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CHAPTER

ONE

GETTING STARTED GUIDE

1.1 Introducing PoPy

1.1.1 Overview

PoPy (pronounced pop-eye, as in the sailor man) is new software to support population modelling of PK/PD
(pharmacokinetic/pharmacodynamic) data using the Python Programming Language.

PoPy’s intuitive interface and automated visualization make it perfect for people who are new to PK/PD. For
experienced analysts, PoPy contains all of the features that are required for modern PK/PD modelling.

PoPy’s features include:-

• Nonlinear mixed-effect models

• Bolus and infusion dosing regimens

• Inter-occasion variability

• Continuous and categorical likelihoods

• PK and PD models

PoPy consists of a powerful set of Command Line Tools and script files, to enable you to analyse a PK/PD data
file quickly and efficiently, whilst minisimising errors due to an elegant and intuitive syntax.

PoPy makes it easy to fit models to data, but also has the ability to generate new data to test hypothetical scenarios.

1.1.2 Documentation Structure

See Table 1.1 for layout of this documentation:-

Table 1.1: PoPy Documentation Structure
Section Contents
Getting Started Guide Read this first to get familiar with PoPy
Principles of Pharmacokinetics A summary of individual PK/PD models using PoPy syntax
Population Models in PoPy A summary of population PK models using PoPy syntax
PoPy Example Models Examples of using PoPy for PK/PD analysis
PoPy for Nonmem Users Guidance for converting Nonmem examples to PoPy
PoPy Reference Guide A comprehensive reference on PoPy tools and scripts
Appendices Links to PK/PD terms used throughout this guide.
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1.1.3 System Requirements

PoPy is currently available as a 64 bit Microsoft Windows binary. See Table 1.2:-

Table 1.2: System Requirements for PoPy
Operating System Microsoft Windows 7.0/8.0/10.0
Disk Space Required 1.5Gb
Bit Size 64
Processor Intel Core i3 and better recommended
Binary Installer Size ~250Mb

1.1.4 Abbreviations

FOCE first order conditional estimation

IMP importance sampling

ITS iterative two stage

IV Intra-venous, i.e. injected directly into a vein

JOE joint optimisation and estimation

LAPLACE Laplace approximation

ND none derivative estimation

OBJV objective function value

ODEs ordinary differential equations

PK/PD Pharmacokinetic/Pharmacodynamic

SAEM stochastic approximation expectation maximisation

TSLD Time since last dose

VPC visual predictive check

wrt With respect to - usually defines rate of change variable in an ordinary differential equation

1.2 Install PoPy

1.2.1 Downloading PoPy

First, download the latest binary from:-

https://product.popypkpd.com/releases/

To access the url above you need to Obtain a website account for the PoPy product site, then login using your
email address and a password.

We currently provide a 64-bit version of PoPy for Windows 7/8/10. The download file is approximately 300Mb
which will take around 6 minutes to download using a broadband connection.

Note: If you have a previous version of PoPy installed, please Uninstall PoPy before installing the new version.

1.2. Install PoPy 6
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1.2.2 Installing PoPy

Double-click on the PoPy installer, popy-1.1.2-win64-installer.exe

The installer places the software in a subdirectory called ‘PoPy’. We recommend PoPy is installed in the root
directory of the main drive, typically:-

c:\PoPy

(A local user typically has write access to the c:\ drive but not to c:\Program Files unless the user is an administrator.)

The installer will uncompress the PoPy files, just click on the .exe installer and follow the prompts. You will need
approx 1.5Gb of disk space, and the install time may take 5 minutes or so depending on the speed of your computer.

The installer also creates a desktop shortcut and Windows start menu shortcut under the name ‘PoPy’, for the
current user only.

The installer makes no changes to the Windows registry and does not require admin rights.

Note: It is possible to install PoPy on a usb stick. However due to the way the Python language operates, i.e.
many .py files, this will have a significant performance impact. It is much better to install PoPy on the main hard
drive of a computer.

Multi User Installation

The installer sets up PoPy for the current user only. To share a PoPy installation with another user, simply add
the PoPy directory to their system path, so they can access the ‘popy_env.bat’ batch file. Windows start menu
shortcuts can also be created manually, if desired.

1.2.3 Checking your new PoPy Installation

PoPy runs from the command line, typically called command prompt under Windows 7-9 or PowerShell under
Windows 10. To access PoPy commands in the current command prompt, type:-

$ popy_env

This scripts sets up the environment variables so you can access PoPy commands. See Open a PoPy Command
Prompt.

To verify that PoPy is installed, execute the command:-

$ popy_info

If PoPy has successfully installed, output similar to that below will appear, providing detailed information on
the installation:-

INFO - In a PoPy Binary environment
INFO - popy_flavour=binary
INFO - popy_python_path=C:\PoPy\
INFO - popy_release=<X.Y.Z>
INFO - popy_version=academic
INFO - python_version=3.8.6
INFO - windows_version=('10', '10.0.17134', 'SP0', 'Multiprocessor Free')
INFO - machine_name=mickey
INFO - product_key=None
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The product is running in trial mode
trial days remaining=3
INFO - should_run=True

The output above will vary depending on the PoPy Activation status of PoPy.

If you want to run more rigorous tests then see Validate PoPy.

1.2.4 Win10 Increase max path length

Note if you use PoPy with deeply nested folder structures it is recommended that you increase the max file
path length from the default Windows 10 limit of 260 characters, see here:-

https://docs.microsoft.com/en-us/windows/win32/fileio/maximum-file-path-limitation

For your convenience we have supplied the following registry editor file:-

conf/win10_allow_long_paths.reg

If you are using Windows 10 and have admin privileges, you can simply click on this file to remove the 260
character limit. Unfortunately this registry edit does not work on Windows 7.

1.2.5 Troubleshooting

If you have any problems with this installation process, and cannot find the answer on the Troubleshooting page,
then email us at info@popypkpd.com.

1.3 Configure Editor

PoPy is script driven, so it is very important to have a suitable editor installed on your system.

We recommended that you use Notepad++ to edit PoPy text files.

Note: It is especially important that you follow the advice in Configure Notepad++ Tabs.

1.3.1 Notepad++

Notepad++ is a text editor that uses tabs and context highlighting, both of which are helpful when editing PoPy
script files.

Install Notepad++

Download it from:-

https://notepad-plus-plus.org/download/

If you install the 64-bit binary installer the default install directory is:-

C:\Program Files\Notepad++

But you may install Notepad++ at another location.
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Configure Notepad++ Tabs

PoPy is written in Python, and Python does not like tabs. It is essential that you set this from within Notepad++:-

Settings->Preferences->Language->Replace by space

The default tab size is 4, which is a sensible choice.

Note this means that when you hit the tab key you will get 4 space characters instead of a tab character. To
check that this is the case do:-

View->Show Symbol->Show white space and Tab

Then Notepad++ will give you a faint orange dot for a space character and an arrow for a tab. You are advised
to delete any tabs you have in your *.pyml files.

Note that it is still possible to introduce tabs into your text file accidentally using cut and paste.

Python using spaces instead of the more conventional curly brackets is an endearing (but perhaps controversial)
language feature. See this blog post, for a fairly balanced discussion of the pros and cons of white spacing:-

https://jayconrod.com/posts/101/how-python-parses-white-space

However PoPy uses Python, so it is white space for us.

Configure Notepad++ Path

Note that to use Notepad++ with popy_edit you need to make sure your PoPy Config File contains this entry:-

text_editor_path: "C:/Program Files/Notepad++/notepad++.exe"

Which points to where you have installed Notepad++. Note with the path above set correctly you can now Open
a PoPy Command Prompt and do:-

$ popy_edit my_script.pyml

The file ‘my_script.pyml’ should then open within Notepad++. See popy_edit.

Configure Notepad++ Colouring

It is highly advisable to load in the PoPy xml colouring file. You do this by opening Notepad++ and doing:-

Language->Define your language->Import..

Then selecting:-

c:\PoPy\conf\notepadplusplus_popy.xml

You should then be able to open any *.pyml file and see the variables coloured like this:-

DERIVATIVES: |
# s[DEPOT,CENTRAL,PERI] = @dep_two_cmp_cl{dose:@bolus{amt:c[AMT]}}
d[DEPOT] = @bolus{amt:c[AMT]} - m[KA]*s[DEPOT]
d[CENTRAL] = (

m[KA]*s[DEPOT] - s[CENTRAL]*m[CL]/m[V1]
- s[CENTRAL]*m[Q]/m[V1] + s[PERI]*m[Q]/m[V2]

)
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d[PERI] = s[CENTRAL]*m[Q]/m[V1] - s[PERI]*m[Q]/m[V2]
PREDICTIONS: |

p[DV_CENTRAL] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)

As opposed to the default (plain) Notepad++ text display, like this:-

DERIVATIVES: |
# s[DEPOT,CENTRAL,PERI] = @dep_two_cmp_cl{dose:@bolus{amt:c[AMT]}}
d[DEPOT] = @bolus{amt:c[AMT]} - m[KA]*s[DEPOT]
d[CENTRAL] = (

m[KA]*s[DEPOT] - s[CENTRAL]*m[CL]/m[V1]
- s[CENTRAL]*m[Q]/m[V1] + s[PERI]*m[Q]/m[V2]

)
d[PERI] = s[CENTRAL]*m[Q]/m[V1] - s[PERI]*m[Q]/m[V2]

PREDICTIONS: |
p[DV_CENTRAL] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)

Note that it might be necessary to restart Notepad++ to get the colouring file to work.

We find that the variable colouring, makes model editing easier and less error prone. For example, if you misspell
a section header e.g “DERVIATIVES”, then you will notice because the section header will not appear in bold.

The colouring file also just makes PK/PD models look nicer.

1.4 Fitting a Simple PopPK Model using PoPy

Here we are going to work with the simplest possible single compartment model and bolus dose, see Fig. 1.1:-

IN

CENTRAL

 bolus{amt:c[AMT]}      

OUT

 m[KE]*s[CENTRAL]      

Fig. 1.1: One compartment model with bolus dosing for Fit Script. Here c[AMT] is the amount of the bolus
dose. m[KE] is the elimination rate and s[CENTRAL] is the current amount in the central compartment.
See Variable Types for a summary of the prefixes used in PoPy.
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In this example, we will walk through fitting the one compartment model shown in Fig. 1.1 to a pre-existing
data file using PoPy, explaining the commands, input files and output files at each step.

Note: See the Simple Fit Example obtained by the PoPy developers for this example, including input script and
input data file.

1.4.1 Run the Fit Script

To fit a model in PoPy, you need a model file ending in .pyml and a data file in comma separated value format
(.csv). See files in your PoPy ‘examples’ sub directory:-

c:\PoPy\examples\fit_example1.pyml
fit_example1_data.csv

Open a PoPy Command Prompt to setup the PoPy environment in this folder:-

c:\PoPy\examples\

With the PoPy environment enabled, open the script using:-

$ popy_edit fit_example1.pyml

then call popy_run on the Fit Script from the command line:-

$ popy_run fit_example1.pyml

While the script runs, you will see informative text regarding the progress of the fitting process.

You can observe the fitting process proceed through the text outputs in the command window. When completed,
you can view the output using:-

$ popy_view fit_example1.pyml.html

Note the extra ‘.html’ extension in the above command. The command popy_view opens a local .html file in
your web browser to summarise the result of the fitting.

You can compare your local html output with the pre-computed documentation output, see Simple Fit Example.
You should expect some minor numerical differences when comparing results with the documentation. If you
are concerned by any differences in results relative to the official PoPy documentation see Validate PoPy.

1.4.2 Summary of Fit Results

The results of running the fitting script are PoPy’s best estimate for the presumed unknown fixed effects variables:-

f[KE] = 0.0968
f[PNOISE] = 0.2136
f[KE_isv] = 0.0160

In PoPy fixed effects are denoted using the f[X] notation, where ‘X’ is the name of the fixed effect.

The purpose of a Fit Script is to optimise the fixed effects and random effects by maximizing the likelihood
of observing the input data given the model structure defined in ‘fit_example1.pyml’. The input data in this
case, is the c[DV_CENTRAL] column in ‘fit_example1_data.csv’, which contains 20 individuals each with
5 observations at random time points following a bolus dose event.
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You can visually compare the PK curves using the fitted f[X] outputs with the input data in Table 1.3.

Table 1.3: Model predictions vs original data points for first three individ-
uals

0 10 20 30 40 50
TIME

0

20

40

60

80

100

DV
_C

EN
TR

AL
,C

EN

DV_CENTRAL,CEN w.r.t. TIME, id=1
DV_CENTRAL [observed_data]
CEN [pop]
CEN [indiv]

0 10 20 30 40
TIME

0

20

40

60

80

100

DV
_C

EN
TR

AL
,C

EN

DV_CENTRAL,CEN w.r.t. TIME, id=2
DV_CENTRAL [observed_data]
CEN [pop]
CEN [indiv]

0 10 20 30 40
TIME

0

20

40

60

80

100

DV
_C

EN
TR

AL
,C

EN

DV_CENTRAL,CEN w.r.t. TIME, id=3
DV_CENTRAL [observed_data]
CEN [pop]
CEN [indiv]

In the graphs above the blue dots represent the observed data points. The solid blue line represents the model
individual predictions based on the final f[X] parameters and fitted r[X] values for each individual. The
dashed blue lines represent the model population predictions based on fitted f[X] parameters and r[X]
values set to zero.

Note in this model a bolus dose is received by all individuals at time 1.0. Then the amount of dose follows a
first order exponential decay curve as the drug is eliminated from the body over time.

The graphs illustrate how PoPy has optimized the f[X] and r[X] parameters to maximize the likelihood
of the data under this model.

1.4.3 Syntax of Fit Script

This section explains the fitting script notation to represent the components of a mathematical model, such as
fixed and random effects and the equation relating the parameters to the observed data. In this section, we will
look more closely at how the model file works.

The data file included in this example is simulated from a first order PK model of the same form described
in ‘fit_example1.pyml’. The population structure is defined in the EFFECTS section as follows:-

EFFECTS:
POP: |

f[KE] ~ unif(0.001, 100) 0.05
f[PNOISE] ~ unif(0.001, 100) 0.1
f[KE_isv] ~ unif(0.001, 100) 0.1

ID: |
r[KE] ~ norm(0, f[KE_isv])

There are three population fixed effects f[X] parameters to be estimated and one r[X] which can take
a different value for each individual, sampled from the population distribution. There are 20 individuals in the
data set, therefore this model is attempting to estimate 23 parameters in total (i.e 3 f[X] + 20 r[X]). The fixed
effects are defined as follows:-

f[X] ~ unif(min_x, max_x) start_x

Here a uniform distribution is used to define a range of allowed values [min_x, max_x], as a kind of prior.
Currently in PoPy, f[X] are restricted to having a ~unif() distribution prior.

Note, it is quite common to require PK/PD model parameters be non-negative, in order to make physical sense.
The ‘start_x’ value is the initial value for f[X] used in the optimisation, which is usually an initial guess by
the modeller. The r[X] are here sampled from a zero-mean, univariate normal distribution with a variance
f[KE_isv] that is optimized for the population:-
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r[KE] ~ norm(0, f[KE_isv])

Each individual has a unique set of r[X] values, because the random effects are defined at the ID level. This
has the effect of creating a single r[KE] sample for each identity in the data file. For more info on the syntax
above see EFFECTS.

The mapping from f[X] and r[X] to the m[X] for each individual is defined in the MODEL_PARAMS
section:-

MODEL_PARAMS: |
m[KE] = f[KE] * exp(r[KE])
m[PNOISE] = f[PNOISE]
m[ANOISE] = 0.001

This models the m[KE] elimination rate for each individual as a log normally distribution with a median
value of f[KE] and variance parametrised by f[KE_isv]. There is a shared proportional noise parameter
f[PNOISE] for all individuals. For more info on the syntax above see MODEL_PARAMS.

The DERIVATIVES section defines how the parameters and dosing history relate to the observed data. In this
case, we have simple bolus dosing and first-order elimination:-

DERIVATIVES: |
d[CENTRAL] = @bolus{amt:c[AMT]} - m[KE]*s[CENTRAL]

The amount of the bolus dose is c[AMT], which is taken from the data file for each individual. In this example
it is always 100 units and occurs at time point 1.0 for every individual. The m[KE] elimination rate parameter
is first order with respect to s[CENTRAL]. Here s[CENTRAL] is the amount in the single compartment.
For more info on the syntax above see DERIVATIVES.

For each row of the data set, c[X] values are compared with p[X] variables predicted by the model, as
defined below:-

PREDICTIONS: |
p[CEN] = s[CENTRAL]
var = (p[CEN]*m[PNOISE])**2 + m[ANOISE]**2
c[DV_CENTRAL] ~ norm(p[CEN], var)

This section shows that we are comparing model prediction p[CEN] with c[DV_CENTRAL] using a
proportional noise model, where the standard deviation of the proportional noise is m[PNOISE]. Here
m[ANOISE] is fixed to a small positive constant, in order to avoid zero variances when p[CEN] is close
to zero. For more detailed information on the syntax above see PREDICTIONS.

PoPy finds the best combination of the estimated parameters:-

• f[KE] - the median elimination rate - which roughly makes sure that the PK curves are of the correct
shape to find the data.

• f[KE_isv] - the magnitude of the variability in m[KE] between individuals

• f[PNOISE] - the proportional noise not explained by the model in the c[DV_CENTRAL] data

The unexplained noise f[PNOISE] and between subject variance f[KE_isv] compete with each other
to explain the data. For example, do measurements vary from the average model prediction due to measurements
lacking precision (or some unknown mechanism) or because subjects just vary a lot in their physiology? This
dual explanation for noisy data makes population mixed-effects models difficult to fit. However the population
as a whole contains enough data to solve this problem using maximum likelihood [Sheiner1980].

In PoPy the likelihood is optimised iteratively, with the f[X] and r[X] being updated at each iteration.
In this case, the likelihood (or objective function) progressed as shown in Table 1.4
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Table 1.4: Objective function at each iteration for simple PopPK example
Iteration Time OBJV

0.
0.00 4497.841579275584

0.
0.14 564.0664527231055

1.
0.70 564.0664527231055

1.1 0.84 337.93702802800635
1.2 6.82 326.8404441663747
1.3 10.30 324.2624160122567
1.4 14.32 311.35327301459006
1.5 18.64 307.33975507427624
1.6 21.40 303.48857198389396
1.7 24.18 303.13023189966407
1.8 26.93 303.0605737485126
1.9 29.74 303.0554364772976
1.10 32.92 303.0547922394584
1.11 50.61 303.05478687234404
1.12 66.70 303.05476960838354
1.13 82.50 303.05476960838354

Note that the objective function is defined as -2 * the log likelihood (ignoring fixed proportionality constants).
Therefore the lower the value of the objective function the better the estimated parameters fit the observed data.
By default PoPy stops the fitting algorithm once the objective function has stopped decreasing.

1.4.4 Visual Predictive Check for Simple PopPK Model

Given the estimated parameter values, i.e. the optimised f[X] variables, we can check whether the model
and its estimate parameters are a good description of the observed data using a visual predictive check (VPC).

Running the MSim Script

When you run a PoPy Fit Script, it automatically generates several other scripts, including a ‘msim’ simulation
script. For the simple model which we have already fitted, this script can be found in:-

fit_example1.pyml_output/
msim/

fit_example1_msim.pyml

To view or edit the MSim script, which runs simulation, navigate to:-

fit_example1.pyml_output/
msim/

Open a PoPy Command Prompt in the ‘msim’ sub folder then do:-

$ popy_edit fit_example1_msim.pyml

To view the MSim Script.
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Then you can run the script with the following command:-

$ popy_run fit_example1_msim.pyml

Running the ‘fit_example1_msim.pyml’ script creates the following .svg file in the output directory:-

fit_example1_msim.pyml_output/
fit_example1_vpc.pyml_output/

comb_quant_sim_vpc/
vpc.svg

This graphic should look something like Fig. 1.2:-
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Fig. 1.2: Visual Predictive Check for Simple PopPK model.

In the vpc graph the y axis is the amount in the single compartment and the x axis is the time since the last dose
(TSLD). It’s common to use TSLD in a plot that combines all individuals, as different individuals may have
been administered doses at different times in a real life analysis, so absolute times are not comparable.

The TSLD values are grouped into 5 bins along the x axis. Note you need a minimum number of data points
in each bin and there are only 100 data points in this simple example, hence the small number of bins.

In Fig. 1.2, the pale blue dots represent the original data points. In each bin the 5%,50% and 95% quantiles
are plotted for the original data set (see solid blue lines). Also in each bin, the same quantiles are computed
for each of the 100 synthetic data samples. The 90% confidence interval for each of these quantiles, calculated
across the 100 simulated data sets, is depicted by the shaded blue region.

The key result from the vpc graph is that the solid blue line (i.e. quantiles from the original data set) mostly
lie within the shaded blue region (quantile ranges from the synthetic data sets). Since this is the case here, the
model performs adequately on the VPC. Note that the solid blue line should be within the shaded region approx
90% of the time, because the synthetic quantile ranges are constructed as a 90% confidence interval. You can
change the number of simulated data sets in the MSim Script. The quantiles of interest and the confidence intervals
for those quantiles are specified in the Vpc Script.

The blue dots (original data) are mainly shown to give some visual corroboration of the quantiles (solid blue
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line). In this graph because there are only 5 time axis bins and therefore each time bin is quite wide, the data
points on the left side of each time bin tend to have higher concentrations. This within-bin sample distortion
is quite common. Only more bins, which in turn require more data, can address this issue.

Syntax of MSim Script

The MSim Script processes these three elements:-

• A data set

• The model - as automatically defined in the MSim Script file

• The estimated model parameters

For each individual in the original data set, new synthetic data sets are created by sampling new random effects
r[X] variables for each individual and new measurement noise for all data rows. i.e. The synthetic populations
vary due to sampling the r[X] for each individual here:-

EFFECTS:
ID: |

r[KE] ~ norm(0, f[KE_isv])

And adding measurement noise here:-

PREDICTIONS: |
p[CEN_sim] = s[CENTRAL]
var = (p[CEN_sim]*m[PNOISE])**2 + m[ANOISE]**2
c[DV_CENTRAL_sim] ~ norm(p[CEN_sim], var)

Note the simulated data c[DV_CENTRAL_sim] has a slightly different name from the original data set field
c[DV_CENTRAL], in order to avoid name clashes when constructing graphs.

The ~ notation in the PREDICTIONS section of a PoPy script has two slightly different interpretations in fitting
versus simulation scripts, in terms of how the operator compares the left hand side (lhs) and right hand side
(rhs) of the expression:-

1. In simulation scripts ~ means sample the lhs from the distribution on the rhs

2. In fitting scripts ~ means evaluate the likelihood of the rhs given the lhs

In a MSim Script the former sampling definition is used. In a Fit Script the latter likelihood definition is employed.

This procedure creates a set of N new data sets, which can be compared with the original data set. In this case
N=100 is defined in the OUTPUT_OPTIONS section:-

OUTPUT_OPTIONS:
n_pop_samples: 100

You can increase the number of samples, in order to estimate the percentiles, and their confidence intervals, more
accurately. If the PK/PD model contains more parameters or the data file is more structured, you probably need
500-1000 population samples.

Conceptually, if the model is sensible and the fitted f[X] parameters are well estimated then the artificial
data sets generated by sampling the random variables should generate PK/PD curves that resemble the observed
data PK/PD curves.

If your VPC curves do not look like the original data it may be possible to improve upon your model. The
pattern of differences between your VPC predictions and the original data set, may give you some clues in how
to improve your model.
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Note that the VPC says nothing about your models ability to generalise, it only compares the model with the
original data. For example, if you want to predict the response to much higher doses, than those present in the
your original data set, the VPC provides no guarantee that predictions will be accurate.

1.5 PoPy Data Format

The PoPy data file records observation and dosing regimens for each individual in a study.

The columns or fields in the data file are split into four main types in Table 1.5:-

Table 1.5: PoPy data fields
Field Comment
Required Fields TYPE/ID/TIME
Dosing Fields dosing regime data
Observation Fields observed measurements
Extra Fields extra co-variate information

The data file values for each field can be accessed using the c[X] notation in the PoPy script file.

1.5.1 Required Fields

A PoPy data set requires the following fields:-

• TYPE - type of row

• ID - identity

• TIME - time field

Note the names ‘TYPE’, ‘ID’ and ‘TIME’ are the default names of these three required fields. You can use
other field names if you choose to redefine them in the script file DATA_FIELDS section.

TYPE

The ‘TYPE’ field specifies the event that is happening in each row of the data file. The different types of row
are as follows:-

• obs - Measurements that contribute to the log likelihood as defined in the PREDICTIONS section.

• dose - Creates a dose according to the dosing functions in the DERIVATIVES section.

• pred - Extra prediction data points. PoPy will output extra p[X] data at these time points, but they
do not contribute to the likelihood.

• reset - Set the s[X] compartment states back to the initial values (usually zero)

• reset+dose - A ‘reset’ combined with a ‘dose’ event.

Typically a drug trial data set mainly consists mainly of ‘obs’ and ‘dose’ rows with a few ‘reset’ rows, per subject.

ID

The ‘ID’ field value defines the individual for a given row. As PoPy is a PopPK/PD system. The ‘ID’ field
is required because the data is split over multiple individuals to form a population.
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Note that non-population analysis can be performed in PoPy by assigning all rows the same ‘ID’ value.

TIME

The ‘TIME’ field defines the time stamp for each row.

The time field is required to be monotonically increasing, unless a TYPE = ‘reset’ or ‘reset+dose’ row is reached.
Note that when the ID identifier changes between rows, then an implicit ‘reset’ occurs.

For an example of a valid combination of TYPE/ID/TIME data see Table 1.6.

Table 1.6: PoPy time reset example
TYPE ID TIME comment
obs Bob 0.0 observation at time zero
dose Bob 4.0 dose for bob at time 4.0
obs Bob 4.0 observation for bob at time 4.0
obs Bob 8.0 later observation
obs Ruth 0.0 time goes back, ok cos new ID
dose Ruth 10.0 dose for Ruth at time 10.0
obs Ruth 20.0 later observation
reset Ruth 30.0 s[X] reset at time 30.0
obs Ruth 1.0 observation following reset

In Table 1.6 the time always increases or stays the same in consecutive rows, but time is allowed to go backwards
after a new ID or a reset.

1.5.2 Dosing Fields

Dosing events are created in the data file using ‘dose’ values in the TYPE field.

There are two methods of associating data dose rows with the DERIVATIVES section in the PoPy script file,
as follows:-

• Single Dose Type

• Multiple Dose Types

The first involves using just the ‘dose’ value, the second involves defining dose type names.

The amount of each dose is usually specified in an AMT field.

Note in PoPy AMT is not a keyword. It is just the conventional name for the dose amount field used in this
documentation.

Single Dose Type

The simplest way to create doses at a set of fixed times is shown in Table 1.7.

Table 1.7: PoPy single dose type example
TYPE TIME AMT comment
dose 1.0 100 dose of 100 at time 1.0
dose 2.0 200 dose of 200 at time 2.0
dose 3.0 100 dose of 100 at time 3.0
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Note that this creates 3 doses at times [1.0, 2.0, 3.0]. The script file loading this data set should have a
DERIVATIVES section something like:-

DERIVATIVES: |
d[DEPOT] = @bolus{amt: c[AMT]} - m[KE] * s[DEPOT]

Note that the @bolus dose has no name associated with it.

