single solution. However here the ‘sol1’ folder contains the results of applying the ‘JOE’ fitting method and has a slightly different structure:-

fit_example1.pyml_output/
    fit/
        solXXX/
            itYYY/





Where XXX is the fitting method and YYY is the results of single iteration of the ‘JOE’ fitting algorithm.

The final solution for the Fit Script are at this location on disk:-

fit_example1.pyml_output/
    fit/
        solN/








Sim Script Outputs

The Fit Script creates the child Sim Script within the ‘sim’ subfolder:-

fit_example1.pyml_output/
    sim/
        fit_example1_sim.pyml





The ‘fit_example1_sim.pyml’ script, is run automatically after the ‘fit_example1.pyml’ script has finished. This Sim Script creates dense profile plots of the fitted model predicted values at time steps of 1.0, which can then be compared with the original simulated data for each individual.

The full set of dense data plots for all individuals are located in this folder on disk:-

fit_example1.pyml_output/
    sim/
        dense/
            DV_CENTRAL,DV_CENTRAL,DV_CENTRAL_wrt_TIME_spag_graphs





For more information see Files Generated by Sim Script.




MSim Script Outputs

The Fit Script creates the child MSim Script within the ‘msim’ subfolder:-

fit_example1.pyml_output/
    msim/
        fit_example1_msim.pyml





This MSim Script is generated by the original fit_script but not run automatically due to this line:-

MSIM: {output_mode: gen_script_only}





The purpose of the msim script is to generate a visual predictive check by simulating from the fitted model and comparing the simulated curves to the original data set. Running the ‘msim’ script is described in Visual Predictive Check for Simple PopPK Model.

For more information on files output once the MSim Script is run see Files Generated by MSim Script.




FitSum Outputs

The Fit Script creates the child FitSum Script within the ‘sum’ subfolder:-

fit_example1.pyml_output/
    sum/
        fit_example1_fitsum.pyml





The purpose of this script is to summarise the fit/sim output using automatically generated web pages.

This sum tool displays the output from running a Fit Script and the child Sim Script on disk in a convenient format. For more information see Files Generated by Fitsum Script.

The output from sum tools is also used to automate large parts of this documentation.







          

      

      

    

  

    
      
          
            
  
Files Generated by Gen Script

This section discusses how the Gen Script saves files to disk, you can see an example in Generate a Two Compartment PopPK Data Set. After running a gen script, named ‘my_gen_script.pyml’, using the command:-

$ popy_run my_gen_script.pyml





the output folder ‘my_gen_script.pyml_output’ will be created as follows:-

my_gen_script.pyml_output/
    gen/
    sim/
    sum/





where


	gen contains the results of running the Gen Script


	sim contains the results of running Sim Script to create smoother profile curves and


	sum is a html summary of the generated data.




The Gen Script also creates a log file my_gen_script.pyml.run.main.log that stores the output to the command prompt.


Gen Folder Output

The gen folder has the following contents:-

builtin_gen_example_gen.pyml_output/
    gen/
        _temp/
        clean_sol/
        noisy_sol/
        compartment_diagram.dot
        compartment_diagram.svg
        dupe_covars_data.csv
        synthetic_data.csv





Here ‘_temp’ is a temporary folder used by PoPy. The file ‘dupe_covars_data.csv’ is an intermediate file.

A compartment diagram is created in .svg format. The .dot file is the Graphviz file, used to create the .svg file. You can see an example compartment diagram in Fig. 42.

The ‘clean_sol’ folder contains a solution with no noise added. The ‘noisy_sol’ contains as solution with measurement noise added. For example the ‘noisy_sol’ folder contains these files:-

builtin_gen_example_gen.pyml_output/
    gen/
        noisy_sol/
            fx_params.csv
            mx_params.csv
            rx_params.csv
            solution.pyml
            sx_params.csv
            synthetic_data.csv





Here the key file is ‘synthetic_data.csv’, which is the full synthetic data file generated for this population. The other files represent intermediate variables for each time point, see Files Generated by Sim Script for more information.

Note the ‘synthetic_data.csv’ file is also output to this location, for easier access:-

builtin_gen_example_gen.pyml_output/
    gen/
        synthetic_data.csv





It is the main data file created by the Gen Script.




Naming of child scripts

Each child script file name is based on the following entry, in the parent Gen Script:-

DESCRIPTION: {name: <gen_name>}





This naming convention for output folders and generated scripts is followed by all Script File Formats in PoPy.




Gen Sim Folder Output

The Gen Script creates the following Sim Script:-

my_gen_script.pyml_output/
    sim/
        <gen_name>_sim.pyml





This Sim Script plots smooth PK curves to visualise the f[X] parameters sampled by the Gen Script. See Files Generated by Sim Script for more details.




Gen Sum Folder Output

The Gen Script creates the following GenSum Script:-

my_gen_script.pyml_output/
    sum/
        <gen_name>_gensum.pyml





The GenSum Script creates html output that summaries the gen and sim folders. See Files Generated by Gensum Script for more details.







          

      

      

    

  

    
      
          
            
  
Files Generated by Sim Script

This section discusses how the Sim Script saves files to disk. Typically a Sim Script is created in a sub folder as a child script of a Fit Script or Gen Script.

Here we assume that the Sim Script was created by a Fit Script parent. Similar to the Fit Script described in Files Generated by Fit Script.

When a Sim Script is run, folders will be created on disk (within the same folder as the script) as follows:-

_temp
dense
observed_data





Here ‘_temp’ is a folder used by PoPy to write temporary python functions and ‘dense’ contains the final plots.

‘observed_data’ is a solution folder that only contains original input data from the Sim Script, for example, as specified in the ‘input_data_file’ field:-

FILE_PATHS:
    input_data_file: ..\gen\synthetic_data.csv





Here, the ‘observed_data’ folder contains a copy of the ‘synthetic_data.csv’ generated by the Gen Script. The other folders generated by the Sim Script are named after the solutions loaded in by the ‘solutions’ section of the Sim Script section, for example:-

FILE_PATHS:
    solutions:
        initial: ..\fit\sol00\solution.pyml
        final: ..\fit\solN\solution.pyml





Therefore solution folders ‘initial’ and ‘final’ will be created and will contain simulated PK data using the original solution folders from the fit output above.

The Sim Script generates s[X] state values and noiseless p[X] predictions at regular, dense time intervals (1.0 hours). These files are also saved as comma separated value .csv files (one per individual) in:-

initial/
    pred_1.csv
    ...
    pred_50.csv
    sx_1.csv
    ...
    sx_50.csv





And similarly in the ‘final’ solution folder. Here the Sim Script is effectively re-creating the original initial f[X] solution and final f[X] solution, but sampling more time points, to generate smoother PK curves.

The sim script also outputs a Grph Script that plots the ‘initial’, ‘final’ and ‘observed_data’ solutions on one graph, with one plot per individual in the ‘dense’ folder:-

dense/
    DV_CENTRAL,DV_CENTRAL,DV_CENTRAL_wrt_TIME_spag_graphs/
        000000.svg
        ...
        000049.svg









          

      

      

    

  

    
      
          
            
  
Files Generated by Tut Script

This section describes the output files from the Tut Script, you can see examples in Generate data and Fit using Simple PopPK Model and Generate data and Fit using a Two Compartment Model.