Multiple Dose Types

If you have multiple types of dose in your analysis, e.g. two different drugs being prescribed, then you need
to give each dose type a name, as shown in Table 1.8.

Table 1.8: PoPy multi dose type example
TYPE TIME AMT_DRUG1 AMT_DRUG2 comment
dose:drug1 1.0 100 0 100 units of drug1
dose:drug2 2.0 0 200 200 units of drug2
dose:drug1 3.0 50 0 50 units of drug1

The data file above creates 2 doses of drug1 and 1 dose of drug2. The script file loading this data set should
have a DERIVATIVES section something like:-

DERIVATIVES: |
dose[drug1] = @bolus{amt: c[AMT_DRUG1]}
dose[drug2] = @bolus{amt: c[AMT_DRUG2]}
d[DEPOT1] = dose[drug1] - m[KE1] * s[DEPOT1]
d[DEPOT2] = dose[drug2] - m[KE2] * s[DEPOT2]

The important aspect here is that the @bolus doses are defined with names ‘drug1’ and ‘drug2’. These names
also appear in the TYPE field in the data set as ‘dose:drug1’ and ‘dose:drug2’.

An alternative naming syntax is as follows:-

DERIVATIVES: |
d[DEPOT1] = @bolus{amt: c[AMT_DRUG1], name: 'drug1'} - m[KE1] * s[DEPOT1]
d[DEPOT2] = @bolus{amt: c[AMT_DRUG2], name: 'drug2'} - m[KE2] * s[DEPOT2]

Note that when creating a PoPy data set, you only need to specify a name for each type of dose. You can leave
the modelling decision of where each dose appears in the compartment model to a later time.

1.5.3 Observation Fields

Another important set of fields in the data file are the columns that define observed measurements. Observation
rows are defined by setting TYPE = ‘obs’.

This section shows examples of the following:-

• Single Observed Field

• Observed Field with missing data

• Multiple Observed Fields

Note in each case the PREDICTIONS section of the PoPy script file is associated with observation fields in
the data file in order to compute the likelihood correctly.
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Single Observed Field

An example of a single observed field is shown in Table 1.9.

Table 1.9: PoPy single observed field example
TYPE DRUG_CONC
obs 10.5
obs 15.5
obs 2.0

In this simple case the PREDICTIONS section may look something like:-

PREDICTIONS: |
p[DRUG_CONC] = s[CEN]/m[V]
c[DRUG_CONC] ~ norm(p[DRUG_CONC], m[ANOISE_var])

Note that the c[DRUG_CONC] references the ‘DRUG_CONC’ field of the data set. Here the likelihood is com-
puted by comparing the model prediction p[DRUG_CONC] and the data file observation c[DRUG_CONC]
for all rows of the data set, where TYPE = ‘obs’.

Therefore all values of the data column ‘DRUG_CONC’ have to be valid observations. If you have missing
values then you need to use the data structure in Observed Field with missing data.

Observed Field with missing data

An example of a single observed field, with some missing data is shown in Table 1.10.

Table 1.10: PoPy single observed field missing data example
TYPE DRUG_CONC DRUG_CONC_FLAG comment
obs 10.5 1 DRUG_CONC valid
obs 0.0 0 DRUG_CONC invalid
obs -5.0 0 DRUG_CONC invalid
obs 2.0 1 DRUG_CONC valid

In this case the PREDICTIONS section may still look something like:-

PREDICTIONS: |
p[DRUG_CONC] = s[CEN]/m[V]
c[DRUG_CONC] ~ norm(p[DRUG_CONC], m[ANOISE_var])

However not all the TYPE = ‘obs’ rows contribute to the likelihood in this case. Only the rows that have TYPE
= ‘obs’ and DRUG_CONC_FLAG = 1.

It is similar to having the following ‘if’ statement in your PREDICTIONS section:-

PREDICTIONS: |
p[DRUG_CONC] = s[CEN]/m[V]
if c[DRUG_CONC_FLAG] > 0.5:

c[DRUG_CONC] ~ norm(p[DRUG_CONC], m[ANOISE_var])

You can include the ‘if’ statement in your PREDICTIONS section if you like, but it is not required (or encouraged).

Note also that missing out the ‘DRUG_CONC_FLAG’ field from your data set, has a similar effect to creating
a ‘DRUG_CONC_FLAG’ field and setting all the values to 1. i.e. Flags default to 1 in PoPy.
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If you have multiple observation types in your data set then flag fields become more important, see the example
data structure in Multiple Observed Fields.

Multiple Observed Fields

An example of multiple observed fields, is shown in Table 1.11.

Table 1.11: PoPy multiple observed fields
TYPE DRUG1 DRUG1_FLAG DRUG2 DRUG2_FLAG comment
obs 10.5 1 0.2 1 Both drugs valid
obs 10.5 1 0.0 0 only drug1 valid
obs -4.1 0 0.0 0 both drugs invalid
obs -4.1 0 0.5 1 only drug2 valid

In this case the PREDICTIONS section may look something like:-

PREDICTIONS: |
p[DRUG1] = s[CEN1]/m[V1]
c[DRUG1] ~ norm(p[DRUG1], m[ANOISE_var1])
p[DRUG2] = s[CEN2]/m[V2]
c[DRUG2] ~ norm(p[DRUG2], m[ANOISE_var2])

Here PoPy uses the ‘DRUG1_FLAG’ and ‘DRUG2_FLAG’ fields from the data set to only compute the likelihood
from valid observations. You don’t have to use ‘if’ statements in the PREDICTIONS section to achieve this.

1.5.4 Extra Fields

The other columns of the PoPy data file are available to use in the following verbatim sections:-

• MODEL_PARAMS

• STATES

• DERIVATIVES

• PREDICTIONS

For example see below for a simple example of covariate modelling using the MODEL_PARAMS:-

MODEL_PARAMS: |
m[X] = f[X] + f[X_Y_EFFECT]*c[Y]

Here the m[X] parameter is modelled as having a linear relationship with the c[Y] covariate from the data file.

It is also possible to use c[X] variables in the other sections. One usage case is when you already have PK
parameters estimated (from a previous study) and wish to use these c[X] variables in the DERIVATIVES
section, instead of estimating m[X] parameters for each individual.

1.6 Generate data and Fit using Simple PopPK Model

PoPy provides a method to simulate, analyse and compare results in a single script, which is ideal for generating
tutorials or illustrative examples. Here we will demonstrate a Tut Script using the same compartment model
as used in Fitting a Simple PopPK Model using PoPy, see Figure Fig. 1.3:-
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IN

CENTRAL

 bolus{amt:c[AMT]}      

OUT

 m[KE]*s[CENTRAL]      

Fig. 1.3: One compartment model with bolus dosing for Tut Script. Here c[AMT] is the amount of the bolus
dose. m[KE] is the elimination rate and s[CENTRAL] is the current amount in the central compartment.

Note: See the Simple Tut Example obtained by the PoPy developers for this example, including input script and
output data file.

A Tut Script can be used as a theoretical tool to investigate identifiability of PK/PD models, because the true f[X]
parameters and underlying structure of the data are known. Unfortunately this is never the case in a real life analysis.

This documentation makes extensive use of tut_scripts to create examples to illustrate different Principles of
Pharmacokinetics.

1.6.1 Running the Tutorial Script

This tutorial example requires a single input file:-

c:\PoPy\examples\tut_example1.pyml

Open a PoPy Command Prompt to set up the PoPy environment in this folder:-

c:\PoPy\examples\

With the PoPy environment enabled, you can open the script using:-

$ popy_edit tut_example1.pyml

Again, with the PoPy environment enabled, call popy_run on the Tut Script from the command line:-

$ popy_run tut_example1.pyml

When the tut script has completed, you can view the output of the fit using popy_view, by typing the following
command:-
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$ popy_view tut_example1.pyml.html

Note the extra ‘.html’ extension in the above command. This command opens a local .html file in your web
browser to summarise the result of the generating process.

You can compare your local html output with the pre-computed documentation output, see Simple Tut Example.
You should expect some minor numerical differences when comparing results with the documentation.

1.6.2 Syntax of Tut Script

The major structural difference between a Gen Script or Fit Script and a Tut Script is that the tut_script has
separate GEN_EFFECTS and FIT_EFFECTS sections to describe both the generating and fitting effects. The
GEN_EFFECTS section for this tutorial example is as follows:-

GEN_EFFECTS:
POP: |

c[AMT] = 100.0
f[KE] = 0.1
f[PNOISE] = 0.05
f[KE_isv] = 0.03

ID: |
c[ID] = sequential(20)
t[DOSE] = 1.0
t[OBS] ~ unif(1.0, 50.0; 5)
r[KE] ~ norm(0, f[KE_isv])

The FIT_EFFECTS section for this tutorial example is as follows:-

FIT_EFFECTS:
POP: |

f[KE] ~ unif(0.001, 100) 0.05
f[PNOISE] ~ unif(0.001, 100) 0.1
f[KE_isv] ~ unif(0.001, 100) 0.1

ID: |
r[KE] ~ norm(0, f[KE_isv])

The GEN_EFFECTS get copied into the Gen Script and renamed EFFECTS. Similarly the FIT_EFFECTS
get copied into the Fit Script and also renamed EFFECTS. From the examples above you can see that the
GEN_EFFECTS->POP section has:-

f[X] = true_value

Whereas the FIT_EFFECTS->POP section has:-

f[X] ~ unif(0.001, 100) starting_value

Reflecting the fact that the f[X] are known constants for a Gen Script, but are unknown values to be estimated
in a Fit Script, with lower and upper limits of [0.001, 100]. Note in PoPy you can also use ‘P’ meaning positive,
as a shortcut for ‘~unif(0.0,+inf)’.

The GEN_EFFECTS->POP level has this extra line:-

c[AMT] = 100.0

This sets the dose amount to be 100.0 units for all individuals.

The GEN_EFFECTS->ID level also contains these extra lines:-
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c[ID] = sequential(20)
t[DOSE] = 1.0
t[OBS] ~ unif(1.0, 50.0; 5)

These lines are passed to the Gen Script and generate 20 individuals all with a dose at time 1.0 and 5 observations
uniformally sampled in the time interval [1.0, 50.0]. See EFFECTS with two levels from a gen_script for more
information on the Gen Script syntax within a EFFECTS section.

1.6.3 Summary of Tut Results

See Simple Tut Example for example HTML outputs generated by the PoPy developers.

On your local machine, the Tut Script generates an output folder containing four new scripts:-

simple_tut_example.pyml_output/
simple_tut_example_gen.pyml
simple_tut_example_fit.pyml
simple_tut_example_comp.pyml
simple_tut_example_tutsum.pyml

See Files Generated by Tut Script for more info. The purpose of each of theses scripts is as follows:-

Table 1.12: Scripts output by a tutorial script
Script Purpose Documenta-

tion
*_gen.pyml Generate synthetic data set from model Gen Script
*_fit.pyml Fit model to synthetic data set Fit Script
*_comp.pyml Compare gen model and fit model to synthetic data set Comp Script
*_tutsum.pyml Summary of generating and fitting and comparison results TutSum Script

These four scripts are run in order.

The Gen Script uses a EFFECTS structure similar to a Fit Script, but with some extra commands to generate
new data rows, see Syntax of Tut Script above. Alternatively see Generate a Two Compartment PopPK Data
Set, for a longer explanation of how a Gen Script works.

The Fit Script here is very similar to the PK/PD model described in Fitting a Simple PopPK Model using PoPy.
Therefore here we will focus on the Comp Script outputs. To generate the comp output, you need this entry
in your Tut Script OUTPUT_SCRIPTS section:-

OUTPUT_SCRIPTS:
COMP: {output_mode: run}

Otherwise the TutSum Script will have no comp output to summarise. The comp outputs are PK curves from the
fitted and generated f[X] parameters and the associated objective function values. The simplest Comp Script out-
put is a visual comparison of the true and fitted f[X] PK curves and the synthetic generated data, see Table 1.13.
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Table 1.13: Fitted model PK curves vs true model PK curves for first
three individuals
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The solid blue lines in Table 1.13 show the predicted PK curves for the fitted model f[X] values. The dotted
blue lines show the PK curves for the true f[X] values that were used to generated the data set (in the Gen
Script). The blue dots are the target c[DV_CENTRAL] values from the data file.

The target c[DV_CENTRAL] values have measurement noise added, so blue dot data points do not lie exactly
on the true f[X] curves. The graphs show that the PK curves for the fitted f[X] are almost identical to
the true f[X] curves, this is to be expected as the model only contains a single model parameter m[KE]
and we have 5 observations per individual.

If the Comp Script has been run, the TutSum Script outputs convenient tables to compare the initial, fitted and
true f[X] values, see Table 1.14, Table 1.15 and Table 1.16.

Table 1.14: Comparison of initial, fitted and true f[KE] values
Name Ini-

tial
Fitted True Prop. Error Abs. Error

f[KE] 0.05 0.0999 0.1 0.13% 1.30e-04

Table 1.15: Comparison of initial, fitted and true f[KE_isv] values
Name Ini-

tial
Fitted True Prop. Error Abs. Error

f[KE_isv] 0.1 0.0183 0.03 39.00% 1.17e-02

Table 1.16: Comparison of initial, fitted and true f[PNOISE] values
Name Ini-

tial
Fitted True Prop. Error Abs. Error

f[PNOISE] 0.1 0.0503 0.05 0.67% 3.36e-04

Table 1.14 shows that the f[KE] parameter is recovered reasonably well, in the sense that the fitted value 0.106
is close to the true generating value 0.1 starting from an initial value of 0.05. Similarly the fitted f[KE_isv]
and f[PNOISE] parameters are close to the true generating values.

The objective function Comp Script computes the objective function given the synthetic data and the true
generating f[X] parameters (the r[X] are re-optimised). In this case the true f[X] ObjV is:-

-44.20

The Comp Script also computes he ObjV for the fitted f[X] and optimised r[X], which is as follows:-

-48.43
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The lower objective value for the fitted f[X] is quite common, because the fitted f[X] can take advantage
of noise in the generated synthetic data set. If the size of the synthetic data set is increased, then it is likely that
the f[KE], f[KE_isv] and f[PNOISE] parameters will move closer to the true generating values and
the ObjVs will also converge.

In this simple example the parameters are very easy to identify. For a more challenging example see Generate
data and Fit using a Two Compartment Model.

1.6.4 Generate multiple data sets and Fit using Simple PopPK Model

The tutorial example above generates a single data set from user specified true f[X] values. In PoPy it is
possible to generalise this approach and sample true f[X] values multiple times to create multiple data sets.
Then fit the same model to each data set.

In this section we walk through how to generate multiple data sets using a MTut Script, using the same simple
one compartment model as shown in Fig. 1.3.

Running the MTut Script

This multi tutorial example makes use of a single script file:-

c:\PoPy\examples\mtut_example1.pyml

Open a PoPy Command Prompt to setup the PoPy environment in this folder:-

c:\PoPy\examples\

With the PoPy environment enabled, you can open the script using:-

$ popy_edit mtut_example1.pyml

Again, with the PoPy environment enabled, call popy_run on the MTut Script from the command line:-

$ popy_run mtut_example1.pyml

Running a MTut Script can take a considerable amount of time, as it is equivalent to running a Tut Script multiple
times. However in this toy example we only run the fit/gen cycle 30 times and only a small number of the f[X]
parameters are estimated.

Syntax of MTut Script

The MTut Script specifies the number of populations to sample as follows:-

OUTPUT_OPTIONS: {n_pop_samples: 30}

The MTut Script encodes both the data generation and fitting in the GEN_EFFECTS and FIT_EFFECTS sections,
like a Tut Script. The syntax is the same. In this example the GEN_EFFECTS section is as follows:-

GEN_EFFECTS:
POP: |

c[AMT] = 100.0
# f[KE] = 0.1
f[KE] ~ unif(0.05,0.15)
# f[PNOISE] = 0.05
f[PNOISE] ~ unif(0.02,0.08)
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# f[KE_isv] = 0.03
f[KE_isv] ~ unif(0.01,0.05)

ID: |
c[ID] = sequential(20)
t[DOSE] = 1.0
t[OBS] ~ unif(1.0, 50.0; 5)
r[KE] ~ norm(0, f[KE_isv])

And the FIT_EFFECTS section is as follows:-

FIT_EFFECTS:
POP: |

# f[KE] ~ unif(0.001, 100) 0.05
f[KE] ~ P 0.1
# f[PNOISE] ~ unif(0.001, 100) 0.1
f[PNOISE] ~ P 0.05
# f[KE_isv] ~ unif(0.001, 100) 0.1
f[KE_isv] ~ P 0.03

ID: |
r[KE] ~ norm(0, f[KE_isv])

Here the generated values of f[KE], f[PNOISE] and f[KE_isv] are sampled from uniform
distributions. The fitting process is initialised with (constant) values in the centre of the uniform distribution,
used to sample the generating fixed effect values.

Summary of MTut Results

The MTut Script should generate an output folder containing three new scripts:-

mtut_example1.pyml_output/
mtut_example1_mgen.pyml
mtut_example1_mfit.pyml
mtut_example1_mcomp.pyml

The purpose of each of theses scripts is as follows:-

Table 1.17: Scripts output by a multi tutorial script
Script Purpose Documenta-

tion
*_mgen.pyml Generate multiple synthetic data sets from model MGen Script
*_mfit.pyml Fit model to multiple synthetic data sets MFit Script
*_mcomp.pyml Compare gen model and fit model f[X] MComp Script

The MGen Script is very similar to the Gen Script described in Syntax of Tut Script and the MFit Script is very
similar to the Fit Script described in Fitting a Simple PopPK Model using PoPy. See Files Generated by MTut
Script for more info.

Here we mainly discuss the MComp Script outputs, which processes the results of MGen Script and MFit Script.
The simplest output is a visual comparison of the true and fitted f[X] values as shown in Table 1.18.
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Table 1.18: Fitted model vs true scatter plots for f[KE], f[KE_isv]
and f[PNOISE]
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In Table 1.18 the blue dots are a scatter plot of fitted f[X] vs true f[X]. The green dots are initial f[X]
vs true f[X]. For example in the case of f[KE] the true values are sampled as follows:-

f[KE] ~ unif(0.05,0.15)

i.e. the true values are uniformly sampled in the range [0.05,0.15]. The fitted f[KE] parameters are modelled
as follows:-

f[KE] ~ P0.1

The initial values for f[KE] are always 0.1, see green dots in a horizontal line on the left graph in Table 1.18. The
‘P’ specifies that the fitting value of f[KE] is restricted to positive numbers. The final fitting values are the blue
dots on the left graph in Table 1.18. For f[KE] the blue dots are clustered along the black 45 degree line. Hence
fitting for f[KE] works well, this agrees with the initial findings in Fitting a Simple PopPK Model using PoPy.
The blue dots for f[KE_isv] and f[PNOISE] (centre and right graphs in Table 1.18) are not as tightly
clustered around the 45 degree line, indicating these parameters are harder to identify than f[KE]. However
both f[KE_isv] and f[PNOISE] show a reasonable correlation between the true and fitted values.

Note it might well be possible to carry out a more statistical analysis of correlation between the true and fitted
f[X], for example finding a line of best fit through the scatter plot data. The MComp Script outputs are all
saved to .csv files, see Files Generated by MComp Script, which could easily be loaded into R or other statistical
packages for further analysis.

1.7 Typical Workflows

1.7.1 Developing a PK/PD model for a real life Data Set

A typical task for a PK/PD modeller is deducing a model given a data set collected from patients. It is usually
best to take pre-existing knowledge about the PK and PD of the drug and use this as a starting point to create
an initial model. You can then explore more complex models by adding new parameters and comparing the
fitted f[X] and objective value obtained with the new model, to prior models. In PoPy you can achieve this
by developing a series of fit scripts, running each script and examining the outputs.

To help with this process the potential child scripts of an individual Fit Script are summarised in Fig. 1.4.

The child scripts are automatically generated by PoPy in order to facilitate other tasks you may wish to perform.
Each child script is optionally generated by an entry in the OUTPUT_SCRIPTS section of the Fit Script.

For example a Sim Script will plot a dense PK or PD curve for each individual and you can see where your
current model may not be matching the data set and where the model is extrapolating.
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fit

grph sim msim fitsum

grph vpc

Fig. 1.4: Hierarchy of child scripts for a parent Fit Script.

An MSim Script allows you to easily generate a VPC plot, which allow you to see how your current model
compares to the data set for the whole population. As a VPC tests the distributional assumptions of the model
as well as the fit to each individual, it is a rigorous test for a population model.

1.7.2 Investigate a PK/PD model using synthetic data

If you do not have a real life data set or just wish to carry out a more theoretical investigation you can use PoPy’s
tools to generate artificial data. This approach has the benefit of allowing you to create data sets with known
properties and test hypotheses about the identifiability of parameters. The primary tool to do this in PoPy is
the Tut Script, see Generate data and Fit using Simple PopPK Model for a run through of using a tut script.
The potential child scripts of a Tut Script are shown in Fig. 1.5.

tut

gen fit comp tutsum

grph sim gensum

grph

grph sim msim fitsum

grph vpc

Fig. 1.5: Hierarchy of child scripts for a parent Tut Script.

Another tool for investigating models using artificial data in PoPy is the MTut Script. See Generate multiple
data sets and Fit using Simple PopPK Model for a run through of using a MTut script. The potential child scripts
of a MTut Script are shown in Fig. 1.6.
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mtut

mgen mfit mcomp

Fig. 1.6: Hierarchy of child scripts for a parent MTut Script.
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CHAPTER

TWO

PRINCIPLES OF PHARMACOKINETICS

Pharmacokinetics is the study of the time profile of drugs and metabolites in a physiological organism. It is often
described as “what the body does to the drug”. Generally, our goal is to predict a time course of drug concentration
that resembles the observations we have collected from an individual. (Observations from a population are covered
in Population Models in PoPy.)

To make these predictions we build a mathematical model that, for an individual, has two main components:

1. A deterministic structural model with parameters that define the shape of the time course

2. A stochastic residual error model that specifies how observations deviate from the deterministic predictions

• [MouldUpton2012]

• [MouldUpton2013]

• [UptonMould2013]

• [RowlandTozer2012]

This part of the book provides a detailed description of how various pharmacokinetic (PK) models are implemented
in PoPy. It assumes no prior knowledge of PK, hence experienced modellers may be tempted to skip this section.
It is, however, probably valuable to look at the syntax for absorption models, particular the Weibull model, which
is not available in other population modelling software.

2.1 Elimination, Clearance and Volume of Distribution

Pharmacokinetics is the study of “what the body does to the drug.” By and large, the body removes it either
by metabolism (primarily in the liver) or by direct elimination of the unchanged drug (primarily in the kidneys).

Note: See the Elimination Example with KE parameter for the Tut Script used to generate results in this section.

Consider, as a first example, a bolus dose of 100 mg administered intravenously (IV) at time t0=1. Under first
order kinetics, the rate of elimination is directly proportional to the amount of drug, $S(t)$, in the body at time
t and the constant of proportionality is known as the elimination rate constant, KE:

𝑑𝑆

𝑑𝑡
=−𝐾𝐸 ·𝑆(𝑡)

This ordinary differential equation (ODE) has a closed form solution:
𝑆(𝑡)=𝑆(𝑡0)·exp{−𝐾𝐸 ·(𝑡−𝑡0)}

i.e. an exponential decay curve, where the initial conditions are
𝑆(𝑡0)=100 mg.

We can specify this directly in the PREDICTIONS section of the control script,
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PREDICTIONS: |
plabel[DRUG_AMT] = "Drug Amount (mg)"
clabel[TIME] = "Time (minutes)"
p[DRUG_AMT] = c[AMT]*exp(-c[KE]*(c[TIME]-1.0))
c[DRUG_AMT] ~ norm(p[DRUG_AMT], 0.0)

where, for now, we treat KE as if it were a constant measurable quantity, c[KE], defined in the data file. From this
closed form solution, we can predict the concentration at different time points and synthesize observations (Fig. 2.1).
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Fig. 2.1: Amount Administered vs Time curve for an intravenously administered 100 mg bolus dose at time t0=1
with first order elimination. (Observations are noiseless in this example.)

2.1.1 Volume of Distribution

In practice, however, we cannot measure the amount of drug in the body from a blood plasma sample, only
its concentration (i.e. amount of drug per unit volume).

Note: See the Elimination Example with Volume of Distribution for the Tut Script used to generate results in this
section.

This measured concentration will clearly be influenced by the physiological volume of blood plasma in an
individual’s body. Less obvious, however, is that the concentration will also be influenced by the physiochemical
properties of the drug that determine how the drug is distributed throughout the body; some drugs are distributed
mostly in the blood plasma (which is directly observed) whereas others get distributed to all tissues (which are
not). The scaling factor – a combination of physiological and physiochemical properties – that relates amounts
to concentrations is known as the volume of distribution, V, which varies greatly between drugs and, to a lesser
extent, between individuals.

We model the observed concentration by including the volume of distribution parameter (with a value of 20 L
in this example) in the PREDICTIONS section of the control script:

PREDICTIONS: |
plabel[DRUG_CONC] = "Drug Concentration (mg/L)"
clabel[TIME] = "Time (minutes)"
AMOUNT = c[AMT]*exp(-c[KE]*(c[TIME]-1.0))
p[DRUG_CONC] = AMOUNT/c[V]
c[DRUG_CONC] ~ norm(p[DRUG_CONC], 0.0)

which has the effect of scaling the observations (Fig. 2.2; note the scale of the y-axis).
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Fig. 2.2: Concentration vs Time curve for an intravenously administered 100 mg bolus dose with first order
elimination

2.1.2 Clearance

Note: See the Elimination Example with Clearance for the Tut Script used to generate results in this section.

Because we can only measure concentrations, it makes sense to define the rate of elimination also in terms of
concentrations:

𝑑𝑆

𝑑𝑡
=−𝐾𝐸 ·𝑉 ·𝑆(𝑡)

𝑉
=−𝐾𝐸 ·𝑉 ·𝐶(𝑡)

=−𝐶𝐿·𝐶(𝑡)
where

𝐶(𝑡)=
𝑆(𝑡)

𝑉
is the concentration at time t and

𝐶𝐿=𝐾𝐸 ·𝑉
is a constant of proportionality known as the clearance, CL, that relates elimination to concentration. Again,
this permits a closed form solution,

𝑆(𝑡)=𝑆(0)·exp{−(𝐶𝐿/𝑉 )·(𝑡−𝑡0)}
where we have substituted CL/V for the rate constant of elimination, KE:

PREDICTIONS: |
plabel[DRUG_CONC] = "Drug Concentration (mg/L)"
clabel[TIME] = "Time (minutes)"
AMOUNT = c[AMT]*exp(-(c[CL]/c[V])*(c[TIME]-1.0))
p[DRUG_CONC] = AMOUNT/c[V]
c[DRUG_CONC] ~ norm(p[DRUG_CONC], 0.0)

Because this is a mathematical equivalence, the Concentration vs Time curve (Fig. 2.2) is unchanged.