After running a tutorial script, named ‘my_tut_script.pyml’, as follows:-

$ popy_run my_tut_script.pyml





the output folder will contain four new scripts:-

my_tut_script.pyml_output/
    <tut_name>_gen.pyml
    <tut_name>_fit.pyml
    <tut_name>_comp.pyml
    <tut_name>_tutsum.pyml





Note the tutorial output folder name my_tut_script.pyml_output is derived from the tutorial script filename. However the generated script file names are based on the following entry:-

DESCRIPTION: {name: <tut_name>}





This naming convention for output folders and generated scripts is followed by all Script File Formats in PoPy.

Scripts and description names should be chosen with this in mind, i.e. short names without spaces are recommended.

For a Tut Script the four subscripts are run automatically, see Table 66 for links to the files generated by the tut subscripts, each in their own sub directories.







	Script

	Outputs





	<tut_name>_gen.pyml

	Files Generated by Gen Script



	<tut_name>_fit.pyml

	Files Generated by Fit Script



	<tut_name>_comp.pyml

	Files Generated by Comp Script



	<tut_name>_tutsum.pyml

	Files Generated by Tutsum Script






If all four scripts execute then you will see a file structure like:-

my_tut_script.pyml_output/
    <tut_name>_gen.pyml_output/
    <tut_name>_fit.pyml_output/
    <tut_name>_comp.pyml_output/
    <tut_name>_tutsum.pyml_output/









          

      

      

    

  

    
      
          
            
  
Files Generated by Comp Script

This section discusses how the comp script saves files to disk, if you want to see a full Comp Script example using a Tut Script try Generate data and Fit using a Two Compartment Model.

Output from an Comp Script called ‘builtin_tut_example_comp.pyml’ are as follows:-

builtin_tut_example_comp.pyml_output/
    _temp
    dense
    re_fit
    re_gen
    builtin_tut_example_dense_grph.pyml
    builtin_tut_example_dense_grph.pyml.run.main.log





The ‘_temp’ folder contains the temporary functions generated by PoPy.

The ‘dense’ folder contains the PK curve plots of fitted vs true f[X] and the synthetic data. These plots are generated by the ‘builtin_tut_example_dense_grph.pyml’ Grph Script.

The ‘re_fit’ folder contains the output from optimising the r[X] when computing the fitted f[X] objective function.

The ‘re_gen’ folder contains the output from optimising the r[X] when computing the true f[X] objective function.





          

      

      

    

  

    
      
          
            
  
Files Generated by MFit Script

This section discusses how the mfit script saves files to disk, if you want to see a full MFit Script example using a MTut Script try Generate multiple data sets and Fit using a Two Compartment Model.

Outputs from an MFit Script called ‘builtin_mtut_example_mfit.pyml’ are as follows:-

builtin_mtut_example_mfit.pyml_output/
    _temp
    fitpop_*
    compartment_diagram.dot
    compartment_diagram.svg





The ‘_temp’ folder contains the temporary functions generated by PoPy. The ‘compartment_diagram.dot’ file is a Graphviz file used to generate the ‘compartment_diagram.svg’ image file.

The main output of MFit Script are the multiple ‘fitpop_*’ folders. Each of these folders contains the results of fitting the model to a separate synthetic data set.

The input data files are determined by the FILE_PATHS section of the MFit Script. For example the entry:-

FILE_PATHS:
    input_data_files_glob: builtin_mtut_example_mgen.pyml_output/genpop_*/noisy_sol/synthetic_data.csv





Notice the ‘*’ in the ‘input_data_files_glob’ field, which uses a glob pattern to load multiple data files. Essentially any files matching this pattern, usually generated by a MGen Script, see Files Generated by MGen Script.

The structure of each ‘fitpop_*’ folder is as follows:-

builtin_mtut_example_mfit.pyml_output/
    fitpop_*/
        sol00/
        sol0/
        sol1/
        solN/
        OBJV_vs_time.csv





This folder structure is very similar to the output of a Fit Script. See Fit Script Outputs for a detailed explanation. The main result of each fit are the final f[X] parameter estimates which are store here:-

builtin_mtut_example_mfit.pyml_output/
    fitpop_*/
        solN/
            fx_params.csv





The ‘fx_params.csv’ contains the fitted f[X] which can be compared with the equivalent true f[X] values generated by MGen Script, usually located here (see Files Generated by MGen Script):-

builtin_mtut_example_mgen.pyml_output/
    genpop_*/
        noisy_sol/
            fx_params.csv





The fitted vs true f[X] comparison is performed using the MComp Script, see (see Files Generated by MComp Script):

Note the MFit Script has no OUTPUT_SCRIPTS section, so does not generate any child scripts unlike a Fit Script see Files Generated by Fit Script.





          

      

      

    

  

    
      
          
            
  
Files Generated by MGen Script

This section discusses how the mgen script saves files to disk, if you want to see a full MGen Script example using a MTut Script try Generate multiple data sets and Fit using a Two Compartment Model.

Outputs from an MGen Script called ‘builtin_mtut_example_mgen.pyml’ are as follows:-

builtin_mtut_example_mgen.pyml_output/
    _temp
    genpop_*
    compartment_diagram.dot
    compartment_diagram.svg





The ‘_temp’ folder contains the temporary functions generated by PoPy. The ‘compartment_diagram.dot’ file is a Graphviz file used to generate the ‘compartment_diagram.svg’ image file.

The main output of MGen Script are the multiple ‘genpop_*’ folders. Each of these folders contains the current sampled f[X] values and the synthetic data generated from the f[X] and the model.

Note the number of ‘genpop_*’ folders created by the MGen Script is determined by the ‘n_pop_samples’ in the  mgen-output_options_spec section:-

OUTPUT_OPTIONS: {n_pop_samples: 30}





The structure of each ‘genpop_*’ folder is as follows:-

builtin_mtut_example_mgen.pyml_output/
    genpop_*/
        clean_sol/
        noisy_sol/
        dupe_covars_data.csv
        gen_fx_params.txt





Here the ‘gen_fx_params.txt’ is a human readable text file containing the f[X] values for this population. The ‘dupe_covars_data.csv’ is an intermediate file used by PoPy when constructing a new data set. The ‘clean_sol’ folder contains a solution with no noise added. The ‘noisy_sol’ contains as solution with measurement noise added. For example the ‘noisy_sol’ folder contains these files:-

builtin_mtut_example_mgen.pyml_output/
    genpop_*/
        noisy_sol/
            fx_params.csv
            mx_params.csv
            rx_params.csv
            solution.pyml
            sx_params.csv
            synthetic_data.csv





Here the key file is ‘synthetic_data.csv’, which is the full synthetic data file generated for this population.

The other files represent intermediate variables for each time point, see Files Generated by Sim Script for more information.

Note the MGen Script has no OUTPUT_SCRIPTS section, so does not generate any child scripts unlike a Gen Script see Files Generated by Gen Script.





          

      

      

    

  

    
      
          
            
  
Files Generated by MSim Script

This section discusses how the MSim Script saves files to disk, if you want to see an example of a MSim Script generated by a Fit Script then see Fitting a Two Compartment PopPK Model.

Outputs from an msim script called ‘fit_example1_msim.pyml’ are:-

fit_example1_msim.pyml_output/
    _temp
    msol
    fit_example1_vpc.pyml





The ‘_temp’ folder contains the temporary functions generated by PoPy and the ‘msol’ folder contains the new simulated populations. There is one .csv file per simulated population, that all have the same number of rows as the original ‘fit_example1_data.csv’.