2.2 Compartment Models

Although analytic solutions exist for simple models, more complex models can be difficult (or impossible) to
define in closed form. Compartment models are a basic tool used to describe more complex PK in animals
and man, the idea being that the body can be treated as though it were composed of a number of compartments
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through which the drug disperses. The concentration of drug in some of these compartments can be measured
directly, e.g. by taking blood samples.

A typical model contains a Central compartment that represents the site of sampling (usually the blood plasma)
with zero or more additional compartments. Drug diffuses between compartments (sometimes under the action
of transporters) as the system heads toward an equilibrium state in which concentrations in each compartment
may or may not be equal.

Drug is lost over time from the Central compartment via elimination (usually through the action of the liver
and kidneys).

Note: Compartmental models are not intended to replicate biology per se; they simply produce mathematical
curves that resemble observations, and it is difficult to associate any compartment with a specific tissue or organ
unless sampling occurs at that site.

2.2.1 One Compartment Model

One Compartment Model with Intravenous Dosing

We return to the example from the previous chapter whereby a 100 mg bolus dose of drug is administered
intravenously into the body, which we now refer to as the Central compartment. The drug is then removed
from the Central compartment by the same process of elimination described previously, such that

𝑑𝑆

𝑑𝑡
=−(𝐶𝐿/𝑉 )·𝑆(𝑡)

which has the closed form solution
𝑆(𝑡)=𝑆(0)·exp(−(𝐶𝐿/𝑉 )·𝑡).

Note: See the One Compartment Model with Intravenous Dosing for Tut Script used to generate results in this
section.

Graphically, we can draw a compartment diagram that shows the flows into and out of the Central compartment
(Fig. 2.3).

IN

CENTRAL

 bolus{amt:c[AMT]}      

OUT

 c[CL]*s[CENTRAL]/c[V]      

Fig. 2.3: Compartment diagram for a one compartment model with intravenous dosing.

In the previous chapter, we specified this model programatically by writing the closed form solution directly
into the PREDICTIONS block of the control script:
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PREDICTIONS: |
plabel[DRUG_CONC] = "Drug Concentration (mg/L)"
clabel[TIME] = "Time (minutes)"
AMOUNT = c[AMT]*exp(-(c[CL]/c[V])*(c[TIME]-1.0))
p[DRUG_CONC] = AMOUNT/c[V]
c[DRUG_CONC] ~ norm(p[DRUG_CONC], 0.0)

Using the compartment model approach, however, we can express the same model more naturally using the differen-
tial equations themselves, and obtain amounts (and therefore concentrations) using a numerical ODE solver. To do
so, we need to add a new section, DERIVATIVES, to the control script in which we specify the differential equations:

DERIVATIVES: |
d[CENTRAL] = @bolus{amt:c[AMT]} - c[CL]*s[CENTRAL]/c[V]

where d[CENTRAL] represents the first derivative of the amount of drug, s[CENTRAL], in the Central
compartment.

There are two components of the flow: a positive flow, representing an intravenous bolus dose, into the Central
compartment

@bolus{amt: c[AMT]}

and a negative flow out of the Central compartment,

-c[CL]*s[CENTRAL]/c[V]

that is directly proportional to the concentration, s[CENTRAL]/c[V].

Because we are now using a compartment model, the PREDICTIONS section can simply refer to the amount
in the Central compartment, s[CENTRAL], as determined by the solver:

PREDICTIONS: |
plabel[DV_CENTRAL] = "Drug Concentration (mg/L)"
clabel[TIME] = "Time (minutes)"
p[DV_CENTRAL] = s[CENTRAL]/c[V]
c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], 0.0)

and the predicted observations again follow an exponential decay curve (Fig. 2.4).
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Fig. 2.4: Concentration vs Time curve for a bolus dose, intravenously applied to the Central compartment, with
first order elimination.

(For clarity, this example applies the bolus dose at t = 1 s, as indicated by the vertical line in the plot.)
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Given that this is a relatively simple model, it has a closed form solution which means we can write down
an equation that defines concentration (not its derivative) as a function of time. As a result, we can obtain the
concentration at any time point without needing to use a comparatively slow numerical differential solver.

PoPy therefore includes a convenient shortcut to this equation that can be used in the DERIVATIVES section
of the script to compute directly the amount of drug:

DERIVATIVES: |
s[CENTRAL] = @iv_one_cmp_cl{

dose: @bolus{amt:c[AMT]},
CL: c[CL], V: c[V] }

• The left hand side of the equation is now s[CENTRAL] rather than d[CENTRAL] because we are defining
the amount and not its derivative.

• The shortcut’s name has three parts: the first, iv, denotes that the dose is intravenous; the second, one_cmp,
says that there is one compartment; and the third, cl, says that we are parameterizing the model using
clearance and volumes of distribution.

• The shortcut takes a number of arguments such as dose (which defines the properties of the dose such
as its amount) and CL (which allows you to use any name for the rate constant model parameter, e.g.
c[clearance]).

One quantity of interest in PK is half-life (𝑡1/2), the time taken for drug concentration to fall to half that of its
peak value. For a one compartment model with IV administration, we can calculate 𝑡1/2 directly from the closed
form solution:

𝑆(𝑡1/2)=𝑆(0)/2

⇒exp{−(𝐶𝐿/𝑉 )·𝑡1/2}=0.5

−(𝐶𝐿/𝑉 )·𝑡1/2=log(0.5)

𝑡1/2=−log(0.5)· 𝑉
𝐶𝐿

𝑡1/2≈0.693· 𝑉
𝐶𝐿

Next, we turn to the case where the drug is administered via a route that requires absorption (i.e. anything except
intravenous or intra-arterial injection).

One Compartment Model with Absorption

Many drugs are not administered directly into the bloodstream but are given orally, into the gastrointestinal tract,
from which absorption must occur before the drug is observed in the plasma. Drugs are also frequently administered
by other methods such as subcutaneously or intramuscularly, in which case absorption will also need to be modelled.

We model this using one or more absorption compartments (which we refer to as Depot compartments), connected
via a one-way flow to the Central compartment.

Note: In PKPD terminology, the Depot compartment is not counted as a compartment, hence this is called a
“one compartment model with absorption” even though it has two “compartments”.

Note: See the One Compartment Model with Absorption for Tut Script used to generate results in this section.

In a first order absorption model, the flow from the Depot to the Central compartment is proportional to the
amount of drug in Depot, and the constant of proportionality is known as the absorption rate, KA:

We must therefore model three flows:
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IN

DEPOT

 bolus{amt:c[AMT]}      

CENTRAL

OUT

 c[CL]*s[CENTRAL]/c[V]      

 c[KA]*s[DEPOT]      

Fig. 2.5: Compartment diagram for a one compartment model with absorption.

• A bolus dose to the Depot

• A negative (outward) first order flow from the Depot with a rate constant of KA. This must be matched
by a positive (inward) first order flow to the Central compartment.

• A negative (outward) flow from the Central compartment to account for elimination.

which we specify directly in the DERIVATIVES section of the PoPy script:

DERIVATIVES: |
d[DEPOT] = @bolus{amt:c[AMT]} - c[KA]*s[DEPOT]
d[CENTRAL] = c[KA]*s[DEPOT] - c[CL]*s[CENTRAL]/c[V]

PoPy allows you to define the flows between compartments incrementally to simplify the model specification,
after first initializing the flows to zero:

DERIVATIVES: |
# initialize
d[DEPOT] = 0.0
d[CENTRAL] = 0.0
# update
d[DEPOT] += @bolus{amt:c[AMT]} # dose in
d[DEPOT->CENTRAL] += c[KA]*s[DEPOT] # absorption
d[CENTRAL] -= c[CL]*s[CENTRAL]/c[V] # elimination out

In this case, flows in from an external “source” are added using +=, flows out to an external “sink” are subtracted
using -=, and flows between compartments are added using += with the arrow (->) notation to define the
compartments being linked.

This notation has the advantage that the pairing of compartments is explicit and every flow is defined only once
rather than having to maintain two equal and opposite flows, thus reducing the potential for human error when
defining the model.

We note that, as in One Compartment Model with Intravenous Dosing, PoPy provides a closed form solution
for this model:

DERIVATIVES: |
s[DEPOT,CENTRAL] = @dep_one_cmp_cl{
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dose: @bolus{amt:c[AMT]},
KA: c[KA], CL: c[CL], V: c[V]}

where dep (rather than iv) in the first part of the shortcut name denotes that a Depot compartment is included.
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Fig. 2.6: Concentration vs Time curve for a one compartment model with absorption

Regardless of which formulation is used, the resulting Concentration vs Time curve is the same (Fig. 2.6). In this
case, the amount of drug in Central rises more slowly than in the intravenous case as the drug is absorbed, peaks at
a lower amount, then drops off at an approximately exponential rate as elimination removes the drug from the body.

Note: It is common for a drug to be absorbed more quickly than it is eliminated. In some cases, however, the
opposite is true and the elimination rate becomes limited by the absorption rate (because in practice the drug
cannot be eliminated faster than it is absorbed). This phenomenon is known as flip flop kinetics.

We now turn to the case where the drug diffuses at different rates between the blood and at least one other organ,
modelled by adding a peripheral compartment.

2.2.2 Two Compartment Model

Two Compartment Model with Intravenous Dosing

For simplicity, we return to intravenous administration of the drug directly into the Central compartment. This
time, however, we add a peripheral distribution compartment, Peri, that models the different distribution of
the drug between the blood and/or well perfused organs and other tissues. The peripheral compartment is a
useful approximation, which captures the impact of tissues with slower distribution on the shape of the plasma
concentration-time profile.

Note: See the Two Compartment Model with Intravenous Dosing for Tut Script used to generate results in this
section.

Because the diffusion can occur in both directions (unlike in absorption), we must now model the flow from
Central to Peri and from Peri back to Central. We therefore introduce two new parameters:

• Q, the intercompartmental clearance

• V2, the volume of distribution of Peri (compartment 2)
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and rename the volume of distribution of the Central compartment from V to V1 in order to distinguish it from
that of the Peri compartment:

IN

CENTRAL

 bolus{amt:c[AMT]}      

PERI

 c[Q]*s[CENTRAL]/c[V1]      

OUT

 c[CL]*s[CENTRAL]/c[V1]       c[Q]*s[PERI]/c[V2]      

Fig. 2.7: Compartment diagram for a two compartment model with intravenous dosing.

The corresponding DERIVATIVES section is:

DERIVATIVES: |
# initialize
d[CENTRAL] = 0.0
d[PERI] = 0.0
# update
d[CENTRAL] += @bolus{amt:c[AMT]}
d[CENTRAL->PERI] += c[Q]*s[CENTRAL]/c[V1] # intercompartmental diffusion
d[PERI->CENTRAL] += c[Q]*s[PERI]/c[V2] # intercompartmental diffusion
d[CENTRAL] -= c[CL]*s[CENTRAL]/c[V1]

and, again, there is a convenient shortcut, @iv_two_cmp_cl

DERIVATIVES: |
s[CENTRAL,PERI] = @iv_two_cmp_cl{

dose: @bolus{amt:c[AMT]},
CL: c[CL], V1: c[V1],
Q: c[Q], V2: c[V2] }

As in previous examples, the resulting Concentration vs Time curve (Fig. 2.8) is the same regardless of whether
we use flows or the closed form solution because they are equivalent.
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Fig. 2.8: Concentration vs Time curve for a two compartment model with intravenous dosing
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Two Compartment Model with Absorption

We can now model the effect of absorption (i.e. a Depot compartment), either by adding a Depot compartment
to iv_two_cmp_cl_tut or by adding a Peri compartment to dep_one_cmp_cl_tut.

Note: See the Two Compartment Model with Absorption for Tut Script used to generate results in this section.

IN

DEPOT

 bolus{amt:c[AMT]}      

CENTRAL

PERI

 c[Q]*s[CENTRAL]/c[V]      

OUT

 c[CL]*s[CENTRAL]/c[V]      

 c[KA]*s[DEPOT]      

 c[Q]*s[PERI]/c[V2]      

Fig. 2.9: Compartment diagram for a two compartment model with absorption

The resulting DERIVATIVES section is:

DERIVATIVES: |
# initialize
d[DEPOT] = 0.0
d[CENTRAL] = 0.0
d[PERI] = 0.0
# add flows
d[DEPOT] += @bolus{amt:c[AMT]}
d[DEPOT->CENTRAL] += c[KA]*s[DEPOT] # absorption
d[CENTRAL->PERI] += c[Q]*s[CENTRAL]/c[V]
d[PERI->CENTRAL] += c[Q]*s[PERI]/c[V2]
d[CENTRAL] -= c[CL]*s[CENTRAL]/c[V]

which also has a closed-form shortcut:

DERIVATIVES: |
s[DEPOT,CENTRAL,PERI] = @dep_two_cmp_cl{

dose: @bolus{amt:c[AMT]},
KA: c[KA], CL: c[CL], V1: c[V1],
Q: c[Q], V2: c[V2] }

In the resulting Concentration vs Time curve (Fig. 2.10) we see a combination of the behaviours exhibited in
the two earlier examples (iv_two_cmp_cl_tut and dep_one_cmp_cl_tut).

2.2.3 Three Compartment Model
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Fig. 2.10: Concentration vs Time for a two compartment model with absorption

Three Compartment Model with Intravenous Dosing

For completeness, we look at models with three compartments: the Central compartment and two peripheral
compartments, Peri1 and Peri2.

Note: See the Three Compartment Model with Intravenous Dosing for Tut Script used to generate results in this
section.

As in Two Compartment Model with Intravenous Dosing, we add two new parameters:

• Q3, the inter-compartmental clearance between Central and Peri2 (compartment 3)

• V3, the volume of distribution of Peri2 (compartment 3)

and rename the inter-compartmental clearance between Central and Peri1 (compartment 2) from Q to Q2.

IN

CENTRAL

 bolus{amt:c[AMT]}      

PERI1

 c[Q2]*s[CENTRAL]/c[V1]      

PERI2

 c[Q3]*s[CENTRAL]/c[V1]      

OUT

 c[CL]*s[CENTRAL]/c[V1]       c[Q2]*s[PERI1]/c[V2]       c[Q3]*s[PERI2]/c[V3]      

Fig. 2.11: Compartment diagram for a three compartment model with intravenous dosing

After adding the two new flows to Peri2, the DERIVATIVES sections is now:

DERIVATIVES: |
# initialize
d[CENTRAL] = 0.0
d[PERI1] = 0.0
d[PERI2] = 0.0
# update
d[CENTRAL] += @bolus{amt:c[AMT]} # dose in
d[CENTRAL->PERI1] += c[Q2]*s[CENTRAL]/c[V1]
d[PERI1->CENTRAL] += c[Q2]*s[PERI1]/c[V2]
d[CENTRAL->PERI2] += c[Q3]*s[CENTRAL]/c[V1]
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d[PERI2->CENTRAL] += c[Q3]*s[PERI2]/c[V3]
d[CENTRAL] -= c[CL]*s[CENTRAL]/c[V1] # elimination out

and again there is a closed-form shortcut, iv_three_cmp_cl.

DERIVATIVES: |
s[CENTRAL,PERI1,PERI2] = @iv_three_cmp_cl{

dose: @bolus{lag:0, amt:c[AMT]},
CL: c[CL], V1: c[V1],
Q2: c[Q2], V2: c[V2],
Q3:c[Q3], V3: c[V3] }

both of which give the same Concentration vs Time curve (Fig. 2.12), though it is not easy to see the impact
of the second peripheral compartment that provides the transitional phase between the very steep initial fall and
the shallow first-order terminal phase.
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Fig. 2.12: Amount vs. Time for a three compartment model with intravenous dosing

Three Compartment Model with Absorption

The final model we consider in this chapter is a three compartment model with first order absorption (Fig.
2.13), specified either by adding a Depot compartment to iv_three_cmp_cl_tut or by adding a second peripheral
compartment to dep_two_cmp_cl_tut.

Note: See the Three Compartment Model with Absorption for Tut Script used to generate results in this section.

The DERIVATIVES section,

DERIVATIVES: |
# initialize
d[DEPOT] = 0.0
d[CENTRAL] = 0.0
d[PERI1] = 0.0
d[PERI2] = 0.0
# update
d[DEPOT] += @bolus{amt:c[AMT]} # dose in
d[DEPOT->CENTRAL] += c[KA]*s[DEPOT] # absorption
d[CENTRAL->PERI1] += c[Q2]*s[CENTRAL]/c[V1]
d[PERI1->CENTRAL] += c[Q2]*s[PERI1]/c[V2]
d[CENTRAL->PERI2] += c[Q3]*s[CENTRAL]/c[V1]
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IN

DEPOT

 bolus{amt:c[AMT]}      

CENTRAL

PERI1

 c[Q2]*s[CENTRAL]/c[V1]      

PERI2

 c[Q3]*s[CENTRAL]/c[V1]      

OUT

 c[CL]*s[CENTRAL]/c[V1]      

 c[KA]*s[DEPOT]      

 c[Q2]*s[PERI1]/c[V2]       c[Q3]*s[PERI2]/c[V3]      

Fig. 2.13: Compartment diagram for a three compartment model with absorption

d[PERI2->CENTRAL] += c[Q3]*s[PERI2]/c[V3]
d[CENTRAL] -= c[CL]*s[CENTRAL]/c[V1] # elimination out

also has a closed form shortcut,

DERIVATIVES: |
s[DEPOT,CENTRAL,PERI1,PERI2] = @dep_three_cmp_cl{

dose: @bolus{lag:0, amt:c[AMT]},
KA: c[KA], CL: c[CL], V1: c[V1],
Q2: c[Q2], V2: c[V2],
Q3: c[Q3], V3: c[V3]}

both of which produce the same Concentration vs Time curve, which resembles that from Two Compartment
Model with Absorption only with a lower peak (Fig. 2.14).
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Fig. 2.14: Concentration vs Time for a three compartment model with absorption

2.3 Dose Administration

So far we have considered only a bolus dose - a single amount administered instantaneously to a given
compartment, either intravenously (e.g. an injection) or via absorption (e.g. an orally administered pill).

There are, of course, other means of administering a drug and here we will introduce the dosing functions
supported by PoPy. All of the dosing functions have two arguments in common:

2.3. Dose Administration 43



The PoPy Manual, Release 1.1.2

• the amt argument is the quantity of drug administered in total.

• the lag argument defines a delay between the drug being administered (as specified in the data file) and
the drug entering the compartment where it is administered. This can be useful when very little drug
is absorbed immediately. Unless otherwise stated, it is assumed that the lag time is zero.

The remaining arguments to the dosing function are dependent on the dose type.

2.3.1 Bolus Dose

A bolus dose represents an instantaneous increase in the amount of a drug in a specific compartment.
Physiologically it represents an injection where the drug is assumed to be well distributed within the compartment
within a negligible time period.

Note: See the Bolus Dose with no elimination. for Tut Script used to generate results in this section.

The mathematical expression for a bolus at time 𝑡𝐵 in compartment Central is:-
𝑠[𝐶𝐸𝑁𝑇𝑅𝐴𝐿]=𝑠[𝐶𝐸𝑁𝑇𝑅𝐴𝐿]+𝐵(𝑡)

where:-

𝐵(𝑡)=

{︃
c[AMT], if 𝑡=𝑡𝐵
0.0, otherwise

In PoPy, we add a bolus dose to a given compartment (e.g. Central) using the DERIVATIVES section of the script:

d[CENTRAL] = @bolus{amt: c[AMT], lag: m[LAG]} + ...

Because the dose amount is usually fixed by the experiment, it is typically included in the input data and is
therefore a column (or covariate) and encoded as such, e.g. c[AMT].

The lag time, however, is usually estimated as a model parameter and would typically be coded as such, e.g.
m[LAG]. If lag time is not included in the bolus function, it defaults to zero:

d[CENTRAL] = @bolus{amt: c[AMT], lag: 0.0} + ...

which is exactly the same as

d[CENTRAL] = @bolus{amt: c[AMT]} + ...

See @bolus for some more syntax examples.

The cumulative amount in the compartment (with no elimination) is therefore a step function (Fig. 2.15):

An example of a bolus dose added to a one compartment model with no lag time is:

DERIVATIVES: |
d[CENTRAL] = @bolus{amt:c[AMT]} - c[CL]*s[CENTRAL]/c[V]

2.3.2 Infusion

An infusion administers the dose gradually, usually at a fixed rate over a fixed period of time (i.e. the rate of
infusion is constant during the time period and zero before and after, typically intravenously).

The mathematical expression for an infusion is:
d[CENTRAL]=d[CENTRAL]+R(t)
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Fig. 2.15: Cumulative amount following a bolus dose with no elimination

where the infusion has constant rate c[RATE], starts at time t=0 and has duration c[DUR] and in
compartment CENTRAL is:-

where:-

𝑅(𝑡)=

{︃
𝑐[𝑅𝐴𝑇𝐸], if 𝑡𝑆≤𝑡≤𝑡𝑆+𝑐[𝐷𝑈𝑅]

0.0, otherwise
An infusion dose can be characterised either by the duration of the infusion or the rate of the infusion. As the
rate of change is constant, an infusion is also known as zero order absorption.

Note: For a constant total infusion amount (AMT) the RATE and DURATION can be calculated from each other:
AMT=RATE×DURATION

So specifying either a RATE or DURATION, together with a total amount, is sufficient to fully define an infusion.

Infusion Duration

An infusion duration is coded by:

@inf_dur{amt: c[AMT], lag: m[LAG], dur: c[DUR]}

in the equation for the appropriate compartment in the DERIVATIVES: section of a fit or tutorial script.

Dose and lag are coded in the same way as for a bolus dose.

Duration can either be included in the input data or can be estimated as a parameter.

Note: See the Infusion Duration Dose with no elimination. for Tut Script used to generate results in this section.

An example of an infusion dose spread over 20 time units added to a one compartment model with no lag time is:

DERIVATIVES: |
d[CENTRAL] = (

@inf_dur{amt: c[AMT], lag: 0.0, dur: 20}
- m[KE]*s[CENTRAL]

)

If the infusion duration varies between individuals use:
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DERIVATIVES: |
d[CENTRAL] = (

@inf_dur{amt: c[AMT], lag: 0.0, dur: c[DUR]}
- m[KE]*s[CENTRAL]

)

See @inf_dur for some more syntax examples.

The Amount-vs-Time curve for an infusion (without elimination) is a ramp function where the cumulative dose
rises linearly until it reaches the total amount administered (Fig. 2.16).
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Fig. 2.16: Cumulative amount following a infusion dose of 95 mg over a duration of 19 min with no elimination

Infusion Rate

An infusion duration is coded by:

@inf_rate{amt: c[AMT], lag: m[LAG], rate: c[RATE]}

in the equation for the appropriate compartment in the DERIVATIVES: section of a fit or tutorial script.

The amount and lag are coded in the same way as for a bolus dose.

Infusion rate can either be included in the input data or can be estimated as a parameter.

Note: See the Infusion Rate Dose with no elimination. for Tut Script used to generate results in this section.

An example of an infusion dose at a rate of 5 dose units per time unit added to a one compartment model with
no lag time is:

DERIVATIVES: |
d[CENTRAL] = (

@inf_rate{amt: c[AMT], lag: 0.0, rate: 5}
- m[KE]*s[CENTRAL]

)

If the infusion rate is different between individuals use:

DERIVATIVES: |
d[CENTRAL] = (

@inf_rate{amt: c[AMT], lag: 0.0, rate: c[RATE]}
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- m[KE]*s[CENTRAL]
)

See @inf_rate for some more syntax examples.
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Fig. 2.17: Cumulative amount following a infusion dose of 95 mg at a rate of 5 mg/min with no elimination

2.3.3 Gamma Dose

This occurs when the release of the drug into a specific compartment follows a Gamma curve. See:-

https://en.wikipedia.org/wiki/Gamma_distribution

Note: See the Gamma Dose with no elimination. for Tut Script used to generate results in this section.

The mathematical expression for an Gamma dose starting at time 𝑡𝑆 with Weibull parameters 𝜆 and 𝜅 and total
dose amount AMT in compartment Central is:-

d[CENTRAL]=d[CENTRAL]+R(t)
where:-

𝑅(𝑡)=

{︃
𝛽𝛼(𝑡−𝑡𝑆)

𝛼−1𝑒−𝛽(𝑡−𝑡𝑆)

Γ(𝛼) , if 𝑡≥𝑡𝑆

0.0, otherwise
Where R(t) is the rate of drug absorption at time (t) and 𝜆 and 𝜅 are parameters of the Gamma. R(t) is the Gamma
density function scaled by the AMT parameter. Since a density function has unit area under the curve, the AMT
scaling ensures that the total dose administered is equal to AMT.

This can be implemented in PoPy using:

@gamma{amt: c[AMT], lag: m[LAG], alpha: m[ALPHA], beta: m[BETA]}

in the equation for the appropriate compartment in the DERIVATIVES section of a Fit Script or ref:tut_script.
See @gamma.

Here the parameters map to the Gamma equation as follows:-

Parameter Sym-
bol

alpha 𝛼
beta 𝛽
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The lag is coded in the same way as for a bolus dose. A lag time merely delays the start time of the gamma dose.

An example of a gamma dose added to a one compartment model with no lag time is:

DERIVATIVES: |
d[CENTRAL]

→˓= @gamma{amt: c[AMT], alpha: m[ALPHA], beta: m[BETA]} - m[KE]*s[CENTRAL]
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Fig. 2.18: Cumulative amount following a Gamma dose with no elimination

2.3.4 Weibull Dose

The examples given so far have shown the amount of drug absorbed with respect to time, rising from an initial
value (typically zero) to the amount administered.

They can, alternatively, be viewed as the cumulative probability of 1 mg of drug having been absorbed at any
given time, multiplied by the total amount (in mg) of drug administered. (Because a density function has unit
area under the curve, the scaling ensures that the total dose administered is equal to AMT.) This formulation
allows us to consider alternative dosing functions by using different probability distributions.

Note: See the Weibull Dose with no elimination. for Tut Script used to generate results in this section.

One choice that has been proposed [Piotrovskii1987] uses the Weibull distribution [Christensen1980] where
the amount, 𝑆(𝑡), absorbed at time 𝑡 following a dose of AMT at time 𝑡=𝑡0 is given by

𝑆(𝑡)=𝐴𝑀𝑇 ·exp
{︂
−
(︂
𝑡−𝑡0
𝜆

)︂𝜅}︂
such that

𝑑𝑆(𝑡)

𝑑𝑡
=

⎧⎨⎩
𝜅
𝜆

(︀
𝑡−𝑡0
𝜆

)︀𝜅−1·𝐴𝑀𝑇 ·exp
{︀
−
(︀
𝑡−𝑡0
𝜆

)︀𝜅}︀
, for 𝑡≥𝑡0

0, otherwise

⎫⎬⎭
where 𝜆 (lambda) and 𝜅 (kappa) are, respectively, scale and shape parameters of the Weibull distribution.

In other words, for 𝑡≥𝑡0
𝑑𝑆(𝑡)

𝑑𝑡
=
𝜅

𝜆

(︂
𝑡−𝑡0
𝜆

)︂𝜅−1

·𝑆(𝑡)

which can be viewed as a rate absorption constant that varies over time, reflecting the possibility that a molecule
of drug may be more likely to be absorbed the longer it is resident in the body (for example, due to passage
of the drug into the intestine).