The MSim Script also outputs the ‘fit_example1_vpc.pyml’ Vpc Script and runs it automatically after finishing the multi population simulation. The vpc_script is responsible for loading in the data from the ‘msol’ folder and creating a vpc graph.

The output of the ‘fit_example1_vpc.pyml’ script is here:-

fit_example1_msim.pyml_output/
    DV_CENTRAL_sim,DV_CENTRAL_wrt_TIME_SINCE_LAST_DOSE_comb_quant_sim_vpc/
        000000.svg





The parameters of the vpc graph are used in the folder name, so it ends up being quite long.





          

      

      

    

  

    
      
          
            
  
Files Generated by MTut Script

This section discusses how the MTut Script saves files to disk. After running a multi-tutorial script, named ‘my_mtut_script.pyml’, as follows:-

$ popy_run my_mtut_script.pyml





the output folder will contain three new scripts:-

my_mtut_script.pyml_output/
    <mtut_name>_mgen.pyml
    <mtut_name>_mfit.pyml
    <mtut_name>_mcomp.pyml





Note the multi-tutorial output folder name my_mtut_script.pyml_output is derived from the multi-tutorial script filename. However the generated script file names are based on the following entry:-

DESCRIPTION: {name: <mtut_name>}





This naming convention for output folders and generated scripts is followed by all Script File Formats in PoPy.

It is worth naming your scripts and description names with this in mind, i.e., short names without spaces are recommended.

For a MTut Script the three subscripts are usually run automatically, see Table 67 for links to the files generated by each of the subscripts, in their own sub folders.







	Script

	Outputs





	<mtut_name>_mgen.pyml

	mgen outputs



	<mtut_name>_mfit.pyml

	mfit outputs



	<mtut_name>_mcomp.pyml

	mcomp outputs






These three scripts are run in order. When all three scripts are run then you end up with a file structure like:-

my_mtut_script.pyml_output/
    <mtut_name>_mgen.pyml_output/
    <mtut_name>_mfit.pyml_output/
    <mtut_name>_mcomp.pyml_output/









          

      

      

    

  

    
      
          
            
  
Files Generated by MComp Script

This section discusses how the mcomp script saves files to disk, if you want to see a full MComp Script example using a MTut Script try Generate multiple data sets and Fit using a Two Compartment Model.

Output from an MComp Script called ‘builtin_mtut_example_mcomp.pyml’ are as follows:-

builtin_mtut_example_mcomp.pyml_output/
    _temp
    fx_scatter
    mcomp_sections
    mfit_sections
    mgen_sections
    final_fx.csv
    gt_fx.csv
    init_fx.csv
    type_fx.csv





The ‘_temp’ folder contains the temporary functions generated by PoPy. The ‘fx_scatter’ folder contains the scatter plots of fitted vs true f[X]. For example files like:-

builtin_mtut_example_mcomp.pyml_output/
    fx_scatter/
        fitted_vs_true_for_f[cl].svg
        fitted_vs_true_for_f[ka].svg
        fitted_vs_true_for_f[pnoise].svg
        ..





The folders named ‘*_sections’, just contain the original .pyml scripts in sections for use in the PoPy documentation.

The .csv files are as follows:-


Table 68 .csv file output by MComp Script





	Filename

	Contents





	final_fx.csv

	Each row contains f[X] estimates for one population



	gt_fx.csv

	Each row contains true f[X] values for one population



	init_fx.csv

	Each row contains starting f[X] values for one population



	type_fx.csv

	Each row contains f[X] type (e.g. main or var f[X])






Note each of the *_fx.csv files has the same number of rows and columns, so you could easily load this data into R for further analysis if you like.





          

      

      

    

  

    
      
          
            
  
Files Generated by Fitsum Script

This section discusses how the FitSum Script saves files to disk, if you want to see an example of a FitSum Script created by a Fit Script, see Fitting a Two Compartment PopPK Model.

If you run a FitSum Script using the following command:-

$ popy_run my_fitsum_script.pyml





files and folders will be created on disk (within the same folder as the script) as follows:-

build
src
my_fitsum_script.pyml.html
my_fitsum_script.pyml.run.main.log
sphinx.log





Here ‘src’ contains files copied from the output of the parent Fit Script and some automatically generated .rst files.

The ‘build’ folder is the output of running Sphinx on the ‘src’ files. Sphinx is a utility for processing .rst files into HTML and optionally other formats. The main output of running sphinx is here:-

build/
    html/
        index.html





Here ‘sphinx.log’ is the log file for Sphinx and ‘my_fitsum_script.pyml.run.main.log’ is the log file for the FitSum Script.

You can view the summary of the fit/sim output to HTML files by typing:-

$ popy_view my_fitsum_script.pyml.html





Which should look something like First order absorption model with peripheral compartment.





          

      

      

    

  

    
      
          
            
  
Files Generated by Gensum Script

This section discusses how the GenSum Script saves files to disk, if you want to see an example of a GenSum Script created by a Gen Script, see Generate a Two Compartment PopPK Data Set.

If you run a GenSum Script using the following command:-

$ popy_run my_gensum_script.pyml





folders will be created on disk (within the same folder as the script) as follows:-

build
src
my_gensum_script.pyml.html
my_gensum_script.pyml.run.main.log
sphinx.log





Here ‘src’ contains files copied from the output of the parent Gen Script and some automatically generated .rst files.

The ‘build’ folder is the output of running Sphinx on the ‘src’ files. Sphinx is a utility for processing .rst files into HTML and optionally other formats. The main output of running sphinx is here:-

build/
    html/
        index.html





Here ‘sphinx.log’ is the log file for Sphinx and ‘my_gensum_script.pyml.run.main.log’ is the log file for the GenSum Script.

You can view the summary of the gen/sim output to HTML files by typing:-

$ popy_view my_gensum_script.pyml.html





Which should look something like First order absorption model with peripheral compartment.





          

      

      

    

  

    
      
          
            
  
Files Generated by Tutsum Script

This section describes the output of the TutSum Script. If you want to see an example of a TutSum Script created by a Tut Script, see Generate data and Fit using Simple PopPK Model.

If you run a TutSum Script using the following command:-

$ popy_run my_tutsum_script.pyml





folders will be created on disk (within the same folder as the script) as follows:-

build
src
my_tutsum_script.pyml.html
my_tutsum_script.pyml.run.main.log
sphinx.log





Here ‘src’ contains files copied from the output of the parent Tut Script and some automatically generated .rst files.

The ‘build’ folder is the output of running Sphinx on the ‘src’ files. Sphinx is a utility for processing .rst files into HTML and optionally other formats. The main output of running Sphinx is here:-

build/
    html/
        index.html





Here ‘sphinx.log’ is the log file for Sphinx and ‘my_tutsum_script.pyml.run.main.log’ is the log file for the TutSum Script.

You can view the summary of the gen/fit/comp/sim output to HTML files by typing:-

$ popy_view my_tutsum_script.pyml.html





Which should look something like First order absorption model with peripheral compartment.





          

      

      

    

  

    
      
          
            
  
PoPy Quick Reference Guide

See Table 69:-


Table 69 PoPy Quick Reference






	Commands

	Scripts

	Sections



	
	popy_env


	popy_run


	popy_check


	popy_create


	popy_format


	popy_edit


	popy_doc


	popy_view


	popy_info


	popy_validate


	popy_activate


	popy_deactivate


	popy_imconv





	
	fit


	gen


	sim


	tut


	comp


	mfit


	mgen


	msim


	mtut


	mcomp


	grph


	vpc


	fitsum


	gensum


	tutsum


	n2pdat


	p2ndat





	
	METHOD_OPTIONS


	DESCRIPTION


	FILE_PATHS


	DATA_FIELDS


	PREPROCESS


	LEVEL_PARAMS


	MODEL_PARAMS


	STATES


	DERIVATIVES


	PREDICTIONS


	ODE_SOLVER


	FIT_METHODS


	COVARIANCE


	OUTPUT_SCRIPTS


	OUTPUT_OPTIONS







	Probability Distributions

	Dosing Functions

	Analytic Solutions



	
	~unif(min,max)init


	~norm(m,v)


	~mnorm(m_vec,v_mat)


	~bernoulli(p)


	~poisson(p)


	~negbinomial(p,r)





	
	@bolus


	@inf_rate


	@inf_dur


	@gamma


	@weibull





	
	@iv_one_cmp_cl


	@dep_one_cmp_cl


	@iv_two_cmp_cl


	@dep_two_cmp_cl


	@iv_three_cmp_cl


	@dep_three_cmp_cl







	Variables

	
	c[X], f[X], r[X], m[X], w[X], x[NEWIND]


	d[X], s[X], x[TIME], p[X]







	TYPE values

	
	obs, dose, pred, reset, reset+dose
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	Glossary

	HTML Summary Links

	Troubleshooting

	Bug Reporting

	Credits

	Release Notes
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Glossary


	Akaike information criterion

	A method of comparing two similar models by penalising models with a larger number of parameters. See Akaike information criterion on Wikipedia [https://en.wikipedia.org/wiki/Akaike_information_criterion]



	basin of convergence

	A set of initial points that lead to the same local minimum under a given iterative algorithm.



	C++

	C++ is a low level programming language which is automatically used by PoPy for some time critical operations C++ on Wikipedia [https://en.wikipedia.org/wiki/C%2B%2B]



	categorical covariates

	Covariates that indicates membership in one of a set of unordered categories, such as race.



	clearance

	The volume of the fluid presented to the eliminating organ (extractor) that is effectively completely cleared of drug per unit time. (Definition from [RowlandTozer2012]), also see Clearance on Wikipedia [https://en.wikipedia.org/wiki/Clearance_(pharmacology)]



	Compartment Diagram

	A graphical visualisation of the compartment model, using nodes for compartments and edges for flows between compartments



	confidence intervals

	Ranges in which we can be X% confident that a parameter lies.



	covariance matrix

	A measure of spread for multiple random variables that may be correlated.
See Covariance on Wikipedia [https://en.wikipedia.org/wiki/Covariance_matrix]



	covariates

	Measured or observed quantities that are read in from the input data file. Signified by a c[X] in the model specification file (which could also be thought of as an abbreviation of “column”). They include information such as ID, time, weight, and also measurements such as drug concentration.



	DDMoRe

	An online repository of PK/PD models see DDMoRe Website [http://repository.ddmore.eu/]



	dos prompt

	The dos prompt command line in Microsoft Windows. This is the older Windows shell, by default with a black background.



	elimination

	The removal of a drug from the body, either by excretion or metabolism.



	first order conditional estimation

	FOCE is a fitting method in Nonmem that uses a first order approximation of the objective function conditioned on optimised random effects for each individual in the population.



	first pass effect

	A reduction in the amount of drug entering circulation due to it being metabolised by the liver or gut on its way to the blood system. First pass effect on Wikipedia [https://en.wikipedia.org/wiki/First_pass_effect]



	fixed effects

	A population-level parameters (usually means) that describe an average from which individuals deviate in a random way, though where the nature of the randomness is known. Signified by f[X] in the model specifications file.



	Graphviz

	Graphviz is open source software used to create Compartment Diagram in PoPy. See Graphviz on Wikipedia [https://en.wikipedia.org/wiki/Graphviz]



	hessian

	The [image: n \times n] matrix of second derivatives of a function of [image: n] variables. Contains information that describes the shape of the surface at a given point (the minimum, for example).



	HTML

	Hyper Text Markup Language used on the web and by PoPy to generate summary output. See HTML on Wikipedia [https://en.wikipedia.org/wiki/HTML]



	importance sampling

	A method of sampling from a complex distribution by first sampling from a simpler distribution and re-weighting with the ratio of the complex and simpler  Wikipedia: <Probability_density_function> [https://en.wikipedia.org/wiki/<Probability_density_function>]. See Importance Sampling on Wikipedia [https://en.wikipedia.org/wiki/Importance_sampling]. Used by the IMP fitting method in Nonmem.



	initial value problem

	The ordinary differential equations typically solve a dynamic system which has a defined input state and then the system evolves over time according to the ordinary differential equation system. This type of integration problem, typical in PK/PD, is known as a Initial Value Problem [https://en.wikipedia.org/wiki/Initial_value_problem].



	iterative two stage

	ITS is a fitting method in Nonmem that optimises the objective function by switching between optimising the fixed effects and random effects. The ITS and FOCE methods have the same objective function



	joint optimisation and estimation

	JOE is PoPy’s main fitting method see JOE Fitting Method, it optimises the same objective function as FOCE and ITS.



	Laplace approximation

	A method of approximating integrals. See Laplace method on Wikipedia [https://en.wikipedia.org/wiki/Laplace's_method]. This approximation of the objective function is used by JOE, FOCE and ITS fitting methods.



	Likelihood

	The conditional probability, p(D|M), of observing data D given a hypothesized model M. This expresses the plausibility of model M given data D, but is a probability distribution over D rather than M. As a result, it cannot be used to compare different models, only different parameter values for the same model. Likelihood on Wikipedia [https://en.wikipedia.org/wiki/Likelihood_function]



	LSODA

	Numerical ordinary differential equation solver [Radhakrishnan1994] available in PoPy, see Example ODE_SOLVER using SCIPY_ODEINT.



	m parameters

	Person-specific PK/PD parameters, usually defined as a function of the fixed effects, random effects and measured covariates. Signified by m[X] in the model specification file.



	mass balance

	The principal that matter cannot be created or destroyed within a compartment model, apart from deliberate inputs (e.g doses) and sink compartments that model excretion from the body. See Mass Balance on Wikipedia [https://en.wikipedia.org/wiki/Mass_balance].



	metabolism

	Process by which drug is chemically transformed into another substance. Takes place primarily in the liver.



	Microsoft Windows

	Windows, a popular operating system for personal computers.



	mixed effect model

	A structural model that uses both fixed effects and random effects to model population parameters. In practise, all models contain at least one fixed effect, so the key feature is the use of random effects to allow parameters to vary between subjects in the population.