A shortcut for the Weibull dosing function is applied in PoPy using
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@weibull{amt: c[AMT], lag: m[LAG], lambda: m[LAMBDA], kappa: m[KAPPA]}

in the equation for the appropriate compartment in the DERIVATIVES section of an input script.

The lag works in the same way as for a bolus dose, delaying the onset of the weibull dose. Again, this can be
left out if we assume no lag:

DERIVATIVES: |
d[CENTRAL] = @weibull{amt: c[AMT], lambda: m[LAMBDA], kappa: m[KAPPA]}
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Fig. 2.19: Cumulative amount following a Weibull dose with no elimination

2.3.5 Repeated Dosing

There need not be only one dose administered to the subject for a given experiment – several doses may be
given, for example to maintain drug concentration at a steady state over a period of time. PoPy handles this
by allowing multiple dose lines in the data file and superimposing the resulting curves, see Table 2.1.
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Table 2.1: Repeated dosing, administered to a one compartment model
with first order elimination

Repeated Bolus Dosing Repeated Infusion Dosing
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Repeated Gamma Dosing Repeated Weibull Dosing
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Note: See Repeated Bolus Dose with first order elimination., Repeated Infusion Rate Dose with first order
elimination., Repeated Gamma Dose with first order elimination. and Repeated Weibull Dose with first order
elimination. for the tutorial scripts used to generate results in this section.

Note PoPy can superimpose consecutive complex Dosing Functions (e.g. Weibull and Gamma functions) that
can cause numerical instability in other PK/PD packages.

2.4 Residual Error Model

So far, we have looked at compartment models and different dosing regimes all under theoretical conditions.
For example, our Concentration vs Time curve for a one compartment model with absorption produces smooth
curves with evenly spaced observation points (Fig. 2.20).

In practice, however, it is impossible to measure any quantity perfectly; all measurements are imperfect and
contain some noise. To weight each observation correctly, we may need to account for patterns of noise in the
data. For example, noise often increases proportionally with signal so that higher concentrations contain more
absolute error. Sometimes we know that observations have been collected in suboptimal conditions and may
wish to allow the model to downweight them if they are inconsistent with other data.

We therefore turn to the different ways in which noise manifests itself on the observations and how we can
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Fig. 2.20: Concentration vs Time for a one compartment model with absorption, without measurement error
(noise).

incorporate this into a fitted model.

2.4.1 Error Models for Continuous Data

Specifically, we look at how to model errors that appear on a continuous quantity such as the measured concentration
of drug, demonstrating the concept using a normal distribution (a popular choice for continuous measurements).

Additive Noise

Note: See the Model containing additive error only and additive error only input data for the Tut Script used to
generate results in this section.

In the simplest case, the difference between the observed measurement and the model prediction will be a random
variable of constant variance (or, equivalently, constant standard deviation) such that the observations are scattered
evenly around the ideal curve.

PREDICTIONS: |
plabel[DV_CENTRAL] = "Drug Concentration (mg/L)"
clabel[TIME] = "Time (minutes)"
p[DV_CENTRAL] = s[CENTRAL]/m[V]
add_std = m[ANOISE_STD]
total_var = add_std**2
c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], total_var)

With a standard deviation of 1.0, for example, and 100 randomly sampled time points between 1 and 40, we
get a more realistic Concentration vs Time curve (Fig. 2.21).

Proportional Noise

Note: See the Model containing proportional error only, with proportional only data for the Tut Script used to
generate results in this section.
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Fig. 2.21: Concentration vs Time for a one compartment model with absorption, plus additive noise.

While additive noise is independent of the strength of the signal (e.g. the magnitude of the measurement) at
any point in time, proportional noise increases in proportion to the magnitude of the signal. For example, the
standard deviation of the noise may be equal to 10% of the signal magnitude such that the error is greatest at
the peak of the curve, reducing as the concentration falls (Fig. 2.22)

PREDICTIONS: |
plabel[DV_CENTRAL] = "Drug Concentration (mg/L)"
clabel[TIME] = "Time (minutes)"
p[DV_CENTRAL] = s[CENTRAL]/m[V]
prop_std = p[DV_CENTRAL] * m[PNOISE_STD]
total_var = prop_std**2
c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], total_var)
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Fig. 2.22: Concentration vs Time for a one compartment model with absorption, plus proportional noise.

Additive and Proportional Noise

Note: See the Model containing both proportional and additive error for the Tut Script used to generate results in
this section.

In reality, most measurement processes are affected by both kinds of error such that the additive noise dominates
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at low signal magnitudes whereas proportional noise dominates at high signal magnitudes (Fig. 2.23).
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Fig. 2.23: Concentration vs Time for a one compartment model with absorption, plus both proportional and
additive noise

We must, however, take care when defining the variance of a mixed error model. The variance of the sum of
two normally distributed variables is the sum of their variances, and therefore the standard deviation of the
sum does not equal the sum of their standard deviations:

𝑎∼𝑁(𝜇𝑎,𝜎
2
𝑎)

𝑏∼𝑁(𝜇𝑏,𝜎
2
𝑏)

𝑉 𝑎𝑟(𝑎+𝑏)=𝜎2
𝑎+𝜎2

𝑏

≠(𝜎𝑎+𝜎𝑏)
2

𝑆𝑡𝑑(𝑎+𝑏)≠𝜎𝑎+𝜎𝑏
as shown in the PREDICTIONS block of the PoPy input script:

PREDICTIONS: |
plabel[DV_CENTRAL] = "Drug Concentration (mg/L)"
clabel[TIME] = "Time (minutes)"
p[DV_CENTRAL] = s[CENTRAL]/m[V]
prop_std = p[DV_CENTRAL] * m[PNOISE_STD]
add_std = m[ANOISE_STD]
total_var = prop_std**2 + add_std**2
c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], total_var)

It is crucially important to specify the form of the total variance correctly when fitting if we are to estimate the
additive and proportional variances correctly. To see the effect of specifying the variance incorrectly, compare
the tutorial script Mixed error model fitted to mixed error data, but with incorrect variance definition with its
correct counterpart, Model containing both proportional and additive error.

2.5 Estimating Model Parameters

Note: See One Compartment Model with Absorption estimating V and CL for the Tut Script used here.

The previous chapters show how the observed concentrations are influenced by the parameters that define them
such as the number of compartments and their function, how flows between compartments are specified, the shape
of the dosing function, and the residual error model. We have explored these topics by taking models with given
parameters, and using them to generate datasets of synthetic observations. This is often known as a forward problem.
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We now turn to the more difficult inverse problem where we are given a dataset of measurements and a
parameterized model, and want to estimate the most likely parameters for the given data. To solve this problem,
we first need to make three design decisions.

First, we need a way to quantify the goodness-of-fit for a set of parameters, i.e. a single number that enables
us to compare one set of parameters with another and determine which agrees better with the data. A popular
choice for this is the likelihood that quantifies how likely the data are, given the model parameters.

Second, we must specify an algorithm for finding the “best” model parameters from the set of possible options.
In practice, finding the best set of parameters is difficult or impossible, so we instead look for a locally optimal
set that is better than all other nearby sets [DennisSchnabel1987] [NocedalWright2006].

Finally, we need a set of criteria that determine whether we have reached the best local solution, i.e. whether
the algorithm has converged.

2.5.1 Likelihood and the Objective Function

Before we can find the “best” fit of a model to a set of observations, we first need a measure of what is “good”.
A common measure of goodness-of-fit is a model’s likelihood [Millar2011]: how likely are the observations
to arise if the given set of model parameters is correct? Although this is not a probability (the integral over model
parameters does not equal one), for a given set of observations and a given model structure a higher likelihood
indicates a better fit.

In practice, we compute the Maximum Likelihood by minimizing the negative of the likelihood (because most
optimization algorithms are written to find the minimum of an error or cost function). Moreover, where the
likelihood is a member of the exponential family of distributions it is mathematically convenient to minimize
-2 log(likelihood) which is commonly referred to as the objective function, ObjV.

Using this measure of cost, we can take a “bird’s eye view” of the surface in two dimensions by plotting it as
a contour map for pairs of parameter values. In One Compartment Model with Absorption, for example, we
looked at a model with three parameters: KA, CL and V. Fixing KA at its optimal value, we can see how the
cost surface varies with respect to CL and V (Fig. 2.24).
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Fig. 2.24: CL vs V surface plot of the Objective Function Value (ObjV) for a bolus dose, administered to a one
compartment model with absorption
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In this example, we see that the cost function has a single minimum in this region and is at its lowest close to
the true values: CL = 3 and V = 20. The lowest cost parameters are close to, not exactly at, the true values because
of noise added to the observations and a finite data set.

2.5.2 Minimization Algorithm

Once we have specified the cost function we want to minimize, we need an algorithm that will find the minimum.
Because some models have large datasets and complex models with many parameters, it is not practical to find
the minimum via an exhaustive search over every possible combination of parameters.

We therefore adopt an incremental approach that takes an initial guess at the parameter values, then looks for a differ-
ent set of values nearby that has a lower cost. Repeating this process takes us on a path across the likelihood surface
until there are no nearby solutions that are better than the current one. This, by definition, is the local minimum.
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Fig. 2.25: CL vs V surface plot overlaid with the path taken by the optimization algorithm to the minimum. ‘+’
shows starting values, square shows minimum values.

Depending on the shape of the cost surface and the particular algorithm used, finding the local minimum can
take only a few steps or it can require many steps over a winding path. In the example given (Fig. 2.25), a local
minimum was found by PoPy in a single step. PoPy’s search algorithm is very good at finding nearby minima
with very few steps, however it is impossible to guarantee that this is the global minimum. This is true for all
local search algorithms.

The current recommended search algorithm used by PoPy is called ND, see ND Fitting Method for more details.

2.5.3 Initial Values and Convergence

When using a local optimization algorithm, the current estimate heads “down the hill” to a nearby point where
the cost is lower until there is nowhere lower to go. In some cases, there may be more than one point that is
locally the lowest point. As a result, starting the algorithm from some points will lead to one local minimum
whereas starting from other initial points will lead to other local minima.
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The set of points that lead to a given local minimum are known as its basin of convergence. In simple models, this is
rarely a major problem. However, in complex models or if the fitted parameters are infeasible it is worthwhile to test
alternative starting values, especially if the initial guess at a starting estimate was a long way from the fitted value.

2.6 Uncertainty and Standard Errors

Parameter estimation (also referred to as “model fitting”) aims to find a solution in parameter space that has
a likelihood at least as good as all other nearby solutions. We know that a locally optimal solution has been
found when changing any parameter in any direction decreases the likelihood (or, equivalently, increases the cost).

2.6.1 Likelihood Hessian

We can also quantify the confidence in our estimates from the shape of the likelihood surface at the local minimum:
changing some parameters will lower the likelihood by a lot, suggesting that we have high confidence (or low
uncertainty) in their estimated value; changing others, however, will lower the likelihood by only a little or
possibly not at all, suggesting that we have low confidence (high uncertainty) in our estimate.

Note: See One Compartment Model with Absorption estimating KA for the Tut Script used here.

First we return to the example used in the last chapter – a one compartment model with absorption – only here
we reduce it to a one dimensional problem by fixing CL and V to the optimal values and allowing only KA
to vary. We can then plot ObjV for a range of values of KA as a line (Fig. 2.26).
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Fig. 2.26: ObjV vs KA with other parameters fixed at their true values

Although ObjV as a function of KA is not symmetric, it is smooth and has a clearly defined minimum. We can
therefore compute properties of the curve (e.g. its gradient) at any point and approximate it with a polynomial
using a Taylor series expansion.

More specifically, using a second order Taylor series at the minimum requires only the minimum value, ObjV,
and its second derivative because the gradient is zero by definition. This approximates the ObjV function with
a quadratic (Fig. 2.27).

In effect, this approximates the likelihood surface with a Gaussian whose peak coincides with that of the true
likelihood (Fig. 2.28).

Note: See One Compartment Model with Absorption estimating KA and V, One Compartment Model with
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Fig. 2.27: ObjV vs KA with other parameters fixed at their true values, plus the quadratic approximation at the
minimum
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Fig. 2.28: Likelihood vs KA with other parameters fixed at their true values, plus the gaussian approximation at the
maximum

Absorption estimating KA and CL and One Compartment Model with Absorption estimating V and CL, for the
tutorial scripts used here.

In more than one dimension, the second derivative is a matrix and is known as the hessian. In two dimensions,
for example, the quadratic approximation to ObjV resembles a basin whose shape reflects the true function at
its minimum (Table 2.2).
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Table 2.2: Comparison of ObjV surface (left) with quadratic approxima-
tion (right)
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2.6.2 Confidence Intervals

Note: See One Compartment Model with Absorption estimating KA and CL for the Tut Script used here.

With a gaussian approximation to the likelihood, we can sample new values for the population parameters from
the distribution. By sampling many possible solutions from the distribution, we can compute a range for each
parameter in which a given percentage of the sampled values lie. These ranges are called confidence intervals
and typically encompass 90% or 95% of the sampled values (Fig. 2.29).
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Fig. 2.29: ObjV surface with population parameters sampled from the approximating gaussian and 90% confidence
intervals in red for KA and CL

CI(KA) = 0.274 + [-0.0538, 0.0537]
CI(CL) = 3.24 + [-0.337, 0.343]

The purpose of the confidence interval is to compare one estimate with another, for example by confirming
that our estimated confidence interval contains a value published in research literature by a third party.

When computing confidence intervals, we can get different estimates depending on how we parameterized the
model. When population parameters are required to be positive, for example, we might optimise over values
for their logarithm (which spans the whole of the real line). This can change the ObjV surface to be closer to
a quadratic, and effectively samples from a lognormal distribution over the population parameters (Fig. 2.30).
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Fig. 2.30: ObjV surface with population parameters sampled from the approximating gaussian and 90% confidence
intervals in red for log(KA) and log(CL)

One outcome of this is that (in the limit) the confidence interval is less likely to be centred on the estimated value:

CI(KA) = 0.273 + [-0.0489, 0.0601]
CI(CL) = 3.25 + [-0.325, 0.358]
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2.6.3 Standard Errors

The Likelihood Hessian can be used to compute standard errors for parameter estimates, which are similar to
the Confidence Intervals described above and computed in a similar manner.
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CHAPTER

THREE

POPULATION MODELS IN POPY

Estimating model parameters for a single subject requires many observations to differentiate between one model
and another. However, because the observation process is usually intrusive (e.g. taking a blood sample to measure
drug concentration) it is often practical to take only a few samples from one individual.

To overcome this limitation we can take a few samples from many individuals and pool the data, known as
Population PK. Early attempts at doing this relied on the residual error model “taking up the slack” but it quickly
became clear that the estimates of population parameters were biased - when dealing with a population of subjects,
a single set of model parameters cannot capture the variation in concentration time courses in a sensible way.

A significant advance in the field came with the development of mixed effect models that predict a time course
that is personalized to every individual so that the residual error model described earlier remains sensible. This
personalization is done by introducing new parameters to capture variability:

1. A stochastic statistical model that uses random effects to capture unpredictable, random variability between
subjects from the same population, and possibly between occasions for the same subject

2. A deterministic covariate model that uses additional fixed effects to capture predictable variability as a
result of relationships between subject characteristics and structural model parameters (e.g. between weight
and the volume of distribution)

The distributional assumptions we choose for the newly introduced random effects constrain the problem
mathematically, making it practical to find a “best” local fit even with sparse observations.

3.1 Inter-Subject Variation (ISV)

One way to model random variability between individuals is to use a mixed effect model. With this approach,
we assign a set of one or more random effects to every individual such that their model parameters (e.g. the
clearance, m[CL]) can deviate from the population values.

The random effect, r[CL_isv] for example, is a realization of a random variable drawn from a probability
distribution. Typically, this is a normal distribution with the mean fixed at zero and a variance that is estimated
from the data, though other distributions are possible.

This is then combined with the population value to give an individualized value for the PK parameter. For
example, we can use an additive model such that an individual’s pharmacokinetic parameters deviate from the
population mean:

m[CL] = f[CL] + r[CL_isv]

Additive models can also be used for parameters such as lag times when the exact time of a dose event is not
known, or when a measurement has no meaningful zero reference point (like temperature).
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Most physiological quantities, however, are constrained to be positive (e.g. clearances, volumes) such that an
additive model can cause problems if m[CL] becomes negative. It is therefore common instead to impose
a log-normal distribution over m[CL] by applying the additive model in a log-transformed space:

m[LOG_CL] = log(f[CL]) + r[CL_isv]
...
CL = exp(m[LOG_CL])

or, equivalently,

m[CL] = f[CL] * exp(r[CL_isv])

3.1.1 Data Synthesis with ISV

Note: See One Compartment Model with Absorption and Inter-subject Variance f[CL_isv]=0.2, One Compartment
Model with Absorption and Inter-subject Variance f[CL_isv]=0.01 and One Compartment Model with Absorption
and Inter-subject Variance f[CL_isv]=0.5 for the Tut Script used to generate results in this section.

We illustrate Inter Subject Variability (sometimes referred to as “Between Subject Variability”) using an example
based on the one compartment model with absorption that was introduced earlier (One Compartment Model
with Absorption).

Because we now want several individuals, we make three changes to the EFFECTS section of the script:

1. move values that vary between individuals (c[ID], c[AMT] and time points t[RESET], t[DOSE]
and t[OBS]) from the POP level into a new level, ID.

2. add to the ID level an individual-specific random effect, r[CL_isv], that is responsible for inter-subject
variation in the model parameter CL.

3. add to the POP level a population-specific fixed effect, f[CL_isv], that specifies the variance (i.e.
the spread) of the random effects, r[CL_isv].

EFFECTS:
POP: |

f[KA] = 0.3
f[CL] = 3
f[V] = 20
f[PNOISE_STD] = 0.1
f[ANOISE_STD] = 0.05
# new: true inter-subject variability
f[CL_isv] = 0.2

ID: |
# new: 30 individuals for this population
c[ID] = sequential(30)
c[AMT] = 100.0
t[RESET] = 0.0
t[DOSE] = 1.0
t[OBS] ~ unif(1.0, 50.0; 4)
# new: inter-subject variability
r[CL_isv] ~ norm(0, f[CL_isv])

Note: The ID level sits below POP to indicate that there should be a branch of the hierarchy created for every
individual in the population.
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During data synthesis, PoPy adds random variation between individuals by sampling realizations of r[CL_isv]
from the probability distribution. These realizations of r[CL_isv] are then used in the MODEL_PARAMS
section to add inter-subject variability to the model parameter, m[CL].

MODEL_PARAMS: |
m[KA] = f[KA]
# new: log-normally distributed ISV
m[CL] = f[CL]*exp(r[CL_isv])
m[V] = f[V]
m[PNOISE_STD] = f[PNOISE_STD]
m[ANOISE_STD] = f[ANOISE_STD]

The rest of the script (e.g. DERIVATIVES and PREDICTIONS) are the same as for a single individual.

This variation changes the shape of the predicted curves over the set of individuals in the population (Table 3.1).

Table 3.1: Population graphs with increasing ISV: (left) CL_isv=0.01;
(centre) CL_isv=0.2; (right) CL_isv=0.5
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3.1.2 Naïve ISV Fit

Note: See the One Compartment Model with Absorption and no inter-subject Variance f[CL_isv]=0 for the Tut
Script used to generate results in this section.

Given a dataset where there are 30 subjects with ISV, we first investigate the effect of excluding ISV from the
model we fit.

We can do this without changing the data synthesis code (e.g. the MODEL_PARAMS section) by fixing
f[CL_isv] at zero such that all deviations from the population prediction are accounted for under the residual
error model.

EFFECTS:
POP: |

f[KA] ~ unif(0.01, 1) 0.5
f[CL] ~ unif(0.01, 10) 1
f[V] ~ unif (0.01, 100) 15
f[PNOISE_STD] ~ unif(0.001, 1) 0.2
f[ANOISE_STD] ~ unif(0.001, 1) 0.2
# new: assumed zero inter-subject variability
f[CL_isv] = 0.0

ID: |
# new: inter-subject variability
r[CL_isv] ~ norm(0, f[CL_isv])

After the fit, we see that the population parameters (i.e. the fixed effects) are poorly estimated. In particular,
the noise levels f[PNOISE_STD] and f[ANOISE_STD] are far higher than the true values because they
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are responsible for capturing the variation that, in reality, is ISV rather than noise.

f[KA] = 0.2081
f[CL] = 3.0966
f[V] = 14.7707
f[PNOISE_STD] = 0.3766
f[ANOISE_STD] = 0.1619
f[CL_isv] = 0.0000

As a reference point, the final objective function value is

-200.93968711173534

3.1.3 Mixed Effect ISV Fit

Note: See the One Compartment Model with Absorption and Inter-subject Variance f[CL_isv]=0.2 for the Tut
Script used to generate results in this section.

We now look at a mixed effects model that allows model parameters (and predictions) to be tailored to each
individual by making the ISV variance, f[CL_isv], a parameter to be optimized:

EFFECTS:
POP: |

f[KA] ~ unif(0.01, 1) 0.5
f[CL] ~ unif(0.01, 10) 1
f[V] ~ unif (0.01, 100) 15
f[PNOISE_STD] ~ unif(0.001, 1) 0.2
f[ANOISE_STD] ~ unif(0.001, 1) 0.2
# new: estimated inter-subject variability
f[CL_isv] ~ unif(0.001, 1) 0.01

ID: |
# new: inter-subject variability
r[CL_isv] ~ norm(0, f[CL_isv])

As a result, the population parameters are now much closer to the values used for data synthesis (shown above).
In particular, we see that the noise parameters are much more accurate since the ISV can be accounted for using
f[CL_isv] rather than the residual noise model.

f[KA] = 0.3020
f[CL] = 3.2966
f[V] = 19.6506
f[PNOISE_STD] = 0.0712
f[ANOISE_STD] = 0.0545
f[CL_isv] = 0.1844

For comparison, we can also see that the final objective function value is also far lower than that obtained without
modelling ISV:

-394.58997461170543

Variation between subjects is just one of many sources of randomness in population data. The next source we
will look at is variation within a subject from one visit to another - Inter-Occasion Variation (IOV).
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3.2 Inter-Occasion Variation (IOV)

Just as PK parameters can vary from one individual to the next, they can also vary within an individual over
a period of time. Clearances and volumes, for example, can often vary from day-to-day, particularly where
inflammation plays a role but even in healthy volunteers. Absorption parameters can also vary substantially
with each dosing occasion, sometimes to the extent that IOV is even greater than ISV. As a result, when drugs
are administered on multiple occasions it may be important to model this variation, too [KarlssonSheiner1993].

3.2.1 Data Synthesis with IOV

Note: See the One Compartment Model with Absorption and Inter-occasion Variance f[CL_isv]=0.2 and One
Compartment Model with Absorption and Inter-occasion Variance f[CL_isv]=0.5 for the Tut Script used to
generate results in this section.

First, we generate some new data with both ISV and IOV by making more changes to the EFFECTS section
of the script:

1. move values that vary between occasions (just the time points t[RESET], t[DOSE] and t[OBS],
unless the dose amount, c[AMT] varies with occasion) from the ID level into a new level, OCCASION.

2. add to the OCCASION level an occasion-specific covariate, c[OCC], that indicates the occasion, and
an occasion-specific random effect, r[CL_iov], that is responsible for inter-occasion variation in the
model parameter CL.

3. add to the POP level a population-specific fixed effect, f[CL_iov], that specifies the variance (i.e.
the spread) of the inter-occasional random effects, r[CL_iov].

EFFECTS:
POP: |

f[KA] = 0.3
f[CL] = 3
f[V] = 20
f[PNOISE_STD] = 0.1
f[ANOISE_STD] = 0.05
f[CL_isv] = 0.2
# new: true inter-occasion variability
f[CL_iov] = 0.1

ID: |
# new: 10 subjects in this population
c[ID] = sequential(10)
c[AMT] = 100.0
r[CL_isv] ~ norm(0, f[CL_isv])

OCC: |
# new: 3 occasions per individual
c[OCC] = sequential(3)
t[RESET] = 0.0
t[DOSE] = 1.0
t[OBS] ~ unif(1.0, 50.0; 4)
# new: inter-occasion variability
r[CL_iov] ~ norm(0, f[CL_iov])

(Here we have also reduced the population to ten individuals with three occasions each in order to maintain
30 time courses.)

Note: Adding the OCCASION level below the ID level tells PoPy that there are multiple occasions for an
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individual, much as adding ID below POP says that there are multiple subjects in the population. Every occasion
therefore inherits the parameters defined in the levels above. (See EFFECTS.)

The IOV random effect is then added to its ISV sibling in the MODEL_PARAMS section of the script:

MODEL_PARAMS: |
m[KA] = f[KA]
# log-normally distributed ISV and IOV
m[CL] = f[CL]*exp(r[CL_isv] + r[CL_iov])
m[V] = f[V]
m[PNOISE_STD] = f[PNOISE_STD]
m[ANOISE_STD] = f[ANOISE_STD]

The remaining sections (e.g. DERIVATIVES and PREDICTIONS) remain the same.

As with ISV, this added variation changes the shape of the predicted curves over the set of individuals in the popula-
tion (Table 3.2). Depending on the magnitude of the variances, the set of curves may overlap such that it is difficult
to separate the individuals or they may form tight clusters. (The overlap will also increase with bigger populations.)

Table 3.2: Population graphs with increasing ISV: (left) CL_isv=0.2,
CL_iov=0.1; (right) CL_isv=0.5, CL_iov=0.01
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3.2.2 Naïve IOV Fit

Note: See One Compartment Model with Absorption and no inter-occasion Variance f[CL_iov]=0 for the Tut
Script used to generate results in this section.

As with ISV, we can investigate the effect of excluding IOV from a fit to data where IOV exists by fixing the
f[CL_iov] variance to zero.

EFFECTS:
POP: |

f[KA] ~ unif(0.01, 1) 0.5
f[CL] ~ unif(0.01, 10) 1
f[V] ~ unif (0.01, 100) 15
f[PNOISE_STD] ~ unif(0.001, 1) 0.2
f[ANOISE_STD] ~ unif(0.001, 1) 0.2
f[CL_isv] ~ unif(0.001, 10) 0.01
# new: assumed zero inter-occasion variability
f[CL_iov] = 0
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ID: |
r[CL_isv] ~ norm(0, f[CL_isv])

OCC: |
# new: inter-occasion variability
r[CL_iov] ~ norm(0, f[CL_iov])

Again, although the population parameters are close to their “true” values, the noise parameters and the ISV
are all bigger than they should be in order to capture the IOV that has not been modelled

f[KA] = 0.3202
f[CL] = 2.5350
f[V] = 20.9756
f[PNOISE_STD] = 0.2297
f[ANOISE_STD] = 0.0976
f[CL_isv] = 0.1395
f[CL_iov] = 0.0000

and we use the resulting objective function value,

-253.73371865528824

as a reference.

3.2.3 Mixed Effect IOV Fit

Note: See One Compartment Model with Absorption and Inter-occasion Variance f[CL_isv]=0.2 for the Tut
Script used to generate results in this section.