	Monolix

	Matlab based PK/PD modelling software. See http://lixoft.com/products/monolix/



	noise

	Random displacements added to a signal. See Signal Processing Noise on Wikipedia [https://en.wikipedia.org/wiki/Noise_(signal_processing)]



	Nonmem

	Nonmem (NONlinear Mixed Effect Modelling) is a Fortran based system for PK/PD modelling. [Bauer2009]



	objective function

	The fixed effects and random effects of a model are estimated by minimising the objective function, which is equivalent to maximising the
likelihood [https://en.wikipedia.org/wiki/Likelihood_function] of the model given the observations.



	observations

	The observed values to be modelled, also known as the dependent variable. These measurements (either synthetic or real) are signified by c[X] in the PREDICTIONS section of a PoPy script file.



	ordinal covariates

	Covariates derived from a discretisation of a continuum such that values have a definite order, such as the East Coast Oncology Group status that ranges from 0 (normal) to 4 (most severe).



	ordinary differential equations

	Multiple differential equations, each with one independent variable. See Ordinary differential equation on Wikipedia [https://en.wikipedia.org/wiki/Ordinary_differential_equation]



	powershell prompt

	The powershell prompt command line in Microsoft Windows. This is the newer Windows shell, by default with a blue background.



	practically identifiable

	A parameter of a model is practically identifiable or estimable, if the true value can be estimated from a finite amount of data. See Identifiability Analysis on Wikipedia [https://en.wikipedia.org/wiki/Identifiability_analysis#Structural_and_practical_identifiability_analysis]



	practically unidentifiable

	A parameter that is not practically identifiable



	predictions

	The value the model calculates for a given observations, usually a conversion to concentrations via division by the volumes of the compartments. Signified by p[X] in the model specification file.



	product key

	The PoPy product key is the unique key that identifies the the current licence. It has a form like ‘XXXX-XXXX-XXXX-XXXX-XXXX-XXXX-XXXX’. See PoPy Activation.



	Python

	Python is a general purpose programming language used in PoPy scripts and to implement PoPy itself. See Python on Wikipedia [https://en.wikipedia.org/wiki/Python_(programming_language)]



	R

	R is open source statistical software used extensively in the PK/PD community. See R on Wikipedia [https://en.wikipedia.org/wiki/R_(programming_language)]



	random effects

	Deviation from the population-level fixed parameters, with defined distribution parameters. Signified by r[X] in the model specification file.



	s parameters

	The amount - not concentration - of drug in each compartment of the compartment model. Signified by s[X] in the model specification file.



	shrinkage

	The tendency to for random effects to shrink towards the mean value when data are sparse.



	solutions

	Solutions are defined by a .pyml file containing links to .csv files that determine a set of f[X], r[X], m[X], s[X], p[X] variables that represent a candidate solution to a PK/PD model fitting problem.



	Sphinx

	Documentation system used by PoPy and many other Python projects to generate .html and .pdf files. See Sphinx on Wikipedia [https://en.wikipedia.org/wiki/Sphinx_(documentation_generator)]



	stochastic approximation expectation maximisation

	SAEM is a probabilistic fitting method originally implemented in Monolix and also available in Nonmem.



	structurally identifiable

	A parameter of a model is structurally identifiable, if given an infinite amount of data the true underlying parameter value is recoverable. See Identifiability Analysis on Wikipedia [https://en.wikipedia.org/wiki/Identifiability_analysis#Structural_and_practical_identifiability_analysis]



	structurally unidentifiable

	A parameter that is not structurally identifiable



	symmetric positive definite

	A symmetric positive definite matrix is a matrix whose eigenvalues are all positive. It is the matrix equivalent of having a real valued square root. In PK/PD models a population covariance matrix is required to be symmetric positive definite. See Matrix Definiteness on Wikipedia [https://en.wikipedia.org/wiki/Definiteness_of_a_matrix]



	variance

	A measure of spread for a random variable. See Variance on Wikipedia [https://en.wikipedia.org/wiki/Variance]



	visual predictive check

	Given a set of f[X] values and a model, new p[X] values are simulated which can then be compared with original c[X] data on a graph.



	volume of distribution

	The volume (or volume of distribution) is the theoretical volume that a compartment would need to have to give the concentration of drug found in the blood plasma. See Volume of Distribution on Wikipedia [https://en.wikipedia.org/wiki/Volume_of_distribution]



	YAML

	A simple markup language used by PoPy Script File Formats. See YAML on Wikipedia [https://en.wikipedia.org/wiki/YAML]









          

      

      

    

  

    
      
          
            
  
HTML Summary Links

PoPy outputs HTML summaries of fit_scripts, gen_scripts and tut_scripts.

This page lists the summary outputs for all example scripts used in this documentation. Browse this list to see the variety of PK/PD modelling available in PoPy.

Note, each summary contains a link to the original script. e.g. A tut summary contains a link to the original Tut Script, so you can download each script and re-run all of the examples on this page using your own installation of PoPy. You can also adapt each example script to your own PK/PD modelling requirements.


Example Summaries


Simple Fit Example

Used in Fitting a Simple PopPK Model using PoPy to demonstrate running a Fit Script.


Note

Online Example (v1.0.1): quick_start/fit_example1 [https://product.popypkpd.com/docs/en/1.0.1/_autogen/quick_start/fit_example1]






Simple Tut Example

Used in Generate data and Fit using Simple PopPK Model to demonstrate running a Tut Script.


Note

Online Example (v1.0.1): quick_start/tut_example1 [https://product.popypkpd.com/docs/en/1.0.1/_autogen/quick_start/tut_example1]






First order absorption model with peripheral compartment

Used in Fitting a Two Compartment PopPK Model to demonstrate running a Fit Script.


Note

Online Example (v1.0.1): quick_start/builtin_fit_example [https://product.popypkpd.com/docs/en/1.0.1/_autogen/quick_start/builtin_fit_example]






First order absorption model with peripheral compartment

Used in Generate a Two Compartment PopPK Data Set to demonstrate running a Gen Script.


Note

Online Example (v1.0.1): quick_start/builtin_gen_example [https://product.popypkpd.com/docs/en/1.0.1/_autogen/quick_start/builtin_gen_example]




Note

Example Data: https://product.popypkpd.com/docs/en/1.0.1/_autogen/quick_start/builtin_gen_example/builtin_gen_example.pyml_output/gen/synthetic_data.csv






First order absorption model with peripheral compartment

Used in Generate data and Fit using a Two Compartment Model to demonstrate running a Tut Script.


Note

Online Example (v1.0.1): quick_start/builtin_tut_example [https://product.popypkpd.com/docs/en/1.0.1/_autogen/quick_start/builtin_tut_example]








Individual Model Summaries


Elimination Example with KE parameter

Used in Elimination, Clearance and Volume of Distribution to demonstrate elimination with the elimination rate constant, KE.


Note

Online Example (v1.0.1): indiv_examples/elimination/elim_ke_example [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/elimination/elim_ke_example]






Elimination Example with Volume of Distribution

Used in Volume of Distribution to demonstrate elimination with the apparent volume of distribution, V.


Note

Online Example (v1.0.1): indiv_examples/elimination/elim_v_example [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/elimination/elim_v_example]






Elimination Example with Clearance

Used in Clearance to demonstrate elimination with clearance, CL.


Note

Online Example (v1.0.1): indiv_examples/elimination/elim_cl_example [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/elimination/elim_cl_example]






One Compartment Model with Intravenous Dosing

Used in One Compartment Model with Intravenous Dosing to demonstrate a one compartment model with intravenous dosing.


Note

Online Example (v1.0.1): indiv_examples/compartment_models/odes/iv_one_cmp_cl [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/compartment_models/odes/iv_one_cmp_cl]






One Compartment Model with Absorption

Used in One Compartment Model with Absorption to demonstrate a one compartment model with absorption.


Note

Online Example (v1.0.1): indiv_examples/compartment_models/odes/dep_one_cmp_cl [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/compartment_models/odes/dep_one_cmp_cl]






Two Compartment Model with Intravenous Dosing

Used in Two Compartment Model with Intravenous Dosing to demonstrate a two compartment model with intravenous dosing.


Note

Online Example (v1.0.1): indiv_examples/compartment_models/odes/iv_two_cmp_cl [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/compartment_models/odes/iv_two_cmp_cl]






Two Compartment Model with Absorption

Used in Two Compartment Model with Absorption to demonstrate a two compartment model with absorption.


Note

Online Example (v1.0.1): indiv_examples/compartment_models/odes/dep_two_cmp_cl [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/compartment_models/odes/dep_two_cmp_cl]






Three Compartment Model with Intravenous Dosing

Used in Three Compartment Model with Intravenous Dosing to demonstrate a three compartment model with intravenous dosing.


Note

Online Example (v1.0.1): indiv_examples/compartment_models/odes/iv_three_cmp_cl [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/compartment_models/odes/iv_three_cmp_cl]






Three Compartment Model with Absorption

Used in Three Compartment Model with Absorption to demonstrate a three compartment model with absorption.


Note

Online Example (v1.0.1): indiv_examples/compartment_models/odes/dep_three_cmp_cl [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/compartment_models/odes/dep_three_cmp_cl]






Bolus Dose with no elimination.

Used in Bolus Dose to demonstrate a single bolus dose with no elimination.


Note

Online Example (v1.0.1): indiv_examples/dosing/bolus_tut [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/dosing/bolus_tut]






Infusion Duration Dose with no elimination.

Used in Infusion Duration to demonstrate a single infusion dose parametrised by duration, with no elimination.


Note

Online Example (v1.0.1): indiv_examples/dosing/inf_dur_tut [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/dosing/inf_dur_tut]






Infusion Rate Dose with no elimination.

Used in Infusion Rate to demonstrate a single infusion dose parametrised by rate, with no elimination.


Note

Online Example (v1.0.1): indiv_examples/dosing/inf_rate_tut [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/dosing/inf_rate_tut]






Gamma Dose with no elimination.

Used in Gamma Dose to demonstrate a single gamma dose with no elimination.


Note

Online Example (v1.0.1): indiv_examples/dosing/gamma_tut [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/dosing/gamma_tut]






Weibull Dose with no elimination.

Used in Weibull Dose to demonstrate a single weibull dose with no elimination.


Note

Online Example (v1.0.1): indiv_examples/dosing/weibull_tut [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/dosing/weibull_tut]






Repeated Bolus Dose with first order elimination.

Used in Repeated Dosing to demonstrate a repeated bolus dose with first order elimination.


Note

Online Example (v1.0.1): indiv_examples/dosing/bolus_repeated_tut [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/dosing/bolus_repeated_tut]






Repeated Infusion Duration Dose with first order elimination.

Used in Repeated Dosing to demonstrate a repeated infusion duration dose with first order elimination.


Note

Online Example (v1.0.1): indiv_examples/dosing/inf_dur_repeated_tut [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/dosing/inf_dur_repeated_tut]






Repeated Infusion Rate Dose with first order elimination.

Used in Repeated Dosing to demonstrate a repeated infusion rate dose with first order elimination.


Note

Online Example (v1.0.1): indiv_examples/dosing/inf_rate_repeated_tut [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/dosing/inf_rate_repeated_tut]






Repeated Gamma Dose with first order elimination.

Used in Repeated Dosing to demonstrate a repeated gamma dose with first order elimination.


Note

Online Example (v1.0.1): indiv_examples/dosing/gamma_repeated_tut [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/dosing/gamma_repeated_tut]






Repeated Weibull Dose with first order elimination.

Used in Repeated Dosing to demonstrate a repeated weibull dose with first order elimination.


Note

Online Example (v1.0.1): indiv_examples/dosing/weibull_repeated_tut [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/dosing/weibull_repeated_tut]






Model containing additive error only and additive error only input data

Tut script used in Residual Error Model to demonstrate additive noise only model.


Note

Online Example (v1.0.1): indiv_examples/error_models/ao_tut [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/error_models/ao_tut]






Model containing proportional error only, with proportional only data

Tut script used in Residual Error Model to demonstrate proportional noise only model.


Note

Online Example (v1.0.1): indiv_examples/error_models/po_tut [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/error_models/po_tut]






Model containing both proportional and additive error

Tut script used in Residual Error Model to demonstrate proportional and additive noise model.


Note

Online Example (v1.0.1): indiv_examples/error_models/pa_tut [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/error_models/pa_tut]






Mixed error model fitted to mixed error data, but with incorrect variance definition

Fit script used in Residual Error Model to demonstrate fitting mis-specified proportional and additive noise model to proportional and additive noise synthetic data.


Note

Online Example (v1.0.1): indiv_examples/error_models/pa_gen_pa_fit_badvar [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/error_models/pa_gen_pa_fit_badvar]






Sine circadian model

Used in Example DERIVATIVES using x[TIME] to demonstrate a PK/PD model with a circadian input function for a single individual.


Note

Online Example (v1.0.1): indiv_examples/pd_models/circ_sin [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/pd_models/circ_sin]






Direct PD Model

Used in Example DERIVATIVES for PD Model to demonstrate an individual PK/PD model with a bolus dose, one compartment PK and single PD compartment.


Note

Online Example (v1.0.1): indiv_examples/pd_models/direct_pd [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/pd_models/direct_pd]






Direct PD Model Simultaneous PK/PD Parameter fit

Used in Example PREDICTIONS for PD Model to demonstrate an individual PK/PD model with a bolus dose, one compartment PK and single PD compartment.


Note

Online Example (v1.0.1): indiv_examples/pd_models/direct_pd_simul [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/pd_models/direct_pd_simul]






One Compartment Model with Absorption estimating KA

Used in Uncertainty and Standard Errors to show how we estimate confidence in a single parameter problem.


Note

Online Example (v1.0.1): indiv_examples/uncertainty/dep_one_cmp_ka_stderr [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/uncertainty/dep_one_cmp_ka_stderr]






One Compartment Model with Absorption estimating KA and V

Used in Uncertainty and Standard Errors to show how we estimate confidence in a two parameter problem.


Note

Online Example (v1.0.1): indiv_examples/uncertainty/dep_one_cmp_ka_v_stderr [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/uncertainty/dep_one_cmp_ka_v_stderr]






One Compartment Model with Absorption estimating KA and CL

Used in Uncertainty and Standard Errors to show how we estimate confidence in a two parameter problem.


Note

Online Example (v1.0.1): indiv_examples/uncertainty/dep_one_cmp_ka_cl_stderr [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/uncertainty/dep_one_cmp_ka_cl_stderr]






One Compartment Model with Absorption estimating V and CL

Used in Uncertainty and Standard Errors to show how we estimate confidence in a two parameter problem.


Note

Online Example (v1.0.1): indiv_examples/uncertainty/dep_one_cmp_v_cl_stderr [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/uncertainty/dep_one_cmp_v_cl_stderr]






One Compartment Model with Absorption estimating KA, V and CL

Used in Uncertainty and Standard Errors to show how we estimate confidence in a three parameter problem.