Adding IOV to the model by making f[CL_iov] a free parameter

EFFECTS:
POP: |

f[KA] ~ unif(0.01, 1) 0.5
f[CL] ~ unif(0.01, 10) 1
f[V] ~ unif (0.01, 100) 15
f[PNOISE_STD] ~ unif(0.001, 1) 0.2
f[ANOISE_STD] ~ unif(0.001, 1) 0.2
f[CL_isv] ~ unif(0.001, 10) 0.01
# new: estimated inter-occasion variability
f[CL_iov] ~ unif(0.001, 10) 0.01

ID: |
r[CL_isv] ~ norm(0, f[CL_isv])

OCC: |
# new: inter-occasion variability
r[CL_iov] ~ norm(0, f[CL_iov])

results in population parameters that are again close to their “true” values, this time including the variance
parameters. This reflects the intuition that a correctly defined model requires less variance to capture the observed
deviations from the population estimates.

f[KA] = 0.3345
f[CL] = 2.5856
f[V] = 20.2051
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0479
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f[CL_isv] = 0.1199
f[CL_iov] = 0.0783

As with the ISV example, the final objective function value,

-363.8117557237518

is also significantly lower, indicating a better fit of the model to the observed concentrations.

3.3 Modelling Correlation in Random Effects

As shown in Inter-Subject Variation (ISV), we can use random effects to account for variability in model
parameters between individuals in a population. In that example, we demonstrated the principle for a single
parameter whereas we now consider the case where two or more parameters vary between individuals. In
particular, we are interested in what happens when pairs of parameters vary in similar ways, for example when
they have a common underlying cause.

In the following examples we model inter-subject variability in both m[CL] and m[V] using a combined
proportional and additive noise model to generate observations for 200 individuals, and fit various models to
the synthesized data.

3.3.1 Uncorrelated Effects

Note: See the Diagonal matrix generation diagonal matrix fit using separate univariate normals and Diagonal
matrix generation diagonal matrix fit for the Tut Script used to generate results in this section.

We can synthesize observations where parameters are uncorrelated simply by creating, for each parameter, an
independent random effect with its own variance:

EFFECTS:
POP: |

f[KA] = 0.3
f[CL] = 3
f[V] = 20
f[PNOISE_STD] = 0.1
f[ANOISE_STD] = 0.05
f[CL_isv] = 0.2
# new: ISV on volume of distribution
f[V_isv] = 0.1

ID: |
c[ID] = sequential(200)
c[AMT] = 100.0
t[RESET] = 0.0
t[DOSE] = 1.0
t[OBS] ~ unif(1.0, 50.0; 4)
r[CL_isv] ~ norm( 0, f[CL_isv] )
# new: ISV on volume of distribution
r[V_isv] ~ norm( 0, f[V_isv] )

Mathematically, this is equivalent to modelling the two parameters jointly via a covariance matrix with the
individual variances along the diagonal and zeros everywhere else. In PoPy this structure is enforced using the
~diag_matrix() notation:
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EFFECTS:
POP: |

f[KA] = 0.3
f[CL] = 3
f[V] = 20
f[PNOISE_STD] = 0.1
f[ANOISE_STD] = 0.05
# new: Joint ISV on both CL and V
f[CL_isv, V_isv] ~ diag_matrix() [[0.2, 0.1]]

ID: |
c[ID] = sequential(200)
c[AMT] = 100.0
t[RESET] = 0.0
t[DOSE] = 1.0
t[OBS] ~ unif(1.0, 50.0; 4)
# new: Joint ISV on both CL and V
r[CL_isv, V_isv] ~ mnorm( [0,0], f[CL_isv, V_isv] )

for the covariance matrix and using a multivariate normal distribution, ~mnorm(), to model the two random
effects as a vector (in this case with zero mean). Throughout this chapter we will continue to use the covariance
matrix form rather than independent variables.

With independent inter-subject variability in m[CL] and m[V] the generated curves (Fig. 3.1) vary widely
from individuals with high CL and low V (i.e. a high KE) to individuals with a low CL and high V (i.e. a low KE).
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Fig. 3.1: Simulated prediction curves for a population with independent inter-subject variability on parameters CL
and V

In all cases here, we ensure that the generated observations are the same by specifying a fixed rand_seed
option in the METHOD_OPTIONS section of the tutorial script:

METHOD_OPTIONS: {py_module: gen, rand_seed: 314159}

Uncorrelated Fit to Uncorrelated Effects

Note: See the Diagonal matrix generation diagonal matrix fit for the Tut Script used to generate results in this
section.

We now consider fitting (i.e. estimating the parameters of) a model using the observations, where the model
also imposes a diagonal structure on the covariance matrix:
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EFFECTS:
POP: |

f[KA] = 0.3
f[CL] = 3
f[V] = 20
f[PNOISE_STD] = 0.1
f[ANOISE_STD] = 0.05
# new: Joint ISV on both CL and V
f[CL_isv, V_isv] ~ diag_matrix() [[0.01, 0.01]]

ID: |
# new: Joint ISV on both CL and V
r[CL_isv, V_isv] ~ mnorm( [0,0], f[CL_isv, V_isv] )

In this case, the only population parameters we estimate are the population variances, f[CL_isv] and
f[V_isv]. The fitted parameter values,

f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv,V_isv] = [

[ 0.1977, 0.0000 ],
[ 0.0000, 0.1167 ],

]

largely agree with the “true” values used to generate the observations, albeit with lower values for the variances
than the true values (a phenomenon known as shrinkage).

The final objective function value (OBJV) for this fit is

-2215.9658412906333

Correlated Fit to Uncorrelated Effects

Note: See the Diagonal matrix generation full matrix fit for the Tut Script used to generate results in this section.

We could, however, use a different covariance structure when fitting the model to the observations. For example,
we could relax the constraints on the off-diagonal elements by allowing any covariance matrix that is symmetric
positive definite (SPD) - a necessary property for all covariance matrices.

In PoPy, we do this using the ~spd_matrix() notation:

EFFECTS:
POP: |

f[KA] = 0.3
f[CL] = 3
f[V] = 20
f[PNOISE_STD] = 0.1
f[ANOISE_STD] = 0.05
# new: Model that links variability of
# CL to that of V
# zero off diagonal element causes fail for SPD matrix hmmm...
# f[CL_isv, V_isv] ~ spd_matrix() [
# [ 0.01 ],
# [ 0.0, 0.01 ]
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# ]
f[CL_isv, V_isv] ~ spd_matrix() [

[ 0.01 ],
[ 0.0001, 0.01 ]

]
ID: |

r[CL_isv, V_isv] ~ mnorm( [0,0], f[CL_isv, V_isv] )

Using the “full” covariance matrix the fitted values,

f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv,V_isv] = [

[ 0.1928, -0.0166 ],
[ -0.0166, 0.1155 ],

]

also largely agree with those fitted using the diagonally-constrained covariance since a diagonal matrix is a
specific example of an SPD matrix. This can also be seen in the fitted objective function value,

-2217.243790984624

which is only fractionally lower than that for the diagonally-constrained model, since the full covariance matrix
has more freedom to fit to the data.

3.3.2 Correlated Effects

Note: See the Full matrix generation diagonal matrix fit for the Tut Script used to generate results in this section.

We now run the same experiments, only using new observations that have been synthesized from a model where
the variability in m[CL] and m[V] is correlated. This is a more realistic example, since both clearance and
volume of distribution can increase with weight.

EFFECTS:
POP: |

f[KA] = 0.3
f[CL] = 3
f[V] = 20
f[PNOISE_STD] = 0.1
f[ANOISE_STD] = 0.05
# new: Data in which variability of CL is
# linked to that of V
f[CL_isv, V_isv] ~ spd_matrix() [

[ 0.15 ],
[ 0.05, 0.15 ],

]
ID: |

c[ID] = sequential(200)
c[AMT] = 100.0
t[RESET] = 0.0
t[DOSE] = 1.0
t[OBS] ~ unif(1.0, 50.0; 4)
r[CL_isv, V_isv] ~ mnorm( [0,0], f[CL_isv, V_isv] )
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Fig. 3.2: Simulated prediction curves for a population with correlated inter-subject variability on parameters CL
and V.

The generated predictions (Fig. 3.2) are qualitatively different from those generated without correlation because
the resulting KE values have a smaller spread. (Correlated changes in CL and V cancel out to a degree.)

Uncorrelated Fit to Correlated Effects

Note: See the Full matrix generation diagonal matrix fit for the Tut Script used to generate results in this section.

We now run the fit using a model that prohibits correlation between CL and V by imposing a diagonal form
on the covariance structure,

EFFECTS:
POP: |

f[KA] = 0.3
f[CL] = 3
f[V] = 20
f[PNOISE_STD] = 0.1
f[ANOISE_STD] = 0.05
# new: Model in which variability of CL is
# independent of that of V
f[CL_isv, V_isv] ~ diag_matrix() [[0.01, 0.01]]

ID: |
r[CL_isv, V_isv] ~ mnorm( [0,0], f[CL_isv, V_isv] )

which is at odds with the data.

As a result, the fitted parameters

f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv,V_isv] = [

[ 0.1280, 0.0000 ],
[ 0.0000, 0.1581 ],

]
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are much smaller than the “true” values used to generate the observations because they are unable to capture
the correlations between values. The final objective function value (OBJV) for the fit,

-2090.7014893307264

cannot be compared with that of the data without correlation because they are different datasets, but serves as
a useful baseline when fitting with different models.

Correlated Fit to Correlated Effects

Note: See the Full matrix generation full matrix fit for the Tut Script used to generate results in this section.

Finally, we run a fit with a model that does have the flexibility to capture correlations, again using the
~spd_matrix() notation

EFFECTS:
POP: |

f[KA] = 0.3
f[CL] = 3
f[V] = 20
f[PNOISE_STD] = 0.1
f[ANOISE_STD] = 0.05
# new: Model that links variability of
# CL to that of V
# f[CL_isv, V_isv] ~ spd_matrix() [
# [ 0.01 ],
# [ 0.00, 0.01 ]
# ]
f[CL_isv, V_isv] ~ spd_matrix() [

[ 0.01 ],
[ 0.001, 0.01 ]

]
ID: |

r[CL_isv, V_isv] ~ mnorm( [0,0], f[CL_isv, V_isv] )

This time, the fitted parameters

f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv,V_isv] = [

[ 0.1361, 0.0500 ],
[ 0.0500, 0.1660 ],

]

are closer to the “true” values: the individual variances (along the diagonal) are higher and the covariance (the
off-diagonal) is close to the generating value.

The improvement in fit is also apparent from the final objective function value (OBJV),

-2108.2792074137697

which is lower than for the diagonally-constrained fit, showing that the extra flexibility is beneficial when the
data require it.
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These examples illustrate the importance of including the flexibility to capture correlations in random effects
where the model parameters vary together (for example, due to a common underlying property).

Where the observations do not come from a correlated source, having the flexibility to capture correlations has
little real benefit to the model fit (a constrained covariance matrix would do just as well) but may require more
data to estimate the greater number of parameters; the model should be as complex as it needs to be, but no more.

In practice, it is rare for PK parameters to be completely independent with a correlation of zero. Accounting
for correlations tends to lead to better VPCs and more realistic simulations of future patients.

3.4 Covariates

Within a population, there will be variability in structural model parameters (such as clearance and volume of
distribution) from one individual to another that can be predicted as a function of a measurable property (such
as renal function impairment). These measurable properties are known as covariates.

If the variability can be expressed as a deterministic function of these underlying properties, we can model it
to increase the accuracy of our predicted time course and decrease the burden on the residual error model.

3.4.1 Continuous Covariates

Continuous covariates appear on a sliding scale that can take on any value (often within a sensible range), as
opposed to Discrete Covariates that take one of a finite (and often small) number of values.

We encode the effect of covariate c[Y] on model parameter m[X] via mathematical functions in the
MODEL_PARAMS section of the PoPy script. For example, we may assume a linear relationship

m[X] = f[X] + f[X_Y_EFFECT]*c[Y]

though this can permit m[X] to be negative which is undesirable for many model parameters. Alternatives
that avoid this problem include the exponential function

m[X] = f[X] * exp(f[X_Y_EFFECT]*c[Y])

or the power function

m[X] = f[X] * c[Y]**f[X_Y_EFFECT]

among others.

It may also be sensible to standardize the covariate in some way, for example by shifting

m[X] = f[X] * (c[Y]-Yref)**f[X_Y_EFFECT]

or scaling

m[X] = f[X] * (c[Y]/Yref)**f[X_Y_EFFECT]

the covariate with respect to some reference value, Yref. Choosing a value that is close to the middle of the
range of the data (body weight, for example, is conventionally centred at 70 kg) reduces the correlation between
the intercept and the covariate slope, which leads to smaller standard errors and means that the intercept has
a sensible interpretation (e.g. CL in an individual with GFR of 120 mL/min).
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Body Weight as a Covariate

Note: See Body Weight Covariate for the Tut Script used to generate results in this section.

Empirical studies have shown that the volume of distribution (and clearance, among others) increases with body
weight. In the supplied tutorial example, we have added a weight effect coefficient to the fixed effects in the
POP level of EFFECTS and a weight covariate at the ID level:

EFFECTS:
POP: |

f[KA] = 0.3
f[CL] = 3
f[V] = 20
f[PNOISE] = 0.1
f[ANOISE] = 0.05
f[WT_EFFECT] = 0.75 # new fixed effect

ID: |
c[ID] = sequential(30)
c[AMT] = 100.0
t[RESET] = 0.0
t[DOSE] = 1.0
t[OBS] ~ unif(1.0, 50.0; 4)
c[WT] ~ norm(70, 100) # new covariate

We then update the MODEL_PARAMS section to include the covariate effect as per the “allometric function”
[Holford1996]

MODEL_PARAMS: |
m[KA] = f[KA]
m[CL] = f[CL]*(c[WT]/70)**f[WT_EFFECT] # new covariate effect
m[V] = f[V]*(c[WT]/70) # new covariate effect
m[PNOISE] = f[PNOISE]
m[ANOISE] = f[ANOISE]

which is a form of power function, using a scaled weight with 70 kg as the reference (as is now accepted in
the literature).

This generates a population with time courses that are weight dependent (Fig. 3.3).
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Fig. 3.3: Simulated prediction curves for a population of 40 individuals with weight-dependent clearance, CL, and
volume of distribution, V
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For fitting, we estimate only the baseline (median) volume of distribution, f[V], and the weight effect
coefficient, f[WT_EFFECT], and we see that the estimated values,

f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.2610
f[PNOISE] = 0.1000
f[ANOISE] = 0.0500
f[WT_EFFECT] = 0.6657

closely match those used to generate the observations.

Other Continous Covariates

Other continuous covariates include

• Age: Renal and hepatic functions decrease with age, which can lead to a reduced drug clearance. The
volume of distribution of some lipid soluble drugs also increases with age.

• Ideal Body Weight (IBW):

• Lean Body Weight (LBW):

Males=50+0.9kg for every cm over 150cm
Females=45+0.9kg for every cm over 150cm

• Height: The height of an individual, usually measured in cm or m.

• Body Surface Area (BSA): The surface area of the body in m2 can be calculated using the weight in Kg
and height in cm. There are various different methods for achieving this such as the Du Bois formula:

BSA=0.007184*WT0.425*H0.725

or Mosteller formula:

BSA=

√
WT*H
60

• Body Mass Index(BMI): The mass or weight of a subject in kg divided by the square of the height in
m, gives the BMI measured in kg/m2

BMI=
WT
H2

3.4.2 Discrete Covariates

Discrete covariates take one of a finite (and often small) number of values, as opposed to continuous covariates
that lie on a spectrum. Discrete covariates can then be used to model differences between groups by allowing
a different median value in each group.

Where the covariate represents an either-or classification (i.e. the covariate is dichotomous), we can encode group
membership with a zero (reference group) or one (other group). We can then use this indicator variable in a
mathematical formula,

m[X] = (1-c[Y])*f[X_WHEN_Y_IS_ZERO] + c[Y]*f[X_WHEN_Y_IS_ONE]
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For ease of interpretation, PoPy allows you to encode data columns as strings so that you can see immediately
which group is being referred to in the input file. In these cases, an if-else statement can be used to apply
the correct fixed effect to the model parameter. This method, unlike indicator variables, can also be used for
discrete variables that take more than two values (e.g. race).

if c[Y] == 'zero':
m[X] = f[X_WHEN_Y_IS_ZERO]

elif c[Y] == 'one':
m[X] = f[X_WHEN_Y_IS_ONE]

elif c[Y] == 'two':
m[X] = f[X_WHEN_Y_IS_TWO]

...

We refer to discrete covariates that assign to a group as categorical covariates.

In contrast, ordinal covariates are a discretization of the continuous spectrum and have a definite ordering. These
values can sometimes be treated as if they are continuous (e.g. the Child-Pugh scale for hepatic impairment)
but it is up to the modeller to decide whether this is justifiable.

Other Discrete Covariates

Other discrete covariates include:

• Sex

Females may have different volumes of distribution or clearances (or both) than men for some
drugs, even after the difference in body weight is accounted for.

• Race

In some cases, race categorizations may be associated with different pharmacokinetic parameters.
For example, the frequency of genetic polymorphisms affecting clearance can vary with race.

• Concomitant Medication

When two or more drugs are administrated concurrently, they may interfere with each others
pharmacokinetic profiles by competing for metabolizing enzymes or transporters. Drugs can
also alter the transcription of enzymes, transporters or proteins within drug-binding sites, which
can alter both their own pharmacokinetics and the pharmacokinetics of co-administered drugs.

For example, Drug A, or its metabolites, could induce an enzyme for a conjugation reaction
in the metabolisation of Drug B. In this case, Drug A could increase the clearance of Drug B.

Alternatively, Drug A, or its metabolites could be an inhibitor on one of the enzymes facilitating
the metabolism of Drug B. In this case, Drug A could decrease the clearance of Drug B.

The interactions of different drugs and their metabolites can be very complex and are an
important area for population pharmacokinetic modelling.

• Smoking

Smoking cigarettes increases the clearance of some drugs by increasing the activity of enzymes
used in hepatic metabolism. Caffeine is an example of a drug that has increased clearance in
smokers. Note that it is not usually the nicotine in cigarettes that affects metabolism, but other
chemicals in the cigarette smoke. Nicotine replacement therapy may not have the same effect.

• Disease state

Many diseases or conditions can alter pharmacokinetics. An example is oedema, which causes
an excess of fluid in cavities or tissues in the body. If a drug is soluble in this fluid, it could
increase the volume of distribution.
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• Food intake

If a drug is administered orally, the rate of absorption can be affected by whether an individual
has eaten recently or not. This is because most drugs are absorbed through the small intestine,
but to reach this they have to pass through the stomach. When food is present in the stomach,
gastric secretion and residence time are increased. This could lead to a slower absorption rate.
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CHAPTER

FOUR

POPY EXAMPLE MODELS

The easiest way to learn PoPy is by using working examples, that you can then adapt to your own requirements.
See HTML Summary Links for links to all examples (both data and scripts) used in this documentation. For
detailed walk through examples, see below:-

4.1 Creating Example Scripts

PoPy contains built in example scripts that can be generated on the command line. The general method is:-

$ popy_create [script_type] [script_name]

These built in scripts are designed to get you started with using a particular type of script file. Once generated
you can edit the default text for your own PK/PD modelling requirements.

See popy_create documentation, or the Creating an example Fit Script and Creating an example Tut Script
examples below.

4.1.1 Creating an example Fit Script

First, Open a PoPy Command Prompt. Then do:-

$ popy_create fit my_fit_script.pyml

where

• popy_create is one of the Command Line Tools

• the fit option requests a fit script to be created and

• the ‘my_fit_script.pyml’ file is the name of the Fit Script written to disk.

You can generate a more verbose example script with comments using:-

$ popy_create -acsl fit my_fit_script.pyml

See popy_create for the meaning of the ‘-acsl’ command line switch options. Or type ‘popy_create -h’.

You will notice that popy_create also creates a file called my_fit_script.pyml.create.main.log. This is a record of
the messages output by the popy_create tool. In this case the log file is very short. These log files, created by all of
the Command Line Tools, act as part of the audit trail for your experiments. You can open the ‘my_fit_script.pyml’
in your system editor as follows:-

$ popy_edit my_fit_script.pyml
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You can try running the fit_script:-

$ popy_run my_fit_script.pyml

However, you will likely see a message, similar to the following:-

CAST_ERROR= ERROR in value_record: ROOT->FILE_PATHS->input_data_file
ERROR when casting input file element
input file path = C:\Users\david\my_popy_egs\examples\fit_example4\input.csv
NOT present on file system.

Essentially this is telling you that this entry in ‘builtin_fit_example.pyml’:-

FILE_PATHS: {input_data_file: input.csv}

Is causing a problem because ‘input.csv’ does not exist. The popy_create tool outputs a script file only, so the
‘input.csv’ entry is just a place holder. You need to set the ‘input_data_file’ field to point at an existing data
file to run the Fit Script.

Note one way of creating a data file is to create and then run a Gen Script or Tut Script, as described below.

The ‘my_fit_script.pyml’ is just meant to provide an easy template for you to use for your own analyses. The
‘tut_script’ example below is more complete, as a Tut Script works with just a single .pyml file.

4.1.2 Creating an example Tut Script

As always the first step is to Open a PoPy Command Prompt. Then do:-

$ popy_create tut my_tut_script.pyml

You can generate a more verbose example script with comments using:-

$ popy_create -acsl tut my_tut_script.pyml

See popy_create for the command line switch options. Or type ‘popy_create -h’.

You can use this mechanism to create an example file for any of the Script File Formats in PoPy.

You can open the ‘my_tut_script.pyml’ in your system editor as follows:-

$ popy_edit my_tut_script.pyml

You should now have a run-able Tut Script. Run as follows:-

$ popy_run my_tut_script.pyml

You can use this mechanism to create an example file for any of the Script File Formats in PoPy.

4.2 Fitting a Two Compartment PopPK Model

The Fitting a Simple PopPK Model using PoPy shows fitting a one compartment PK model, to pre-existing
data. In this example, we again utilise a pre-existing data set. We will demonstrate how to fit a two compartment
model with absorption and bolus dosing, see Fig. 4.1:-

This model is called a two compartment model, because the Depot is not included, as is conventional in PK
models.
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IN

DEPOT

 bolus{amt:c[AMT]}      

CENTRAL

PERI

 m[Q]*s[CENTRAL]/m[V1]      

OUT

 m[CL]*s[CENTRAL]/m[V1]      

 m[KA]*s[DEPOT]      

 m[Q]*s[PERI]/m[V2]      

Fig. 4.1: Two compartment model with depot dosing for Fit Script. Here c[AMT] is the size of the bolus
dose specified in the data file. m[KA], m[CL], m[Q], m[V1], m[V2] are all MODEL_PARAMS to be
estimated for each individual.

This PoPy model is also created by default when Creating an example Fit Script, using popy_create.

Note: See the First order absorption model with peripheral compartment obtained by the PoPy developers for
this example, including input script and input data file.

4.2.1 Run the Fit Script

This fitting example uses these two files:-

c:\PoPy\examples\builtin_fit_example.pyml
builitin_fit_example_data.csv

Open a PoPy Command Prompt to setup the PoPy environment in this folder:-

c:\PoPy\examples\

With the PoPy environment enabled, do:-

$ popy_edit builtin_fit_example.pyml

To view the script in an editor and then run the Fit Script using popy_run from the command line:-

$ popy_run builtin_fit_example.pyml

When the fit script has completed, you can view the output of the fit using popy_view, by typing the following
command:-

$ popy_view builtin_fit_example.pyml.html

Note the extra ‘.html’ extension in the above command. This command opens a local .html file in your web
browser to summarise the result of the fitting.

4.2. Fitting a Two Compartment PopPK Model 81



The PoPy Manual, Release 1.1.2

You can compare your local html output with the pre-computed documentation output, see First order absorption
model with peripheral compartment. You should expect some minor numerical differences when comparing
results with the documentation.

4.2.2 Summary of Fit Results

The results of running the fitting script are PoPy’s best estimate for the presumed unknown fixed effects variables:-

f[KA] = 0.1089
f[CL] = 2.2693
f[V1] = 27.1342
f[Q] = 1.8655
f[V2] = 52.0726
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [

[ 0.0807, 0.0287, 0.0288, 0.0131, -0.0713 ],
[ 0.0287, 0.0228, 0.0284, 0.0062, -0.0334 ],
[ 0.0288, 0.0284, 0.1865, 0.0233, -0.1768 ],
[ 0.0131, 0.0062, 0.0233, 0.0109, -0.0022 ],
[ -0.0713, -0.0334, -0.1768, -0.0022, 0.5211 ],

]
f[PNOISE] = 0.1395

The aim of a Fit Script is to optimise the fixed effects and random effects maximizing the likelihood of observing
the input data given the model structure defined in ‘builtin_fit_example.pyml’. The input data in this case, is
the c[DV_CENTRAL] column in ‘builtin_fit_example_data.csv’, which contains 50 individuals each with
5 observations at random time points following a bolus dose event.

You can visually compare the fitted f[X] outputs with the input data, see Table 4.1.

Table 4.1: Model predictions vs original data points for first three individ-
uals
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In the graphs above the blue dots represent the original data points. The solid blue line represents the model
individual predictions given the final f[X] parameters and fitted r[X] values for each individual. The dashed
blue lines represent the model population predictions given final f[X] parameters and r[X] values set to zero.

Note in this model a bolus dose is received by all individuals at time 2.0. Then the amount of drug in the Central
compartment follows a complex PK curve as it is first absorbed form the Depot compartment and then eliminated
over time, whilst also interacting with the Peripheral compartment.

The graphs show that PoPy has adjusted the f[X] and r[X] parameters, so that the PK curves more closely
match the input data and therefore maximise the likelihood of the data being generated from this model.

The data file included in this example is synthesized from the PK model of the same form described in
‘builtin_fit_example.pyml’ (see Generate a Two Compartment PopPK Data Set). So in this case, the model
structure is known to be correct, so we should expect a good model fit.

4.2. Fitting a Two Compartment PopPK Model 82



The PoPy Manual, Release 1.1.2

4.2.3 Syntax of Fit Script

The mixed effect population structure is defined in the EFFECTS section as follows:-

EFFECTS:
POP: |

f[KA] ~ P1.0
f[CL] ~ P1.0
f[V1] ~ P20
f[Q] ~ P0.5
f[V2] ~ P100
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] ~ spd_matrix() [

[0.05],
[0.01, 0.05],
[0.01, 0.01, 0.05],
[0.01, 0.01, 0.01, 0.05],
[0.01, 0.01, 0.01, 0.01, 0.05],

]
f[PNOISE] ~ P0.1

ID: |
r[KA,

→˓ CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])

There are 5 mean fixed effect parameters i.e. f[KA], f[CL], f[V1], f[Q], f[V2], a 5x5
covariance matrix f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv], a proportional noise variable
f[PNOISE] and a 5 element vector r[KA, CL, V1, Q, V2] of random effects defined for each
individual. There are 50 individuals in the data set, therefore this model is attempting to estimate 6 main f[X]
parameters, 15 variance f[X] parameters (the covariance matrix is symmetric) and 5 r[X] per individual.
There are 271 parameters in total (i.e 15+6 f[X] + 50*5 r[X]).