Note

Online Example (v1.0.1): indiv_examples/uncertainty/dep_one_cmp_ka_v_cl_stderr [https://product.popypkpd.com/docs/en/1.0.1/_autogen/indiv_examples/uncertainty/dep_one_cmp_ka_v_cl_stderr]








Population Model Summaries


One Compartment Model with Absorption and Inter-subject Variance f[CL_isv]=0.2

Used in Inter-Subject Variation (ISV) to demonstrate inter-subject (or between-subject) variability.


Note

Online Example (v1.0.1): pop_examples/compartment_models/dep_one_cmp_cl_isv [https://product.popypkpd.com/docs/en/1.0.1/_autogen/pop_examples/compartment_models/dep_one_cmp_cl_isv]






One Compartment Model with Absorption and Inter-subject Variance f[CL_isv]=0.01

Used in Inter-Subject Variation (ISV) to demonstrate inter-subject (or between-subject) variability.


Note

Online Example (v1.0.1): pop_examples/compartment_models/dep_one_cmp_cl_isv_01 [https://product.popypkpd.com/docs/en/1.0.1/_autogen/pop_examples/compartment_models/dep_one_cmp_cl_isv_01]






One Compartment Model with Absorption and Inter-subject Variance f[CL_isv]=0.5

Used in Inter-Subject Variation (ISV) to demonstrate inter-subject (or between-subject) variability.


Note

Online Example (v1.0.1): pop_examples/compartment_models/dep_one_cmp_cl_isv_05 [https://product.popypkpd.com/docs/en/1.0.1/_autogen/pop_examples/compartment_models/dep_one_cmp_cl_isv_05]






One Compartment Model with Absorption and no inter-subject Variance f[CL_isv]=0

Used in Inter-Subject Variation (ISV) to demonstrate inter-subject (or between-subject) variability.


Note

Online Example (v1.0.1): pop_examples/compartment_models/dep_one_cmp_cl_isv_naive [https://product.popypkpd.com/docs/en/1.0.1/_autogen/pop_examples/compartment_models/dep_one_cmp_cl_isv_naive]






One Compartment Model with Absorption and Inter-occasion Variance f[CL_isv]=0.2

Used in Inter-Occasion Variation (IOV) to demonstrate inter-occasion (or between-occasion) variability.


Note

Online Example (v1.0.1): pop_examples/compartment_models/dep_one_cmp_cl_iov [https://product.popypkpd.com/docs/en/1.0.1/_autogen/pop_examples/compartment_models/dep_one_cmp_cl_iov]






One Compartment Model with Absorption and Inter-occasion Variance f[CL_isv]=0.5

Used in Inter-Occasion Variation (IOV) to demonstrate inter-occasion (or between-occasion) variability.


Note

Online Example (v1.0.1): pop_examples/compartment_models/dep_one_cmp_cl_iov_05 [https://product.popypkpd.com/docs/en/1.0.1/_autogen/pop_examples/compartment_models/dep_one_cmp_cl_iov_05]






One Compartment Model with Absorption and no inter-occasion Variance f[CL_iov]=0

Used in Inter-Occasion Variation (IOV) to demonstrate inter-occasion (or between-occasion) variability.


Note

Online Example (v1.0.1): pop_examples/compartment_models/dep_one_cmp_cl_iov_naive [https://product.popypkpd.com/docs/en/1.0.1/_autogen/pop_examples/compartment_models/dep_one_cmp_cl_iov_naive]






Diagonal matrix generation diagonal matrix fit using separate univariate normals

Used in Modelling Correlation in Random Effects to demonstrate correlation between random effects.


Note

Online Example (v1.0.1): pop_examples/re_covariance/gen_indep_fit_indep [https://product.popypkpd.com/docs/en/1.0.1/_autogen/pop_examples/re_covariance/gen_indep_fit_indep]






Diagonal matrix generation diagonal matrix fit

Used in Modelling Correlation in Random Effects to demonstrate correlation between random effects.


Note

Online Example (v1.0.1): pop_examples/re_covariance/gen_diag_fit_diag [https://product.popypkpd.com/docs/en/1.0.1/_autogen/pop_examples/re_covariance/gen_diag_fit_diag]






Diagonal matrix generation full matrix fit

Used in Modelling Correlation in Random Effects to demonstrate correlation between random effects.


Note

Online Example (v1.0.1): pop_examples/re_covariance/gen_diag_fit_full [https://product.popypkpd.com/docs/en/1.0.1/_autogen/pop_examples/re_covariance/gen_diag_fit_full]






Full matrix generation diagonal matrix fit

Used in Modelling Correlation in Random Effects to demonstrate correlation between random effects.


Note

Online Example (v1.0.1): pop_examples/re_covariance/gen_full_fit_diag [https://product.popypkpd.com/docs/en/1.0.1/_autogen/pop_examples/re_covariance/gen_full_fit_diag]






Full matrix generation full matrix fit

Used in Modelling Correlation in Random Effects to demonstrate correlation between random effects.


Note

Online Example (v1.0.1): pop_examples/re_covariance/gen_full_fit_full [https://product.popypkpd.com/docs/en/1.0.1/_autogen/pop_examples/re_covariance/gen_full_fit_full]






Body Weight Covariate

Used in Covariates to demonstrate using weight as a covariate.


Note

Online Example (v1.0.1): pop_examples/covariates/weight_covariate [https://product.popypkpd.com/docs/en/1.0.1/_autogen/pop_examples/covariates/weight_covariate]











          

      

      

    

  

    
      
          
            
  
Troubleshooting

Links to common errors when running PoPy models are shown in Table 70:-


Table 70 Solutions to common PoPy issues





	Problem

	Solution





	‘popy_run’ is not recognized

	run popy_env before popy_run



	The term ‘popy_run’ is not recognized as the name of a cmdlet

	run popy_env before popy_run



	‘popy_env’ is not recognized

	put ‘popy_env.bat’ on system path



	The term ‘popy_env’ is not recognized as the name of a cmdlet

	put ‘popy_env.bat’ on system path



	‘popy_env’ permission error

	use dos prompt to call popy_env







‘popy_run’ is not recognized


Scenario

You get this error if you open a dos prompt and attempt to run the popy_run program as follows:-

$ popy_run





Then get the response:-

'popy_run' is not recognized as an internal or external command,
operable program or batch file.








Cause

The problem is that the PoPy environment has not been enabled, so Microsoft Windows does not know where to look for the command ‘popy_run’.




Solution

The solution is to run popy_env before you do popy_run, as follows:-

$ popy_env
$ popy_run





popy_run should now work as expected.






The term ‘popy_run’ is not recognized as the name of a cmdlet


Scenario

You get this error if you open a powershell prompt and attempt to run the popy_run program as follows:-

$ popy_run





Then get the response:-

popy_run : The term 'popy_run' is not recognized as the name of a cmdlet, function, script file, or operable program.
Check the spelling of the name, or if a path was included, verify that the path is correct and try again.
At line:1 char:1
+ popy_run
+ ~~~~~~~~
    + CategoryInfo          : ObjectNotFound: (popy_run:String) [], CommandNotFoundException
    + FullyQualifiedErrorId : CommandNotFoundException





Usually in difficult to read red on blue writing.




Cause

The problem is that the PoPy environment has not been enabled, so Microsoft Windows does not know where to look for the command ‘popy_run’.




Solution

The solution is to run popy_env before you do popy_run, as follows:-

$ popy_env
$ popy_run





popy_run should now work as expected.






‘popy_env’ is not recognized


Scenario

You start a dos prompt and type the following command:-

$ popy_env





Then you see the message:-

'popy_env' is not recognized as an internal or external command,
operable program or batch file.








Cause

PoPy is either not installed or your system path is not configured correctly.




Solution

In a dos prompt type:-

$ echo %PATH%





In order for PoPy to work the directory containing ‘popy_env.bat’ on your machine, needs to be listed in the Microsoft Windows system path. If the ‘popy_env.bat’ directory is not present, then you need to manually add it. In a dos prompt you can do this:-

$ set PATH=%PATH%;c:\PoPy





Where ‘c:\PoPy’ is the recommended install directory for PoPy.

To save the path permanently do:-

$ setx PATH %PATH%





Note you probably need admin rights to use the ‘setx’ command. Once your Microsoft Windows path is sorted out you should be able to run and test the PoPy environment as follows:-

$ popy_env
$ popy_info










The term ‘popy_env’ is not recognized as the name of a cmdlet


Scenario

You start a powershell prompt and type the following command:-

$ popy_env





Then you see the message:-

popy_env : The term 'popy_env' is not recognized as the name of a cmdlet, function, script file, or operable program.
Check the spelling of the name, or if a path was included, verify that the path is correct and try again.
At line:1 char:1
+ popy_run
+ ~~~~~~~~
    + CategoryInfo          : ObjectNotFound: (popy_run:String) [], CommandNotFoundException
    + FullyQualifiedErrorId : CommandNotFoundException








Cause

PoPy is either not installed or your system path is not configured correctly.




Solution

In a powershell prompt type:-

$ $env:Path





In order for PoPy to work the directory containing ‘popy_env.bat’ on your machine, needs to be listed in the Microsoft Windows system path. If the ‘popy_env.bat’ directory is not present, then you need to manually add it. In a powershell prompt prompt you can do this:-

$ $env:Path = "$env:Path;c:\PoPy"





Where ‘c:\PoPy’ is the recommended install directory for PoPy.

To save the new path permanently do:-

$ setx PATH $env:Path





Note you probably need admin rights to use the ‘setx’ command. Once your Microsoft Windows path is sorted out you should be able to run and test the PoPy environment as follows:-

$ popy_env
$ popy_info










‘popy_env’ permission error


Scenario

You start a powershell prompt and type the following command:-

$ popy_env





Then you see the message:-

popy_env : File C:\PoPy\popy_env.ps1 cannot be loaded because running scripts is disabled on
this system. For more information, see about_Execution_Policies at https:/go.microsoft.com/fwlink/?LinkID=135170.
At line:1 char:1
+ popy_env
+ ~~~~~~~~
    + CategoryInfo          : SecurityError: (:) [], PSSecurityException
    + FullyQualifiedErrorId : UnauthorizedAccess








Cause

You do not have sufficient Powershell script execution rights to run the popy_env setup script.




Solution1

If you are an Administrator on your Microsoft Windows system, you may grant execution rights to all powershell scripts, by opening a Administrator powershell prompt and running this command:-

$ set-ExecutionPolicy unrestricted





Or possibly just set the execution policy for the popy_env script alone:-

$ set-ExecutionPolicy ByPass -File c:\PoPy\popy_env.ps1





This should then allow you to run:-

$ popy_env





From a normal non-admin powershell prompt.

For more information on the Powershell script permission system see this page:-

https://docs.microsoft.com/en-gb/powershell/module/microsoft.powershell.core/about/about_execution_policies




Solution2

An alternative solution maybe to Uninstall PoPy and reinstall PoPy in a location where your Microsoft Windows user has more permissions. It’s a good idea to avoid folders like:-

c:\Program Files\PoPy





We recommend this directory, if you want non-admin users to run PoPy:-

c:\PoPy





For more information see Install PoPy




Solution3

You could invoke popy_env from a dos prompt instead and just not use Powershell. For example start PoPy using Windows Shortcut Method.









          

      

      

    

  

    
      
          
            
  
Bug Reporting


Check you have a bug!

Are you using the latest version of PoPy? It is possible that the bug you are encountering has already been fixed. Examine the Release Notes.

It might be worth upgrading PoPy anyway, to see if the bug gets fixed. All PoPy end user Licensing allow free upgrades to the latest version.

Have you managed to reproduce the bug reliably? Preferably on more than one machine. Sometimes the process of reproduction reveals an easy solution.

Note that often PoPy throws an error due to a user error in the input script file. This is not classed as a bug. However if the error message is unclear and confusing, that is a bug!




Bug Report Advice

Three elements that help produce a good bug report, are as follows:-


Steps to reproduce

It is important that the developers can reproduce the bug, otherwise the bug cannot be fixed! It is useful to include all details, e.g. Operating system and current version of PoPy. The output of popy_info is very helpful. Also any input script files and data sets. If you can reproduce the problem on a small example that fails quickly, that is also very helpful.

Note, confidentiality may prevent you from sharing your original data with us. In this case you may consider:-


	Renaming the data header file to remove context


	Add random noise to your data (check the bug still occurs)


	Removing unused columns and rows (check the bug still occurs)


	Creating a new data set using a Gen Script, that exhibits the same bug.




It is helpful to use a zip utility, so we can easily set up your files and reproduce the bug from an email.




Expected result

State what you expected to happen!

Sometimes this is obvious. For example if PoPy crashes mid run. However sometimes it is more subtle, for example, you expected PoPy to give an answer much closer to a ground truth value for a particular model and data set.




Actual result

Clearly state what actually happened. Reporting any error messages is particularly vital. Note, that a PoPy program typically produces a log file like this:-

my_script.pyml.run.main.log





However if a runtime error occurs an additional log file is created as follows:-

my_script.pyml.run.error.log










Reporting the bug

Currently PoPy does not have a formal bug tracking system (it may do in the near future), so for now email your bug to:-

info@popypkpd.com

We will endeavour to respond quickly with a time estimate of how long it will take to fix the bug.

If the bug is serious enough, we will create a new PoPy binary as quickly as possible, otherwise the bug will be fixed in the next planned release for PoPy.
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PoPy could not have been developed without the efforts of many people.
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	NumPy - fast c style arrays + matrices


	SciPy - ODE solver + stats functions


	matplotlib - Plotting graphs


	SymPy - Symbolic Python - thanks for all those Jacobians


	sphinx - for generating this documentation
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Release Notes

This page lists the various PoPy releases to date:-


PoPy v1.0.1

Release date = 28/06/2019

This is mainly a bug fix release of PoPy


Bug Fixes


	Licence manager was giving a date error in North American time zones.


	Bug in configuration file parser for DERIVATIVES section when encountering round brackets (as opposed to expected curly brackets) in Dosing Functions.


	Documentation contents page indexing in PDF was incorrect.







Improvements


	The Standard Errors are now output in an easy to read format, instead of the whole hessian matrix.


	Changed the configuration file entry required to compute standard errors see COVARIANCE.


	Log files apart from the main log file are now stored in a ‘_log’ sub directory.


	The popy_run tool now asks the user if they want to proceed if the main log file already exist for a given script. Previously only the existence of the output folder was checked. The can still skip this check using the ‘-o’ option.









PoPy v1.0.0

Release date = 24/05/2019

This is the first version of PoPy, so there are no bug fixes or new features
only the initial implementation.

Or in other words, all the features and bugs are new!
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