The allowable ranges and starting values for the main f[X] are defined using the following syntax:-

f[X] ~ P start_x

Here the ‘P’ is short for ‘positive’. This expression is actually a shortcut for:-

f[X] ~ unif(0.0, +inf) start_x

Where a ~unif() distribution is used to define a range of allowed values [0.0, +inf]. Note, it’s quite common
to require PK/PD model parameters be non-negative, in order to make physical sense. The ‘start_x’ value is
the initial value for f[X] used in the optimisation, which is usually an initial guess by the modeller.

Each individual has a unique r[KA, CL, V1, Q, V2] vector, because the random effects are defined
at the ID level. For more info on the syntax above see EFFECTS. The r[X] are here defined as a zero-mean,
multi-variate normal distribution:-

r[KA,
→˓ CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])

Note the second parameter of ~mnorm() distribution, the square covariance matrix f[KA_isv, CL_isv,
V1_isv, Q_isv, V2_isv] is a population parameter shared by all individuals.

When fitting a model, the f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv] matrix is defined
using a ~spd_matrix() distribution:-

f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] ~ spd_matrix() [
[0.05],
[0.01, 0.05],
[0.01, 0.01, 0.05],
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[0.01, 0.01, 0.01, 0.05],
[0.01, 0.01, 0.01, 0.01, 0.05],

]

Where spd is short for symmetric positive definite. This distribution will always return a matrix with positive
eigenvalues, starting with an initial matrix:-⎛⎜⎜⎜⎜⎝

0.05 0.01 0.01 0.01 0.01
0.01 0.05 0.01 0.01 0.01
0.01 0.01 0.05 0.01 0.01
0.01 0.01 0.01 0.05 0.01
0.01 0.01 0.01 0.01 0.05

⎞⎟⎟⎟⎟⎠
Note as the initial matrix is symmetric it is only necessary to specify the lower triangle elements. PoPy will
update the 15 free elements of this matrix to increase the likelihood fit.

Given the f[X] and r[X] the mapping to the m[X] for each individual is defined in the MODEL_PARAMS
section:-

MODEL_PARAMS: |
m[KA] = f[KA] * exp(r[KA])
m[CL] = f[CL] * exp(r[CL])
m[V1] = f[V1] * exp(r[V1])
m[Q] = f[Q] * exp(r[Q])
m[V2] = f[V2] * exp(r[V2])
m[ANOISE] = 0.001
m[PNOISE] = f[PNOISE]

This shows that the m[KA], m[CL], m[V1], m[Q], m[V2] parameters for each individual are
modelled as log normal distributions with median values of f[KA], f[CL], f[V1], f[Q], f[V2].
There is a shared proportional noise parameter f[PNOISE] for all individuals. And small fixed additive noise
constant m[ANOISE]. For more info on the syntax above see MODEL_PARAMS.

A two compartment model with first order elimination and bolus dosing via a depot compartment is defined
in the DERIVATIVES section:-

DERIVATIVES: |
# s[DEPOT,CENTRAL,PERI] = @dep_two_cmp_cl{dose:@bolus{amt:c[AMT]}}
d[DEPOT] = @bolus{amt:c[AMT]} - m[KA]*s[DEPOT]
d[CENTRAL] = m[KA]*s[DEPOT]

→˓- s[CENTRAL]*m[CL]/m[V1] - s[CENTRAL]*m[Q]/m[V1] + s[PERI]*m[Q]/m[V2]
d[PERI] = s[CENTRAL]*m[Q]/m[V1] - s[PERI]*m[Q]/m[V2]

The bolus arrives in the Depot compartment, due to the @bolus term appearing on the right hand side of
the d[DEPOT] equation:-

d[DEPOT] = @bolus{amt:c[AMT]} - m[KA]*s[DEPOT]

The amount of the bolus dose is c[AMT], which is defined in the data file. In this case it is always 100 units
and occurs at time point 2.0 for all individuals. The elimination rate from the Depot compartment is m[KA],
which is first order with respect to s[DEPOT].

The Central compartment, which represents the blood plasma and where drug concentration observations are
made is defined as follows:-

d[CENTRAL] = m[KA]*s[DEPOT]
→˓- s[CENTRAL]*m[CL]/m[V1] - s[CENTRAL]*m[Q]/m[V1] + s[PERI]*m[Q]/m[V2]

This consists of the input from the Depot m[KA]*s[DEPOT] and a first order elimination expression
s[CENTRAL]*m[CL]/m[V1] that represents the removal of the drug from the blood plasma. Here the
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elimination rate is expressed as a ratio of:-

• m[CL]: clearance from Central compartment

• m[V1]: volume of distribution of Central compartment

The last two terms - s[CENTRAL]*m[Q]/m[V1] + s[PERI]*m[Q]/m[V2] are simply the negative
values of the rates for the Peripheral compartment:-

d[PERI] = s[CENTRAL]*m[Q]/m[V1] - s[PERI]*m[Q]/m[V2]

To compute the objective function for each row of the data set, the s[X] values are used to compute p[X]
prediction variables which are then compared with the target c[X] values from the data file, as defined below:-

PREDICTIONS: |
p[CEN] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[CEN]**2
c[DV_CENTRAL] ~ norm(p[CEN], var)

The predicted variable p[CEN] is defined as follows:-

p[CEN] = s[CENTRAL]/m[V1]

Hence this is a concentration, because we are dividing the amount s[CENTRAL] by the volume of distribution
of the Central compartment. The other two lines:-

var = m[ANOISE]**2 + m[PNOISE]**2 * p[CEN]**2
c[DV_CENTRAL] ~ norm(p[CEN], var)

show that we are comparing the model prediction p[CEN] with the data c[DV_CENTRAL] and using
~norm() distribution likelihood error model. The variance is a proportional noise model, where the standard devi-
ation of the proportional noise is m[PNOISE]. Here m[ANOISE] is fixed to a small positive constant, this is
to avoid zero variances when p[CEN] is close to zero. For more info on the syntax above see PREDICTIONS.

PoPy is essentially trying to find the best combination of fixed parameters as follows:-

• f[KA] - the median elimination rate from the Depot -> Central compartment

• f[CL] - the median clearance of the Central compartment

• f[V1] - the median volume of distribution of the Central compartment

• f[Q] - the median clearance between the Central <-> Peripheral compartments

• f[V2] - the median volume of distribution of the Peripheral compartment

• f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv] - The covariance structure of the f[X]
parameters above over the population of individuals.

• f[PNOISE] - the proportional noise not explained by the model in the c[DV_CENTRAL] data.

The unexplained noise f[PNOISE] and between subject variance f[KA_isv, CL_isv, V1_isv,
Q_isv, V2_isv] obfuscate each other. However the population as a whole contains enough data to solve
this problem using maximum likelihood [Sheiner1980].

In PoPy the likelihood is optimised iteratively, with the f[X] and r[X] being updated at each iteration.
In this case, the likelihood (or objective function) progressed as follows (Table 4.2):

Table 4.2: Objective values vs iteration number and time
Iteration Time OBJV

Continued on next page
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Table 4.2 – continued from previous page

0.
0.00 4694.960923770783

0.
0.46 925.5746942755109

1.
2.38 925.5746942755109

1.1 2.53 -647.9716888729727
1.2 22.11 -709.3982861305856
1.3 33.06 -795.3954364398459
1.4 46.32 -835.8472850616511
1.5 56.24 -844.5443326611603
1.6 65.79 -847.5798357472844
1.7 77.21 -850.9366829942037
1.8 86.85 -852.523825175209
1.9 98.72 -853.8255559623917
1.10 110.44 -855.3704179834231
1.11 121.76 -860.0439762888727
1.12 132.15 -866.292551929844
1.13 142.71 -869.6903314278618
1.14 152.86 -872.0115456718268
1.15 169.94 -874.9343769366639
1.16 184.48 -876.591980985562
1.17 196.55 -880.8790734955087
1.18 207.65 -884.4774855727169
1.19 222.28 -886.9825001824557
1.20 236.16 -892.9493567116618
1.21 248.92 -894.278193027259
1.22 260.55 -897.4079567196504
1.23 273.04 -898.6664194606287
1.24 282.78 -900.2255171014091
1.25 294.78 -901.7780186834344
1.26 305.53 -903.0634884085612
1.27 317.28 -904.2825835322805
1.28 330.17 -906.5825115834821
1.29 348.63 -907.9108849096219
1.30 359.38 -908.9330529447419

Note that the objective function is defined as -2 * the log likelihood. Therefore the lower the objective function
the more likely the input data will be observed given the current f[X] values. By default PoPy stops the fitting
algorithm once the objective function has stopped decreasing.

4.2.4 Visual Predictive Check for Two Compartment PopPK Model

The Fitting a Two Compartment PopPK Model section showed fitting a PK/PD model to a data set.

As shown previous in Visual Predictive Check for Simple PopPK Model. It is possible to use the fitted fixed effects
values, i.e the optimised f[X] variables, to generate a visual predictive check, often abbreviated to ‘VPC’.
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Running the MSim Script

It is presumed that you have already run the ‘builtin_fit_example.pyml’ script from Fitting a Two Compartment
PopPK Model. If you have then you should have access to the following output folder:-

builtin_fit_example.pyml_output/
msim/

builtin_fit_example_msim.pyml

You need to Open a PoPy Command Prompt in the ‘msim’ sub folder then do:-

$ popy_edit builtin_fit_example_msim.pyml

To open the MSim Script in an editor. You can then run the script using:-

$ popy_run builtin_fit_example_msim.pyml

If you run this script the following .svg file is output:-

builtin_fit_example_msim.pyml_output/
DV_CENTRAL_sim,DV_CENTRAL_wrt_TIME_SINCE_LAST_DOSE_comb_quant_sim_vpc/

000000.svg

This graphic should look something like Fig. 4.2:-
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Fig. 4.2: Visual Predictive Check for Complex PopPK model.

Here the y axis is the concentration in the Central compartment and the x axis is the time since the last dose
(TSLD). See Visual Predictive Check for Simple PopPK Model for a more general description of the VPC plot
shown in Fig. 4.2.

In this case, the TSLD values are grouped into 12 equally spaced bins along the x axis. Note you need a minimum
number of data points in each bin and there are only 250 data points in this toy example. Hence the small number
of bins.

4.2. Fitting a Two Compartment PopPK Model 87



The PoPy Manual, Release 1.1.2

The blue dots (original data) are mainly shown to give some visual corroboration of the quantiles (solid blue
line). In this graph there are only 12 bins and therefore each bin is quite wide, therefore some data points are
grouped together inappropriately. This grouping issue is most obvious at the smaller values of TSLD, during
the drug uptake period, when the drug is being mainly absorbed into Central compartment and has not been
cleared from the blood plasma yet (see Fig. 4.2). Only more data and more bins can really fix the issue.

Syntax in the MSim Script

For each individual in the original data set, new synthetic data sets are created by sampling new random effects
r[X] variables and new measurement noise for all data rows. i.e. The synthetic populations vary due to sampling
the r[X] for each individual here:-

EFFECTS:
ID: |

r[KA,
→˓ CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])

And adding measurement noise here:-

PREDICTIONS: |
p[CEN_sim] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[CEN_sim]**2
c[DV_CENTRAL_sim] ~ norm(p[CEN_sim], var)

This procedure creates a set of N new data sets, which can be compared with the original data set. Where N
is defined here:-

OUTPUT_OPTIONS:
n_pop_samples: 100

You can increase the number of samples, to make the VPC more representative of your model. The more complex
the PK/PD model, the more synthetic data samples you will need.

As this model has more parameters compared to the Fitting a Simple PopPK Model using PoPy, it may be worth
increasing the ‘n_pop_samples’ and re-running the MSim Script. This is left as an exercise for the reader.

4.3 Generate a Two Compartment PopPK Data Set

The Fitting a Two Compartment PopPK Model section showed fitting a PK/PD model to a pre-existing data
set. However in PoPy it is also possible to use a Gen Script, to generate a data set from a model file instead.
i.e. The opposite of a Fit Script.

In this example we will demonstrate how to generate new data from a two compartment model with absorption
and bolus dosing, see Fig. 4.3:-

The ability to generate synthetic data from a model is especially useful if you wish to demonstrate a model,
but do not have access to a real data set. Real data is expensive to obtain and even if it exists may have issues
regarding completeness, accuracy or confidentiality. The other disadvantage of real data is that we never know
the true underlying model.

Note: See the First order absorption model with peripheral compartment obtained by the PoPy developers for
this example, including input script and output data file.
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IN

DEPOT

 bolus{amt:c[AMT]}      

CENTRAL

PERI

 m[Q]*s[CENTRAL]/m[V1]      

OUT

 m[CL]*s[CENTRAL]/m[V1]      

 m[KA]*s[DEPOT]      

 m[Q]*s[PERI]/m[V2]      

Fig. 4.3: Two compartment model with depot dosing for Gen Script. This is the same model as Fig. 4.1.

4.3.1 Running the Gen Script

This generating example make use of this single file:-

c:\PoPy\examples\builtin_gen_example.pyml

Open a PoPy Command Prompt to setup the PoPy environment in this folder:-

c:\PoPy\examples\

With the PoPy environment enabled, open the Gen Script in an editor as follows:-

$ popy_edit builtin_gen_example.pyml

then execute the script using popy_run from the command line:-

$ popy_run builtin_gen_example.pyml

When the gen script has completed, you can view the output of the generating process using popy_view, by
typing the following command:-

$ popy_view builtin_gen_example.pyml.html

Note the extra ‘.html’ extension in the above command. This command opens a local .html file in your web
browser to summarise the result of the generating process.

You can compare your local html output with the pre-computed documentation output, see First order absorption
model with peripheral compartment. You should expect some minor numerical differences when comparing
results with the documentation.

4.3.2 Summary of Gen Results

The main inputs of the generating script are the fixed effects f[X] variables as defined in the EFFECTS section
of the Gen Script. In this case the f[X] are all constant and summarised here:-
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f[KA] = 0.2000
f[CL] = 2.0000
f[V1] = 50.0000
f[Q] = 1.0000
f[V2] = 80.0000
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [

[ 0.1000, 0.0100, 0.0100, 0.0100, 0.0100 ],
[ 0.0100, 0.0300, -0.0100, 0.0200, 0.0200 ],
[ 0.0100, -0.0100, 0.0900, 0.0100, 0.0100 ],
[ 0.0100, 0.0200, 0.0100, 0.0700, 0.0100 ],
[ 0.0100, 0.0200, 0.0100, 0.0100, 0.0500 ],

]
f[PNOISE] = 0.1500

If the f[X] are random variables, which in PoPy are defined using a ~, then the Gen Script will sample each
f[X] variable once. Sampling the f[X] however makes more sense if you are creating multiple synthetic
data sets, see MGen Script.

Given the population f[X] variables, the Gen Script then creates the requested number of individuals (in
this case 50) and samples a set of time points (in this case 5) and dosing times (in this case a single bolus dose)
for each individual. This step defines the number of rows in the synthetic data set.

The next stage is to sample any c[X] variables specified for each individual. In this example the only c[X]
variables defined in the gen_script are the c[ID] field and c[AMT] value (which in this case is constant
for all individuals). The c[TIME] and c[TYPE] fields are created by PoPy automatically. We now have
most of a valid PoPy data set, but no observation values are defined yet.

To generate observations the r[X] variables for each individual are sampled. This along with the dose times and
observation time period is enough to simulate smooth PK/PD curves from the MODEL_PARAMS, DERIVATIVES
and PREDICTIONS defined in the script.

You can visualise the model predictions outputs (p[X] variables) by examining the plots for the first three
individuals in the data set.

Table 4.3: Synthetic data plots for first three individuals
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In Table 4.3 above, the dotted blue line represents the model predictions given the f[X] parameters and
sampled r[X] values for each individual. No noise is added to this curve and it is plotted at regular unit time
steps, therefore it is smooth.

The solid blue dots represent the observations with noise added at randomly sampled time points for each individual.
The solid blue dots are the values that end up in the synthetic data file under the c[DV_CENTRAL] field.

Note in this model a bolus dose is received by all individuals at time 2.0. After the dose, the concentration of
the drug in the Central compartment increases as drug is absorbed from the Depot compartment. Then the
drug concentration falls as the drug is metabolised. The decay curve is first order with an inflection point due
to the Peripheral compartment.
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The doses are the same for all individuals, but the smooth curves generated by the model vary due to each
individual having a different r[X] vector.

4.3.3 Syntax in the Gen Script

The EFFECTS section defines the population structure that the Gen Script will create as follows:-

EFFECTS:
POP: |

c[AMT] = 100.0
f[KA] = 0.2
f[CL] = 2.0
f[V1] = 50
f[Q] = 1.0
f[V2] = 80
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [

[0.1],
[0.01, 0.03],
[0.01, -0.01, 0.09],
[0.01, 0.02, 0.01, 0.07],
[0.01, 0.02, 0.01, 0.01, 0.05],

]
f[PNOISE] = 0.15

ID: |
c[ID] = sequential(50)
t[DOSE] = 2.0
t[OBS] ~ unif(1.0, 50.0; 5)
# t[OBS] = range(1.0, 50.0; 5)
r[KA,

→˓ CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])

This EFFECTS structure is similar to the Syntax of Fit Script with some additional lines to define new individuals,
doses and observation times.

The number of individuals is defined by the following line:-

c[ID] = sequential(50)

This specifies a sequence where the first individual is ‘1’, the 2nd is ‘2’ etc. up to ‘50’.

This line specifies a single dose record for each individual at time 2.0:-

t[DOSE] = 2.0

This line request a sample of 5 time points uniformly distributed in the period [1.0, 50.0]:-

t[OBS] ~ unif(1.0, 50.0; 5)

The random effects are here sampled from a zero-mean, multi-variate normal distribution, as follows:-

r[KA,
→˓ CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])

Note the second parameter of mnorm, the square covariance matrix f[KA_isv, CL_isv, V1_isv,
Q_isv, V2_isv] is a population parameter shared by all individuals. Each individual has a unique r[KA,
CL, V1, Q, V2] vector, because the random effects are defined at the ID level. For more info on the syntax
above see EFFECTS.
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The MODEL_PARAMS and DERIVATIVES sections of this Gen Script are the same as the Syntax of Fit Script,
so are not discussed here.

The PREDICTIONS section in the Gen Script defines how the dependent c[X] variables are sampled given
the p[X] model predictions:-

PREDICTIONS: |
p[CEN] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[CEN]**2
c[DV_CENTRAL] ~ norm(p[CEN], var)

PoPy samples c[DV_CENTRAL] for each row of the data set, to create a synthetic noisy measurement at
each time point for each individual.

4.3.4 Structure of output synthetic data file

The c[X] variables are saved to disk. For an example data file see First order absorption model with peripheral
compartment. The first few lines of the ‘synthetic_data.csv’ are shown in (Table 4.4) below:-

Table 4.4: First 10 rows of ‘synthetic_data.csv’ file
TIME ID TYPE AMT DV_CENTRAL DV_CENTRAL_FLAG orig_data_row
2 1 dose 100 -

0.000152985803347
0 0

10.0120217722 1 obs 100 0.943643872407 1 1
11.0234536491 1 obs 100 1.05284021173 1 2
16.5024021745 1 obs 100 1.20785360788 1 3
28.818526425 1 obs 100 0.695942623338 1 4
46.551188548 1 obs 100 0.304235321489 1 5
2 2 dose 100 0.00126357225648 0 0
30.181690446 2 obs 100 0.607437669642 1 1
33.0056777467 2 obs 100 0.518873750462 1 2
. . . . . . . . . . . . . . . . . . . . .

This shows some of the typical properties of PoPy’s PoPy Data Format, where the main fields are:-

• TYPE - Specifies either a dose or an observation row.

• ID - The identifier for a given subject.

• TIME - The time stamp of the row event.

• AMT - The size of the dose at a given time.

• DV_CENTRAL - The synthetic observed values.

• DV_CENTRAL_FLAG - Indicates valid measurement rows, 1=valid 0=ignore.

• orig_data_row - The data row number within an individual subject.

4.3.5 Controlling Random Seed in PoPy scripts

Note that the .csv data file generated by Gen Script on your own machine, will likely contain different values
due to the random sampling of random effect realizations and then random noise added to each observation.

If you wish to obtain new random results each time your re-run the Gen Script then change the ‘rand_seed’ option
to ‘auto’ as follows:-
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METHOD_OPTIONS: {rand_seed: auto}

However if you re-run the Gen Script with a fixed number, you should obtain exactly the same results on your
machine as before, due to this setting:-

METHOD_OPTIONS: {rand_seed: 12345}

Using a fixed number for the ‘rand_seed’ makes any sampling process in PoPy replicable.

4.4 Generate data and Fit using a Two Compartment Model

In this example we will demonstrate a Tut Script using the same two compartment model with absorption and
bolus dosing, as used in the Fitting a Two Compartment PopPK Model and Generate a Two Compartment PopPK
Data Set, see Fig. 4.4:-

IN

DEPOT

 bolus{amt:c[AMT]}      

CENTRAL

PERI

 m[Q]*s[CENTRAL]/m[V1]      

OUT

 m[CL]*s[CENTRAL]/m[V1]      

 m[KA]*s[DEPOT]      

 m[Q]*s[PERI]/m[V2]      

Fig. 4.4: Two compartment model with depot dosing for Tut Script.

This PoPy model is also used when Creating an example Tut Script.

Note: See the First order absorption model with peripheral compartment obtained by the PoPy developers for
this example, including input script and output data file.

A Tut Script can be used as a theoretical tool to quickly investigate identifiability of PK/PD models, because
the true f[X] parameters and the structure of the data are known.

The PoPy Manual makes extensive use of tut_scripts to create examples to illustrate different Principles of
Pharmacokinetics.

4.4.1 Running the Tutorial Script

This tutorial example requires a single input file:-

c:\PoPy\examples\builtin_tut_example.pyml

Open a PoPy Command Prompt to setup the PoPy environment in this folder:-
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c:\PoPy\examples\

With the PoPy environment enabled, you can open the script using:-

$ popy_edit builtin_tut_example.pyml

Again, with the PoPy environment enabled, call popy_run on the Tut Script from the command line:-

$ popy_run builtin_tut_example.pyml

When the tut script has terminated, you can view the output of the fit using popy_view, by typing the following
command:-

$ popy_view builtin_tut_example.pyml.html

Note the extra ‘.html’ extension in the above command. This command opens a local .html file in your web
browser to summarise the result of the generating process.

You can compare your local html output with the pre-computed documentation output, see First order absorption
model with peripheral compartment. You should expect some minor numerical differences when comparing
results with the documentation.

4.4.2 Syntax of Tut Script

The major structural difference between a Fit Script or Gen Script and a Tut Script is that the generating EFFECTS
are encoded in GEN_EFFECTS and the fitting EFFECTS are encoded in FIT_EFFECTS. For example the
GEN_EFFECTS section for this tutorial example is as follows:-

GEN_EFFECTS:
POP: |

c[AMT] = 100.0
f[KA] = 0.2
f[CL] = 2.0
f[V1] = 50
f[Q] = 1.0
f[V2] = 80
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [

[0.1],
[0.01, 0.03],
[0.01, -0.01, 0.09],
[0.01, 0.02, 0.01, 0.07],
[0.01, 0.02, 0.01, 0.01, 0.05],

]
f[PNOISE] = 0.15

ID: |
c[ID] = sequential(50)
t[DOSE] = 2.0
t[OBS] ~ unif(1.0, 50.0; 5)
# t[OBS] = range(1.0, 50.0; 5)
r[KA,

→˓ CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])

And the FIT_EFFECTS section is as follows:-

FIT_EFFECTS:
POP: |

f[KA] ~ P1.0
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f[CL] ~ P1.0
f[V1] ~ P20
f[Q] ~ P0.5
f[V2] ~ P100
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] ~ spd_matrix() [

[0.05],
[0.01, 0.05],
[0.01, 0.01, 0.05],
[0.01, 0.01, 0.01, 0.05],
[0.01, 0.01, 0.01, 0.01, 0.05],

]
f[PNOISE] ~ P0.1

ID: |
r[KA,

→˓ CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])

The GEN_EFFECTS get passed to the Gen Script and the FIT_EFFECTS get passed to the Fit Script. From
the examples above you can see that the GEN_EFFECTS->POP section has:-

f[X] = true_value

Whereas the FIT_EFFECTS->POP section has:-

f[X] ~ P starting_value

Reflecting the fact that the f[X] are known constants for a Gen Script, but are unknown values to be estimated
in a Fit Script.

4.4.3 Summary of Tut Results

The Tut Script generates an output folder containing four new scripts:-

builtin_tut_example.pyml_output/
builtin_tut_example_gen.pyml
builtin_tut_example_fit.pyml
builtin_tut_example_comp.pyml
builtin_tut_example_tutsum.pyml

See Files Generated by Tut Script for more info. These four scripts are run in order. The Gen Script is described
in Generate a Two Compartment PopPK Data Set and the Fit Script is described in Fitting a Two Compartment
PopPK Model. Therefore here we will focus on the Comp Script outputs, which are fitted f[X] and generated
f[X] plots and their objective values. The simplest comparison output is a visual comparison of the true and
fitted f[X] PK curves and the synthetic measurement data, see Table 4.5.

Table 4.5: Fitted model PK curves vs true model PK curves for first three
individuals
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The solid blue lines in Table 4.5 show the predicted PK curves for the fitted model f[X] values. The dotted
blue lines show the PK curves for the true f[X] values that were used to generated the data set (in the Gen
Script). The blue dots are the target c[DV_CENTRAL] values from the data file.

The target c[DV_CENTRAL] values have measurement noise added, so blue dot data points do not lie on the
true f[X] curves. The graphs show that the PK curves for the fitted f[X] are very similar to the true f[X]
curves. Most divergence occurs away from the data points and most agreement close to the data points, for example
for Individual 2 the fitted and true curves differ over time period [0,30], but are very similar in the period [30,50].
In the period [0,30], the model tends to impute the curve for the median individual, in the absence of actual data.

Fit vs True f[X] values

If the Comp Script has been run, the TutSum Script output also contains a convenient table to compare the initial,
fitted and true f[X] values, see Table 4.6.

Table 4.6: Comparison of main initial, fitted and true f[X] values
Name Ini-

tial
Fit-
ted

True Prop. Error Abs. Error

f[KA] 1 0.121 0.2 39.56% 7.91e-02
f[CL] 1 1.56 2 22.22% 4.44e-01
f[V1] 20 33.9 50 32.12% 1.61e+01
f[Q] 0.5 2.22 1 122.23% 1.22e+00
f[V2] 100 120 80 49.45% 3.96e+01

Table 4.6 shows that the f[KA], f[CL], f[V1], f[Q] parameters are recovered reasonably well, in
the sense that the fitted values are much closer to the true values, compared to the initial starting values. However
the f[V2] fitted value is quite different from the true value.

You can also compare the proportional noise estimate:-

Table 4.7: Comparison of fitted and true proportional noise f[X]
values

Name Ini-
tial

Fit-
ted

True Prop. Error Abs. Error

f[PNOISE] 0.1 0.148 0.15 1.37% 2.05e-03

Here the f[PNOISE] starts at 0.1, is estimated at 0.141, which can be compared with the true value 0.15.
Generally the proportional noise is identifiable in a PK/PD model. This is because every row of the data set
and the current f[PNOISE] parameter has an influence on the overall likelihood.

The comparison of the covariance matrix estimates is quite long, as it displays a row for 5*5 f[X] comparisons.
However the diagonal elements (only) are shown here:-

Table 4.8: Comparison of fitted and true isv variance diagonal f[X]
values
Name Ini-

tial
Fitted True Prop. Error Abs. Error

f[KA_isv] 0.05 0.21 0.1 110.44% 0.11
f[CL_isv] 0.05 0.029956 0.03 0.15% 4.37E-05
f[V1_isv] 0.05 0.0473 0.09 47.47% 0.0427
f[Q_isv] 0.05 0.0729 0.07 4.14% 0.0029
f[V2_isv] 0.05 0.0567 0.05 13.45% 0.00673
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This shows that f[CL_isv] and f[Q_isv], the inter-subject variances of the clearances are estimated
reasonably well. The f[KA_isv] estimate is far too high. The f[V1_isv] and f[V2_isv] estimates
are worse than the starting value estimates.

The fact that f[V1_isv] and f[V2_isv] are badly estimated compared to the true values is not that
surprising, since volumes of distribution are harder to estimate in PK models, compared to clearances which
are rates. The difficulty in estimating f[KA_isv] may be due to the relative lack of data before the cmax
peak of the PK curve, there being only 5 data points sampled per individual.

There can be multiple reasons for the fitted values not agreeing with the true parameters, for example:-

• Too few observations in the data set.

• Too few individuals in the data set.

• Too much noise added to the measurement data.

• False minima on the likelihood surface.

• A fundamental difficulty in identifying some PK parameters, for example if the model is over-parametrised
relative to the data set or even unidentifiable.

Given the relatively small amount of data generated (250 data points), the results in Table 4.6 are adequate. As
shown in the next section the objective function for the fitted f[X] solution is actually lower than for the
true f[X] solution here, see below for discussion.

Fit vs True Objective value

It is difficult to know by just comparing the fitted f[X] and true f[X] in section Fit vs True f[X] values,
if the fitting method has done well or badly. We can run a form of sanity check by computing the objective
function of the true f[X] and comparing this with the objective function of the fitted f[X]. This is done
by optimising the r[X] for both solutions and using the synthetic data file to compute the likelihood.

The rational is that the fitted f[X] objective value should always be lower than the true f[X] objective
value, because the fitted model estimates can take advantage of correlations in the random measurement noise
to get a better fit to the synthetic data. If the fitted objective function is higher then the PoPy fitting method
has ended up in a sub optimal local minima, because the known true values are a better minima.

In this example, the true model objective function is:-

-881.0027

Compared with the fitted model objective function:-

-896.8752

This indicates that the fitted f[X] pass the sanity check and perhaps justifies the lack of agreement with
parameters such as f[V2]. However it does not say if the global optimum solution was found, i.e. whether
or not f[X] is a true global minima of the likelihood surface.

The difference between the two objective values above is partially dependent on the amount of noise applied
to the measurements i.e. f[PNOISE], the number of individuals simulated, the number of observations per
individual and the number of parameters in the model. More random noise in the synthetic data creates more
likelihood minima that are away from the true f[X] solution.

If the model is practically identifiable then increasing the number of data points and individuals should lead
to a convergence between the true and fitted f[X] and the objective functions above.
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4.4.4 Re-run the tutorial

You can familiarise yourself with PoPy’s various features by tweaking the tutorial example and re-running. A
simple way of avoiding overwriting previous results is to do:-

$ copy builtin_tut_example.pyml builtin_tut_example_v2.pyml
$ popy_edit builtin_tut_example_v2.pyml

Then when you are happy with the edited file do:-

$ popy_run builtin_tut_example_v2.pyml

For example, you can adjust the amount of data generated, in this section:-

GEN_EFFECTS:
ID: |

c[ID] = sequential(50)
t[DOSE] = 2.0
t[OBS] ~ unif(1.0, 50.0; 5)
# t[OBS] = range(1.0, 50.0; 5)

Note the ‘range’ function can sample time points evenly (instead of randomly). This usually makes the model
fitting easier as the data points span the time range better. You can experiment with the number of doses or
make a random sample of dose times for each individual.

You can also edit the underlying model or compartment structure, see the MODEL_PARAMS or DERIVATIVES
sections.

Another possibility is changing the fitted model only, i.e take a copy of this file:-

builtin_tut_example.pyml_output/
builtin_tut_example_fit.pyml

Name it ‘builtin_tut_example_fit_v2.pyml’, change the model structure or compartment. Then do:-

$ popy_run builtin_tut_example_fit_v2.pyml

Using a different model from the underlying generative model should result in a worse fit (using say an Akaike
information criterion to compare fits).

4.5 Generate multiple data sets and Fit using a Two Compartment
Model

The previous example showed how to Generate data and Fit using a Two Compartment Model, which generates
data from a model then fits the model to the synthetic data.

In PoPy it is also possible to iterate over a Tut Script, using what we call a MTut Script or multi-tutorial script
and apply the generate/fit process multiple times. In this example we will demonstrate a MTut Script using the
same two compartment model with absorption and bolus dosing, as used in the Complex PopPK Tut Script
example, see Fig. 4.5:-

An MTut Script is a tool for investigating identifiability of PK/PD models, but gives you more information than
a Tut Script because the synthetic population data is sampled multiple times, which gives a spread of fitted f[X]
results for each model parameter.
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IN

DEPOT

 bolus{amt:c[AMT]}      

CENTRAL

PERI

 m[Q]*s[CENTRAL]/m[V1]      

OUT

 m[CL]*s[CENTRAL]/m[V1]      

 m[KA]*s[DEPOT]      

 m[Q]*s[PERI]/m[V2]      

Fig. 4.5: Two compartment model with depot dosing for MTut Script.

4.5.1 Running the MTut Script

This multi tutorial example make use of this single file:-

c:\PoPy\examples\builtin_mtut_example.pyml

Open a PoPy Command Prompt to setup the PoPy environment in this folder:-

c:\PoPy\examples\

With the PoPy environment enabled, you can open the script using:-

$ popy_edit builtin_mtut_example.pyml

Again, with the PoPy environment enabled, call popy_run on the MTut Script from the command line:-

$ popy_run builtin_mtut_example.pyml

Running an mtut script can take a considerable amount of time, as it is equivalent to running a Tut Script multiple
times. However in this toy example we only run the fit/gen cycle 30 times and limit the f[X] parameters
that are estimated.

4.5.2 Syntax of MTut Script

The MTut Script is very similar to the Tut Script in Syntax of Tut Script, the primary difference is that the MTut
Script specifies the number of populations to sample as follows:-

OUTPUT_OPTIONS: {n_pop_samples: 30}

Like a Tut Script, the MTut Script encodes both the generation and fitting effects in the GEN_EFFECTS and
FIT_EFFECTS sections. In this example the GEN_EFFECTS and FIT_EFFECTS sections are slightly different
from Syntax of Tut Script, as follows:-

GEN_EFFECTS:
POP: |

c[AMT] = 100.0

4.5. Generate multiple data sets and Fit using a Two Compartment Model 99



The PoPy Manual, Release 1.1.2

f[KA] ~ unif(0.1,0.3)
f[CL] ~ unif(7.0, 13.0)
f[V1] ~ unif(30.0,70.0)
f[Q] ~ unif(0.5,1.5)
f[V2] = 80
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [

[0.1],
[0.01, 0.03],
[0.01, -0.01, 0.09],
[0.01, 0.02, 0.01, 0.07],
[0.01, 0.02, 0.01, 0.01, 0.05],

]
f[PNOISE] ~ unif(0.1, 0.2)

ID: |
c[ID] = sequential(10)
t[DOSE] = 2.0
t[OBS] ~ unif(1.0, 50.0; 5)
# t[OBS] = range(1.0, 50.0; 5)
r[KA,

→˓ CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])

FIT_EFFECTS:
POP: |

f[KA] ~ P0.2
f[CL] ~ P10.0
f[V1] ~ P50.0
f[Q] ~ P1.0
f[V2] = 80
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [

[0.1],
[0.01, 0.03],
[0.01, -0.01, 0.09],
[0.01, 0.02, 0.01, 0.07],
[0.01, 0.02, 0.01, 0.01, 0.05],

]
f[PNOISE] ~ P0.15

ID: |
r[KA,

→˓ CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])

The GEN_EFFECTS->POP level defines the following f[X]:-

f[KA] ~ unif(0.1,0.3)
f[CL] ~ unif(7.0, 13.0)
f[V1] ~ unif(30.0,70.0)
f[Q] ~ unif(0.5,1.5)
f[V2] = 80
f[PNOISE] ~ unif(0.1, 0.2)

This means that when running the MGen Script the f[KA], f[CL], f[V1], f[Q] and f[PNOISE]
are sampled 30 times to create 30 different synthetic data sets with different true f[X] values. The f[V2]
parameters in contrast always has the constant value 80. Note the f[KA_isv, CL_isv, V1_isv,
Q_isv, V2_isv] matrix is also constant here.

Whereas the FIT_EFFECTS->POP section tries to estimate the following f[X]:-

f[KA] ~ P0.2
f[CL] ~ P10.0
f[V1] ~ P50.0
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f[Q] ~ P1.0
f[V2] = 80
f[PNOISE] ~ P0.15

These entries mean that when running the MFit Script the f[KA], f[CL], f[V1], f[Q] and
f[PNOISE] are estimated for each of the 30 synthetic data sets created by the MGen Script. The starting
values for the parameter fitting are here set to the middle of the sampling region used in the gen_params. For
example f[KA] has initial value 0.2, whereas the true value lies in the region [0.1,0.3] for each synthetic data
set. f[V2] is not estimated at all, it is merely set to the true value i.e. 80. Similarly f[KA_isv, CL_isv,
V1_isv, Q_isv, V2_isv] is set to the true constant value here. The ‘P’ in the fit_params forces the
fitting process to estimate positive values.

Restricting the estimation to 5 f[X] parameters greatly speeds up the run time of MFit Script, which makes
this toy example much faster to run. The MTut Script is only sampling 30 synthetic data sets, which is a relatively
small number. You could increase this if you wish to obtain more detailed scatter plots (see below). Most of
the run time is taken up by MFit Script, the MGen Script is relatively quick to run, as it only has to evaluate the
ordinary differential equations in the DERIVATIVES block once per synthetic data set, where as the MFit Script
must evaluate the ordinary differential equations multiple times to estimate f[X] for each synthetic data set.

4.5.3 Summary of MTut Results

The MTut Script should generate an output folder containing three new scripts:-

builtin_mtut_example.pyml_output/
builtin_mtut_example_mgen.pyml
builtin_mtut_example_mfit.pyml
builtin_mtut_example_mcomp.pyml

The purpose of each of theses scripts is as follows:-

Table 4.9: Scripts output by a multi tutorial script
Script Purpose Documenta-

tion
*_mgen.pyml Generate multiple synthetic data sets from model MGen Script
*_mfit.pyml Fit model to multiple synthetic data sets MFit Script
*_mcomp.pyml Compare gen model and fit model f[X] MComp Script

The MGen Script is very similar to the Gen Script described in Generate a Two Compartment PopPK Data
Set and the MFit Script is very similar to the Fit Script described in Fitting a Two Compartment PopPK Model.
See Files Generated by MTut Script for more info.

Therefore here we mainly discuss the MComp Script outputs, which processes the results of MGen Script and
MFit Script. The simplest output is a visual comparison of the true and fitted f[X] values as shown in Table
4.10 and Table 4.11.
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Table 4.10: Fitted model vs true scatter plots for f[KA] and f[CL]

0.1 0.2 0.3 0.4 0.5
True values

0.1

0.2

0.3

0.4

0.5

Fi
tte

d 
va

lu
es

Fitted vs True for f[KA]
fitted
initial

8 9 10 11 12 13
True values

8

9

10

11

12

13

Fi
tte

d 
va

lu
es

Fitted vs True for f[CL]
fitted
initial

In Table 4.10 the blue dots are a scatter plot of fitted f[X] vs true f[X]. The green dots are initial f[X]
vs true f[X]. For example in the case of f[CL] the true values are sampled as follows:-

f[CL] ~ unif(7.0, 13.0)

i.e. the true values are uniformly sampled in the range [7.0,13.0]. The fitted f[CL] parameters are specified
as follows:-

f[CL] ~ P10.0

The initial values for f[CL] are always 10.0. see green dots in a horizontal line on the right graph in Table 4.10.
The ‘P’ specifies that the fitting value of f[CL] is restricted to positive numbers. The final fitting values are the
blue dots on the right graph in Table 4.10. For f[CL] the blue dots are clustered along the black 45 degree line.
Hence fitting for f[CL] works well, this agrees with the initial findings in Fitting a Two Compartment PopPK
Model. The f[KA] fitted values (blue dots) on the left graph in Table 4.10 are less obviously grouped around
the 45 degree line. Especially the outlier when the fitted value is estimated at 0.48 compared to a true value of 0.21.

Table 4.11: Fitted model vs true scatter plots for f[Q] and f[V1]
and f[PNOISE]
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In Table 4.11 (left graph) the f[Q] rate results for the Peripheral compartment are reasonably well estimated,
apart from one outlier. The f[V1] parameter (middle graph) is really badly estimated, there does not seem
to any correlation between true f[V1] values and fitted f[V1] values at all. The f[PNOISE] parameter
(right graph) is reasonably well estimated, with the results mostly lying along the 45 degree line.

In this case, the f[V1] parameter (the volume of distribution of the Central compartment) is shown to be hard
to estimate, compared to f[CL] and f[Q] clearances. The f[KA] estimate is a bit unstable, possibly
due to this parameter requiring time point data shortly after the dose, which does not always exist. f[PNOISE]
is reasonably well estimated, but it’s likely that higher values of f[PNOISE] make the other parameters harder
to identify.
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Given the relatively small amount of data generated (50 data points spread across 10 individuals), the results
in Table 4.10 and Table 4.11 are reasonably good.

4.5.4 Re-run the MTut Script

You can familiarise yourself with PoPy’s various features by tweaking the multi-tutorial example and re-running.
A simple way of avoiding overwriting previous results is to do:-

$ copy builtin_mtut_example.pyml builtin_mtut_example_v2.pyml
$ popy_edit builtin_mtut_example_v2.pyml

Then when you are happy with the edited file do:-

$ popy_run builtin_mtut_example_v2.pyml

For example, you can adjust the amount of data generated, in this section:-

EFFECTS:
ID: |

c[ID] = sequential(10)
t[DOSE] = 2.0
t[OBS] ~ unif(1.0, 50.0; 5)
# t[OBS] = range(1.0, 50.0; 5)

Note the ‘range’ function can sample time points evenly (instead of randomly). This usually makes the model
fitting easier as the data points span the time range better. You can experiment with the number of doses or
make a random sample of dose times for each individual.

You could also change the initial fitting f[X] values, to make the f[X] estimation process start further
away from the true f[X] values. You could also attempt to estimate more (or fewer) parameters, for example
try estimating the f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv] covariance matrix.

You can also edit the underlying model or compartment structure, see the MODEL_PARAMS or DERIVATIVES
sections.

4.5.5 Convert Tut to MTut

A MTut Script is essentially a Tut Script with an extra loop. Therefore it’s fairly simple to convert an existing
tutorial script to a multi tutorial script. First change the script type from tut->mtut:-

METHOD_OPTIONS: {py_module: mtut}

Add the mtut OUTPUT_OPTIONS section:-

OUTPUT_OPTIONS: {n_pop_samples: 30}

Change the OUTPUT_SCRIPTS section to this:-

OUTPUT_SCRIPTS:
MGEN: {output_mode: run}
MFIT: {output_mode: run}
MCOMP: {output_mode: run, dot_size: 12}

You should then be able to run your new mtut script.
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4.6 Generate BLQ observations and fit different error models

In this example we will demonstrate generating and fitting to BLQ data using the ~rectnorm() distribution with
a simple depot + one compartment model as follows:-

IN

DEPOT

 bolus{amt:c[AMT]}      

CENTRAL

OUT

 m[CL]*s[CENTRAL]/m[V1]      

 m[KA]*s[DEPOT]      

Fig. 4.6: One compartment model with depot dosing used to generate and fit BLQ PK data.

Note: See the Depot + One compartment PK with BLQ obtained by the PoPy developers for this example,
including input script and output data file.

4.6.1 Generating BLQ observations

The PREDICTIONS section to create BLQ data utilises the ~rectnorm() distribution, as follows:-

PREDICTIONS: |
p[DV_CENTRAL] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
# c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)
c[DV_CENTRAL] ~ rectnorm(p[DV_CENTRAL], var, LLQ=0.5)

This creates observations with a LLQ of 0.5, see Table 4.12.

Table 4.12: Generated observations + true underlying model PK curves
for first three individuals
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Notice that no observations are output below 0.5, as expected. PoPy outputs observations of 0.5, if the generated
observation is in the interval [-inf, 0.5].

4.6.2 Fitting BLQ observations using rectnorm (correct error model)

We fit the same (correct) error model, using the same PREDICTIONS section as follows:-

PREDICTIONS: |
p[DV_CENTRAL] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
# c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)
c[DV_CENTRAL] ~ rectnorm(p[DV_CENTRAL], var, LLQ=0.5)

i.e. a ~rectnorm() distribution, with a LLQ of 0.5. Note that, this fitting method does not require the LAPLACE
objective function, we can use the FOCE objective function instead in PoPy.

See Table 4.13 for PK curves after fitting.

Table 4.13: Fitted model PK curves vs true model PK curves for first
three individuals
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Note that the fitted curves (solid blue) line are estimated to be below the LLQ level of 0.5 at later time points.

The estimated f[X] compared to the true f[X] are shown in Table 4.14 and Table 4.15.

Table 4.14: Comparison of initial, fitted and true f[X] main values
Name Ini-

tial
Fit-
ted

True Prop. Error Abs. Error

f[KA] 1 0.195 0.2 2.28% 4.55e-03
f[CL] 1 2.03 2 1.27% 2.54e-02
f[V1] 20 47 50 6.06% 3.03e+00

Table 4.15: Comparison of initial, fitted and true f[X] noise values
Name Ini-

tial
Fit-
ted

True Prop. Error Abs. Error

f[PNOISE] 0.1 0.139 0.15 7.41% 1.11e-02

Table 4.14 and Table 4.15 show that the f[KA], f[CL], f[V1], f[PNOISE] parameters are
recovered well when fitting with ~rectnorm() distribution.

The full set of fitted f[X] variable is shown below:-

f[KA] = 0.1954
f[CL] = 2.0254
f[V1] = 46.9680
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f[KA_isv,CL_isv,V1_isv] = [
[ 0.1374, 0.0157, 0.0621 ],
[ 0.0157, 0.0392, 0.0200 ],
[ 0.0621, 0.0200, 0.1254 ],

]
f[PNOISE] = 0.1389
f[ANOISE] = 0.0100

These fitted values can be compared with fitting alternative error models below.

4.6.3 Fitting BLQ observations using norm (incorrect error model)

Note: See the Depot One Comp PK with BLQ observations set to LLQ script and results used by the PoPy
developers for this example.

We fit a (incorrect) error model which treats observations of LLQ as actual 0.5 observations, using a ~norm()
distribution, as follows:-

PREDICTIONS: |
p[DV_CENTRAL] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)
# c[DV_CENTRAL] ~ rectnorm(p[DV_CENTRAL], var, LLQ=0.5)

For fitted curves see Table 4.16.

Table 4.16: Fitted model ~norm() distribution error curves vs LLQ
model PK curves for first three individuals
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Note that the fitted curves (solid blue) line try to stay close to the BLQ values at 0.5, which is incorrect, as the
PK curve should approach zero concentration instead.

The fitted f[X] values are:-

f[KA] = 2.6741
f[CL] = 0.9560
f[V1] = 86.0580
f[KA_isv,CL_isv,V1_isv] = [

[ 1.1328, -0.0132, 0.2360 ],
[ -0.0132, 0.0002, -0.0028 ],
[ 0.2360, -0.0028, 0.0504 ],

]
f[PNOISE] = 0.2288
f[ANOISE] = 0.0100
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These fitted values are inaccurate compared to the parameters recovered using the ~rectnorm() distribution in
section Fitting BLQ observations using rectnorm (correct error model) above.

4.6.4 Fitting BLQ observations using half LLQ (approx error model)

Note: See the Depot One Comp PK with BLQ observations set to 0.5*LLQ script and results used by the PoPy
developers for this example.

We fit a simple approx BLQ error model, which models observations of LLQ as bare 0.5* LLQ observations,
by preprocessing the original observation data, as follows:-

PREPROCESS: |
# use halve value blq data
if c[DV_CENTRAL] <= 0.5 and c[TYPE] == 'obs':

c[DV_CENTRAL] = 0.25

The ~norm() distribution is used to model these amended observations (similar to Fitting BLQ observations
using norm (incorrect error model) above), see:-

PREDICTIONS: |
p[DV_CENTRAL] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)
# c[DV_CENTRAL] ~ rectnorm(p[DV_CENTRAL], var, LLQ=0.5)

For fitted curves using this half LLQ approximation, see Table 4.17.

Table 4.17: Fitted model ~norm() distribution error curves vs half LLQ
model PK curves for first three individuals
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Note that the fitted curves (solid blue) line get closer to zero (the true asymptotic concentration) as time increases,
but are still heavily distorted by assuming the half LLQ values are true observations.

The fitted f[X] values are:-

f[KA] = 1.3656
f[CL] = 1.6576
f[V1] = 80.4195
f[KA_isv,CL_isv,V1_isv] = [

[ 0.7858, 0.0888, 0.2165 ],
[ 0.0888, 0.0103, 0.0250 ],
[ 0.2165, 0.0250, 0.0610 ],

]
f[PNOISE] = 0.3307
f[ANOISE] = 0.0100
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These fitted values are similar to the results obtained in Fitting BLQ observations using norm (incorrect error
model) and also inaccurate compared to the parameters recovered using the ~rectnorm() distribution in section
Fitting BLQ observations using rectnorm (correct error model) above.

4.6.5 Fit to non-BLQ observations only (reduced data model)

Note: See the Depot One Comp PK ignoring BLQ observations. script and results used by the PoPy developers
for this example.

We can also just ignore the BLQ data, by using PREPROCESS to remove the LLQ observations, as follows:-

PREPROCESS: |
# ignore blq data
if c[DV_CENTRAL] <= 0.5 and c[TYPE] == 'obs':

return

The ~norm() distribution is then used to model the above LLQ observations only, see:-

PREDICTIONS: |
p[DV_CENTRAL] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)
# c[DV_CENTRAL] ~ rectnorm(p[DV_CENTRAL], var, LLQ=0.5)

The fitted curves are shown in Table 4.18.

Table 4.18: Fitted model ~norm() distribution error curves vs ignore
BLQ model PK curves for first three individuals
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Note that curves are fitted to the above LLQ observations only, i.e. earlier time points, but there is no data for
later LLQ time points.

The fitted f[X] values are:-

f[KA] = 0.2310
f[CL] = 1.8489
f[V1] = 52.3484
f[KA_isv,CL_isv,V1_isv] = [

[ 0.0000, 0.0002, 0.0004 ],
[ 0.0002, 0.0400, 0.0068 ],
[ 0.0004, 0.0068, 0.0991 ],

]
f[PNOISE] = 0.1494
f[ANOISE] = 0.0100
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These fitted values are much better then the Fitting BLQ observations using norm (incorrect error model) and
Fitting BLQ observations using half LLQ (approx error model) approximatons, but not quite as accurate as the
~rectnorm() distribution results in section Fitting BLQ observations using rectnorm (correct error model).
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CHAPTER

FIVE

POPY FOR NONMEM USERS

For users who are familiar with Nonmem we give an overview for converting Nonmem data sets and fitting scripts
to PoPy format.

5.1 Nonmem Data to PoPy Data File

The Nonmem data file has the same purpose as the PoPy data file. It represents the observations at different
time points and the dosing regimens for each subject.

For simple data sets you may only need to substitute a few values to create a valid PoPy data file. If you have
multiple dosing regimes and multiple measurements then the conversion may be more difficult.

Table 5.1 lists the the PoPy data fields for each Nonmem data field. Each subsection gives a one to one example
conversion to PoPy format.

Table 5.1: Nonmem to PoPy Data
Nonmem PoPy Comment
EVID TYPE Data row property field
ID ID Identity field
TIME TIME Time field
CMT N/A Compartment field
AMT AMT Dose Amount field
DV Observation field Observations
MDV Observation flag field Missing observations

Both PoPy and Nonmem need to load a data file when estimating parameters. See $DATA for Nonmem’s method
of specifying the input data file path and how to specify the input data file path in a PoPy Fit Script.

5.1.1 EVID

‘EVID’ is a required field in Nonmem. There is an equivalent required TYPE field in PoPy. The major difference
is that Nonmem ‘EVID’ uses integers to define row properties, whereas PoPy uses human readable strings as
shown in Table 5.2.
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Table 5.2: Nonmem EVID to PoPy TYPE
Nonmem EVID PoPy TYPE Comment
0 obs Observation Row
1 dose Dosing Row
2 pred Prediction Row
3 reset Reset Row
4 reset+dose Reset and Dose Row

Note in PoPy the ‘dose’ TYPE entry can have a name suffix using PoPy’s ‘:’ notation. See specifying multiple
dose types in PoPy for more details.

5.1.2 ID

‘ID’ is a required field in Nonmem and PoPy. The ‘ID’ column defines the individual for each data row. It is
usually not necessary to convert the ‘ID’ column of the data set.

However, note that in PoPy the same identifier in the ‘ID’ field is always treated as the same individual. In
Nonmem only identical identifiers that are in consecutive rows are treated as one individual.

For example in Table 5.3.

Table 5.3: Nonmem id example
ID Non-

mem
PoPy

Bill New id New id
Bill Bill again Bill again
Sandra New id New id
Bill New id Bill again
Sandra New id Sandra again

Nonmem thinks there are 4 subjects, whilst PoPy thinks there are 2.

5.1.3 TIME

‘TIME’ is a required field in Nonmem and PoPy. The ‘TIME’ column defines the time stamp for each row. It
is usually not necessary to convert the ‘TIME’ column of the data set.

In both Nonmem and PoPy the time field is required to be monotonically increasing, unless a EVID = 3 or 4
row is reached. In PoPy time is reset when a TYPE = ‘reset’ or ‘reset+dose’ row is reached.

One complication that can arise is if the Nonmem data is split over date and time, for example see Table 5.4.

Table 5.4: Nonmem id time
Nonmem date Nonmem time PoPy time
2016-02-12 10:30 0.0
2016-02-13 19:01 32.5167
2016-02-13 19:02 32.5333
2016-02-13 23:39 37.15
2016-02-13 23:42 37.2
2016-02-14 10:06 47.6
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Here the data for each individual needs to be converted to the time after the first record (or time since last reset)
for use in PoPy.

5.1.4 CMT

The ‘CMT’ field in Nonmem is used to specify the index of the compartment where doses will be administered.
i.e. rows with EVID=1 or EVID=4, with CMT=x will result in an bolus or infusion dose being administered
in the compartment numbered ‘x’ in the $DES section of the Nonmem control file.

PoPy deliberately does not specify the dose compartment in the data file. Instead the dose compartment is
specified in the DERIVATIVES section by the location of the Dosing Functions.

If the data only contains one type of dose, e.g. one drug which is always a bolus or always an infusion, then
you can just ignore the ‘CMT’ field when converting to PoPy format.

If the data contains multiple types of dose however then PoPy needs a way of distinguishing between the two
types (Nonmem uses a different CMT integer typically). In PoPy you need to give the dose a name, using the
‘:’ notation. An example data conversion with two types of dose is shown in Table 5.5.

Table 5.5: Nonmem cmt to PoPy dose name
Nonmem evid Nonmem cmt PoPy type Comment
1 1 dose:first_drug drug one in first compartment
1 1 dose:first_drug drug one in first compartment
1 3 dose:second_drug drug two in third compartment
1 1 dose:first_drug drug one in first compartment

Note that the PoPy format above, leaves the destination compartment of each drug to be determined in the script
file (the DERIVATIVES section), because the depot compartment for each drug is primarily a modelling decision,
which might be changed in later analyses.

5.1.5 AMT

The Nonmem AMT field specifies the amount of each dose. The same field can be used in PoPy, so usually
the AMT field needs no conversion.

Nonmem only allows a single AMT field to be used. If you have multiple doses, e.g. for two different drugs, then
Nonmem forces you to put all dose amount values in a single column in your data file, even if the amounts are in
different units.

In your PoPy data file you might want to take the opportunity to use separate columns, e.g. ‘AMT_DRUG1’,
‘AMT_DRUG2’ as a way of making your data file and script file clearer.

5.1.6 DV

The Nonmem DV field specifies the observed measurements in a data file. For example plasma drug concentration
for a PK study or biomarker data in a PD trial. The same field can be used in PoPy, so often the DV field requires
no conversion.

However Nonmem only allows a single DV field to be used. If you have multiple types of measurement in a study
then Nonmem forces you to place all measurement values in a single column, even if the values have different units.

In your PoPy data file you might like to split the DV data into separate columns, e.g. ‘CONC’, and ‘MARKER’.
This will make your data file and script file easier to read.
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An example data conversion with two types of measurement is shown in Table 5.6.

Table 5.6: Nonmem DV to PoPy named fields
Nonmem DV CONC CONC_FLAG MARKER MARKER_FLAG Comment
5.3 5.3 1 0 0 conc obs
3 0 0 3 1 marker obs
5 0 0 5 1 marker obs
12.1 12.1 1 0 0 conc obs

Note in Table 5.6 it is necessary to use the ‘_FLAG’ field convention. The ‘_FLAG’ field is similar to the
Nonmem MDV field, but you can have multiple ‘_FLAG’ fields. In a flag field ‘1’ means use this observation,
‘0’ means ignore. The flag field means you don’t have to use ‘if statements’ in the PREDICTIONS section.

5.1.7 MDV

The Nonmem MDV (missing data value) column is used to ignore some observations. It is similar in function
to the PoPy flag field syntax described in DV.

However the MDV indicator contains a double negative, an observation is valid in Nonmem if MDV=0, i.e. it
is not missing. The PoPy flag field is just yes/no, i.e. an observation X is valid if X_FLAG =1.

An example DV/MDV conversion is shown in Table 5.7.

Table 5.7: Nonmem DV/MDV to PoPy flag fields
Nonmem DV Nonmem MDV CONC CONC_FLAG Com-

ment
5.3 0 5.3 1 valid obs
na 1 0.0 0 invalid obs
0.0 1 0.0 0 invalid obs
2.9 0 2.9 1 valid obs

Here:-
𝐹𝐿𝐴𝐺=1−𝑀𝐷𝑉

Also, in Nonmem you are only allowed to have one MDV field, which makes it less useful when you have
multiple types of measurement.

5.2 Nonmem to PoPy Data conversions using P2NDAT and N2PDAT
Scripts

See Nonmem Data to PoPy Data File for an overview of how the Nonmem data format maps to PoPy format.
It is very possible to use this format information to write your own data conversion script in a general purpose
programming language, e.g. R or Python.

However, we provide a convenient N2PDat Script, to automatically convert from Nonmem to PoPy without
doing any programming. We actually provide two scripts that are mirror images of each other as follows:-

• P2NDat Script - converts from PoPy to Nonmem data

• N2PDat Script - converts from Nonmem to PoPy data

The two types of conversion scripts are illustrated in this section using the following files from the PoPy examples
folder:-
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c:\PoPy\examples\p2ndat_script.pyml
n2pdat_script.pyml
fit_example1_data.csv

Here ‘fit_example1_data.csv’ is in PoPy Data Format and is the simple PK data file discussed in Fitting a
Simple PopPK Model using PoPy. ‘p2ndat_script.pyml’ is a PoPy script that will convert the original PoPy
‘fit_example1_data.csv’ to Nonmem format, see P2NDAT Example. The ‘n2pdat_script.pyml’ will convert the
newly created Nonmem data file back to PoPy format, see N2PDAT Example.

The data files in this section form a loop:-

fit_example1_data.csv -p2ndat-> fit_example1_nm_data.csv -n2pdat-> fit_
→˓example1_data_v2.csv

Where ‘fit_example1_data.csv’ and ‘fit_example1_data_v2.csv’ are both compatible PoPy data files and
‘fit_example1_nm_data.csv’ is in Nonmem format.

5.2.1 P2NDAT Example

The first few rows of the original ‘fit_example1_data.csv’ file are shown in Table 5.8.

Table 5.8: Original data in PoPy format (first ten rows)
TYPE ID TIME AMT DV_CENTRAL DV_CENTRAL_FLAG
reset 1 0 100 0 0
dose 1 1 100 0 0
obs 1 7.22152181887 100 55.3986503177 1
obs 1 13.7633242874 100 43.5423043551 1
obs 1 19.4607360933 100 24.3960137842 1
obs 1 44.9645896939 100 3.06161955063 1
obs 1 48.3691740856 100 2.84311907493 1
reset 2 0 100 0 0
dose 2 1 100 0 0
obs 2 7.03200507014 100 48.1712193857 1

You can view the example P2NDat Script, Open a PoPy Command Prompt in this folder:-

c:\PoPy\examples\

And type:-

$ popy_edit p2ndat_script.pyml

Then run using:-

$ popy_run p2ndat_script.pyml

This will create a new Nonmem data file ‘fit_example1_nm_data.csv’. The first ten rows are shown in Table 5.9.
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Table 5.9: Output data in Nonmem format (first ten rows)
TIME ID AMT DV MDV EVID CMT
0 1 0 0 1 3 1
1 1 100 0 1 1 1
7.22152181887 1 0 55.3986503177 0 0 1
13.7633242874 1 0 43.5423043551 0 0 1
19.4607360933 1 0 24.3960137842 0 0 1
44.9645896939 1 0 3.06161955063 0 0 1
48.3691740856 1 0 2.84311907493 0 0 1
0 2 0 0 1 3 1
1 2 100 0 1 1 1
7.03200507014 2 0 48.1712193857 0 0 1

The differences between the input PoPy data Table 5.8 and the output Nonmem data Table 5.9. Are summarised
in the Table 5.10

Table 5.10: Comparing PoPy ‘fit_example1_data.csv’ and Nonmem
‘fit_example1_nm_data.csv’

Input PoPy column Output Nonmem column Comments
TYPE EVID reset->3, dose->1, obs->0
ID ID no change
TIME TIME no change
AMT AMT dose rows no change, obs/reset rows -> 0
DV_CENTRAL DV no change
DV_CENTRAL_FLAG MDV 1-DV_CENTRAL_FLAG

Note the corresponding columns are not in the same order between ‘fit_example1_data.csv’ and
‘fit_example1_nm_data.csv’. The P2NDat Script has removed the ‘TYPE’, ‘DV_CENTRAL’ and
‘DV_CENTRAL_FLAG’ PoPy fields, to leave ‘TIME’, ‘ID’ and ‘AMT’, then added the newly created Nonmem
specific ‘DV’, ‘MDV’, ‘EVID’ and ‘CMT’ columns.

The ‘fit_example1_nm_data.csv’ contains a ‘CMT’ field to specify that the Nonmem dosing occurs in compartment
1. PoPy specifies the dosing compartment entirely in the script file, see Dosing Fields, so the output ‘CMT’
column has no corresponding column in the PoPy data file. You have to specify the ‘CMT’ value in your P2NDat
Script manually, see OUTPUT_NONMEM_FIELDS.

P2NDAT Script Syntax

You can view the example P2NDat Script here:-

c:\PoPy\examples\p2ndat_script.pyml

Each section is discussed below.

METHOD_OPTIONS

Just specifies the script type:-

METHOD_OPTIONS: {py_module: p2ndat}

See METHOD_OPTIONS for more info.
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FILE_PATHS

Just specifies the input PoPy data file and output Nonmem data file:-

FILE_PATHS:
input_popy_file: fit_example1_data.csv
output_nonmem_file: fit_example1_nm_data.csv

INPUT_POPY_FIELDS

Describes the columns of the input PoPy file:-

INPUT_POPY_FIELDS:
time_field: TIME
id_field: ID
type_field: TYPE
dv_fields: ['DV_CENTRAL']
amt_fields: ['AMT']
rate_fields: []
dur_fields: []
dose_labels: ['']

Here ‘time_field’, ‘id_field’ and ‘type_field’ are the PoPy data file Required Fields. They default to the above
values.

The ‘dv_fields’ is a list of PoPy Observation Fields that will be moved into the Nonmem DV field. Note you
can specify multiple observed columns, each observed field will result in extra rows in the Nonmem data output,
as Nonmem only ever has one DV observation column.

The ‘amt_fields’ is a list of PoPy Dosing Fields, i.e. columns that contain dose amounts. Similar to the ‘dv_fields’,
if you specify multiple dosing amount columns, then the Nonmem data output will contain extra rows, as Nonmem
only has one AMT field.

The ‘rate_fields’ and ‘dur_fields’ are blank because we only have bolus dosing here. If you have infusion dosing
then add the @inf_rate and @inf_dur rate and duration parameters here.

The ‘dose_labels’ field contains the dosing names used in the PoPy data file. In this case dose_labels= [‘’] means
PoPy dose names are not used. i.e. the TYPE column just uses ‘dose’ values. If you use ‘dose:my_dose_name’,
‘dose:my_other_dose_name’ in your PoPy data file, to describe Multiple Dose Types, then you need to list the
names here, e.g. [‘my_dose_name’, ‘my_other_dose_name’].

OUTPUT_NONMEM_FIELDS

Describes the columns of the output Nonmem file:-

OUTPUT_NONMEM_FIELDS:
comment_prefix: '#'
column_names: auto
time_field: TIME
id_field: ID
evid_field: EVID
dv_field: DV
mdv_field: MDV
amt_field: AMT
rate_field: none
dur_field: none
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cmt_field: CMT
obs_cmt_numbers: [1]
dose_cmt_numbers: [1]

Here ‘comment_prefix’ allows loading of Nonmem data files with comment lines. Lines starting with the
‘comment_prefix’ symbol are ignored.

‘column_names: auto’, uses the columns names in the ‘.csv’ data file. You could rename them using a list here,
a bit like the Nonmem $INPUT section.

The ‘time_field’, ‘id_field’, ‘evid_field’, ‘dv_field’, ‘mdv_field’, ‘rate_field’, ‘dur_field’ and ‘cmt_field’ allows
you to specify the Nonmem key fields ‘ID’, ‘EVID’, ‘DV’, ‘MDV’, ‘AMT’, ‘RATE’, ‘DUR’ and ‘CMT’. These
fields default to the Nonmem key names.

Note that if you do not require some of the Nonmem fields, e.g. in this case ‘rate_field’ and ‘dur_field’, because
these only relate to infusion dosing and there is only bolus dosing in this example. Then you can assign null
values using ‘none’.

The ‘obs_cmt_numbers’ is a list of compartment indices to appear in the CMT column to be created by the
P2NDat Script. The ‘OUTPUT_NONMEM_FIELDS->obs_cmt_numbers’ list must be the same length as
the ‘INPUT_POPY_FIELDS->dv_fields’ list. The elements of both lists must correspond to the same type of
observation. e.g. in this case all PoPy observations ‘DV_CENTRAL’ occur in Nonmem compartment one. The
P2NDat Script will copy the PoPy ‘DV_CENTRAL’ value into the Nonmem DV column for all rows with TYPE
=’obs’ and set MDV =0 for these rows.

The ‘dose_cmt_numbers’ is a list of compartment indices to appear in the CMT column to be created by
the P2NDat Script. The ‘OUTPUT_POPY_FIELDS->dose_cmt_numbers’ list must be the same length as the
‘INPUT_POPY_FIELDS->amt_fields’ list. The elements of both lists must correspond to the same type of dose. e.g.
in this case all PoPy dose amounts ‘AMT’ occur in Nonmem compartment one. The P2NDat Script will copy the
PoPy ‘AMT’ value into the Nonmem AMT column for all rows with TYPE =’dose’ and set AMT =0.0 for other rows.

If you have multiple doses and multiple observation fields in your input PoPy data, then you have to specify
the dv_fields/obs_cmt_numbers and amt_fields/dose_cmt_numbers list pairs carefully.

OUTPUT_OPTIONS

Describes the output options. Currently, the only option is to remove fields from the final data file:-

OUTPUT_OPTIONS:
drop_fields: ['TYPE', 'DV_CENTRAL', 'DV_CENTRAL_FLAG']

Here we are removing the old PoPy fields from the Nonmem data output. This is useful in this case, as we wish
to demonstrate regenerating the orig PoPy fields, when we use a N2PDat Script in the next section.

5.2.2 N2PDAT Example

The P2NDat Script converts data from PoPy to Nonmem format. Here we discuss the N2PDat Script that
computes the inverse conversion from Nonmem to PoPy format.

Assuming you have run the N2PDAT Example, view the example N2PDat Script in your text editor, by typing:-

$ popy_edit n2pdat_script.pyml

Then run the N2PDat Script using:-
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$ popy_run n2pdat_script.pyml

This will create a new PoPy data file ‘fit_example1_data_v2.csv’. The first ten rows are shown in Table 5.11.

Table 5.11: Output data in Nonmem format (first ten rows)
TIME ID AMT DV_CENTRAL DV_CENTRAL_FLAG TYPE
0 1 0 0 0 reset
1 1 100 0 0 dose:_bolus
7.22152181887 1 0 55.3986503177 1 obs
13.7633242874 1 0 43.5423043551 1 obs
19.4607360933 1 0 24.3960137842 1 obs
44.9645896939 1 0 3.06161955063 1 obs
48.3691740856 1 0 2.84311907493 1 obs
0 2 0 0 0 reset
1 2 100 0 0 dose:_bolus
7.03200507014 2 0 48.1712193857 1 obs

The differences between the input Nonmem data Table 5.9 and the output PoPy data Table 5.11. Are summarised
in the Table 5.12

Table 5.12: Comparing Nonmem ‘fit_example1_nm_data.csv’ and PoPy
‘fit_example1_data_v2.csv’

Input Nonmem column Output PoPy column Comments
TIME TIME no change
ID ID no change
AMT AMT no change
DV DV_CENTRAL no change
MDV DV_CENTRAL_FLAG 1-MDV
EVID TYPE 3->reset,1->dose:_bolus,0-

>obs
CMT N/A PoPy has no ‘CMT’ equivalent

The N2PDat Script has removed ‘DV’, ‘MDV’, ‘EVID’ and ‘CMT’ Nonmem fields from
‘fit_example1_nm_data.csv’ and replaced them with ‘TYPE’, ‘DV_CENTRAL’ and ‘DV_CENTRAL_FLAG’
PoPy fields in ‘fit_example1_data_v2.csv’.

The ‘fit_example1_data_v2.csv’ contains no ‘CMT’ field because PoPy specifies the dosing compartment entirely
in the script file, see Dosing Fields.

N2PDAT Script Syntax

You can view the example N2PDat Script here:-

c:\PoPy\examples\n2pdat_script.pyml

Each section is discussed below.

METHOD_OPTIONS

Specifies the script type:-
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METHOD_OPTIONS: {py_module: n2pdat}

See METHOD_OPTIONS for more information.

FILE_PATHS

Specifies the input Nonmem data file and output PoPy data file:-

FILE_PATHS:
input_nonmem_file: fit_example1_nm_data.csv
output_popy_file: fit_example1_data_v2.csv

INPUT_NONMEM_FIELDS

Describes the columns of the input Nonmem file:-

INPUT_NONMEM_FIELDS:
comment_prefix: '#'
column_names: auto
date_field: none
date_format: none
time_field: TIME
id_field: ID
evid_field: EVID
dv_field: DV
mdv_field: MDV
amt_field: AMT
rate_field: none
dur_field: none
cmt_field: CMT
obs_cmt_numbers: [1]
dose_cmt_numbers: [1]

This is the same as the OUTPUT_NONMEM_FIELDS section. The only difference is that this section is now
describing an input Nonmem data file instead of an output Nonmem data file.

The ‘obs_cmt_numbers’ and ‘dose_cmt_numbers’ list have to correspond to the ‘dv_fields’ and ‘amt_fields’
in the OUTPUT_POPY_FIELDS section to get sensible PoPy data output. See below for more explanation.

OUTPUT_POPY_FIELDS

Describes the columns of the output PoPy file:-

OUTPUT_POPY_FIELDS:
time_field: TIME
id_field: ID
type_field: TYPE
dv_fields: ['DV_CENTRAL']
amt_fields: ['AMT']
rate_fields: []
dur_fields: []
dose_labels: ['']
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This is the same as the INPUT_POPY_FIELDS section. The only difference is that this section is now describing
an output PoPy data file instead of an input PoPy data file.

Here the ‘dv_fields’ is a list of PoPy observation columns to be created by the N2PDat Script, based on the
input Nonmem DV field. The ‘OUTPUT_POPY_FIELDS->dv_fields’ list must be the same length as the
‘INPUT_NONMEM_FIELDS->obs_cmt_numbers’ list. The elements of both lists must correspond to the same
type of observation. e.g. in this case all Nonmem observations occur in compartment one, so for Nonmem data
rows with EVID =0 and CMT =1 the Nonmem DV value is copied into the PoPy DV_CENTRAL column with
DV_CENTRAL_FLAG=1.

The ‘amt_fields’ is a list of PoPy dose amount columns to be created by the N2PDat Script, based on the
input Nonmem AMT field. The ‘OUTPUT_POPY_FIELDS->amt_fields’ list must be the same length as the
‘INPUT_NONMEM_FIELDS->dose_cmt_numbers’ list. The elements of both list must correspond to the same
type of dose. e.g. in this case all Nonmem doses occur in compartment one, so for Nonmem data rows with EVID
=1 and CMT =1 the Nonmem AMT value is copied into the PoPy AMT column, with all other rows set to zero.

If you have multiple doses and multiple observation fields in your input Nonmem data, then you have to specify
the obs_cmt_numbers/dv_fields and dose_cmt_numbers/amt_fields list pairs carefully.

OUTPUT_OPTIONS

Describes the output options, currently, just which fields to remove:-

OUTPUT_OPTIONS:
drop_fields: ['DV', 'MDV', 'EVID', 'CMT']

Here we are removing the Nonmem specific fields. In a real life conversion it may be sensible to keep the Nonmem
fields, so that you can perform a side by side sanity check from within the PoPy output file. Note the fields
above will be of little use to a PoPy Fit Script, compared to the ‘DV_CENTRAL’, ‘DV_CENTRAL_FLAG’
and ‘TYPE’ fields, created by the N2PDat Script.

5.2.3 Compare original PoPy data with P2NDAT/N2PDAT version

In this walk through we have taken a PoPy data file ‘fit_example1_data.csv’, run P2NDat Script to create a Non-
mem data version. Then we ran N2PDat Script to re-create the original PoPy data file ‘fit_example1_data_v2.csv’
from the Nonmem data.

You can compare the first 10 rows of both the input PoPy data set in Table 5.8 and the output PoPy data in Table 5.11.

Both files contain the same column headers i.e. ‘TYPE’, ‘ID’, ‘TIME’, ‘AMT’, ‘DV_CENTRAL’,
‘DV_CENTRAL_FLAG’. The values in each column are the same apart from ‘AMT’ column has zero values
in non-dose rows. Also the ‘dose’ value in the TYPE field is now ‘dose:_bolus’. Both the input and output .csv
files are valid PoPy data formats for the PK/PD problem described in Fitting a Simple PopPK Model using PoPy.

5.3 Nonmem control file to PoPy Fit Script

The Nonmem control file has the same purpose as the PoPy Fit Script, i.e. to estimate the fixed effects given
a PK/PD model and a data file. Table 5.13 lists the equivalent script file sections.
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Table 5.13: Nonmem to PoPy Fitting
Nonmem PoPy Comment
$PROBLEM DESCRIPTION Model Description
$DATA FILE_PATHS Input data file path
$INPUT DATA_FIELDS Data header information
$SUBROUTINES ODE_SOLVER ordinary differential equation method
$MODEL N/A Number of compartments
$THETA EFFECTS Main fixed effects
$OMEGA EFFECTS Variance of random effects
$SIGMA EFFECTS Variance of measurement noise
$PK MODEL_PARAMS Model Parameters
$DES DERIVATIVES ordinary differential equation system
$ERROR PREDICTIONS Likelihood model
$ESTIMATION FIT_METHODS Fitting algorithms

5.3.1 $PROBLEM

Nonmem:-

$PROBLEM My pkpd model

to PoPy:-

DESCRIPTION: {title: My pkpd model}

Note in PoPy you can optionally add additional fields ‘name’, ‘author’, ‘abstract’ and ‘keywords’, see
DESCRIPTION section for examples.

5.3.2 $DATA

Nonmem:-

$DATA my_nm_data.csv

to PoPy:-

FILE_PATHS: {input_data_file: my_popy_data.csv}

Here the file ‘my_nm_data.csv’ is assumed to be in the same directory as the Nonmem script file. Similarly
‘my_popy_data.csv’ will need to be in the same directory as the PoPy script.

Note you will need to convert the data file to a valid PoPy data file, see Nonmem Data to PoPy Data File.

5.3.3 $INPUT

Nonmem:-

$INPUT EVID ID TIME CMT AMT DV MDV

to PoPy:-
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DATA_FIELDS: {type_field: TYPE, id_field: ID, time_field: TIME}

Note that the Nonmem ‘$INPUT’ section redefines the header file for the data file. PoPy simply uses the header
supplied in the .csv data file.

In PoPy you only need to specify the following fields in the DATA_FIELDS section:-

• type_field - equivalent to Nonmem EVID

• id_field - same as Nonmem ID

• time_field - same as Nonmem TIME

If you miss out the DATA_FIELDS section completely. Then you just need the default field names of ‘TYPE’,
‘ID’ and ‘TIME’ to be present in your data file.

See Nonmem Data to PoPy Data File for a more detailed discussion of the data format differences between
Nonmem and PoPy.

5.3.4 $SUBROUTINES

ADVAN13 Example

Nonmem:-

$SUBROUTINES ADVAN13 TOL=6

to PoPy:-

ODE_SOLVER: {CPPLSODA: {rtol: 1e-06}}

In the Nonmem script ‘ADVAN13’ specifies the LSODA solver which is used to compute numerical solutions
for the ordinary differential equations specified in the Nonmem $DES block.

The equivalent of this in PoPy is to specify ‘CPPLSODA’ in the ODE_SOLVER section, which is a Python
wrapper around the LSODA solver. The ‘CPPLSODA’ parameters are as follows:-

• rtol - relative tolerance of LSODA solver, equivalent of TOL in Nonmem ($SUBROUTINES section)

• atol - additive tolerance of LSODA solver, equivalent of ATOL in Nonmem ($ESTIMATION section)

• max_nsteps - maximum number of steps allowed for LSODA solver, an exposed parameter in PoPy with
a default value of ‘1e7’. In Nonmem this is fixed to ‘750’ and not configurable.

See ODE_SOLVER section for more information on the ‘CPPLSODA’ solver and other solvers available in PoPy.

ADVAN 1,2,3,4,11,12 Example

Note if an analytic ‘ADVAN’ model is used in Nonmem for example:-

$SUBROUTINES ADVAN2 TRANS2

Then this is converted to PoPy in a slightly different way, the ODE_SOLVER is as follows:-

ODE_SOLVER: {ANALYTIC:{}}

And the DERIVATIVES section is as follows:-
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DERIVATIVES: |
s[ABS,CEN] = @dep_one_cmp_cl{

dose: @bolus{amt:c[AMT]}, KA: m[KA],
CL: m[CL], V: m[V]}

Here the ‘@dep_one_cmp_cl’ compartment function expects the parameters m[KA] m[CL] m[V] to be
defined in MODEL_PARAMS, similar to how Nonmem ‘ADVAN2’ expects KA, CL and V to be defined in
the $PK section. Also PoPy expects c[AMT] to be defined in the data file and Nonmem expects the ‘AMT’
field to exist in the Nonmem data file.

Note PoPy is explicit about the input parameter names that are required for compartment model functions and
you can easily change the name of the input c[X] and m[X] parameters in your script file. In Nonmem
you just have to know what the fixed magic words and conventions are. For example, you need to declare the
variables ‘KA’, ‘CL’ and ‘V’ carefully in the Nonmem $PK section and have an ‘AMT’ field in your data file.

The PoPy equivalents of the various ‘ADVAN’ analytic compartment models are discussed in the Nonmem
Advan1,2,3,4,11,12 to PoPy analytic compartment models section below.

5.3.5 $MODEL

Nonmem:-

$MODEL NCOMPARTMENTS=1

This does not have any equivalent in PoPy, you do not need to specify the number of compartments in the
DERIVATIVES section. PoPy can count!

5.3.6 $THETA

Nonmem:-

$THETA
(0.001, 0.05, 1) ; KE

to PoPy:-

EFFECTS:
POP: |

f[KE] ~ unif(0.001, 1) 0.05

In PoPy the fixed effect f[KE] is explicitly declared at the POP level, i.e. there is one value for this parameter
over the population.

The limits on f[KE] are defined using a ~unif() distribution, with the initial value added as suffix.

Note that comments have been added to the Nonmem notation here to make it more readable. PoPy insists on
names for all variables.

5.3.7 $OMEGA

Nonmem:-

$OMEGA
0.1 ; KE_isv
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to PoPy:-

EFFECTS:
POP: |

f[KE_isv] ~ unif(0.001, +inf) 0.1

In PoPy the fixed effect variance parameter f[KE_isv] is explicitly declared at the POP level, i.e. there
is one value for this parameter over the population.

The limits on f[KE_isv] are defined using a ~unif() distribution, with the initial value added as a suffix.
In PoPy you can use the equivalent shorter notation:-

f[KE_isv] ~ P 0.1

Note that PoPy can deduce automatically that f[KE_isv] is a variance by examining the r[KE] ~norm()
distribution definition from the ID level:-

EFFECTS:
ID: |

r[KE] ~ norm(0, f[KE_isv])

5.3.8 $SIGMA

Nonmem:-

$SIGMA
0.001 FIX ; ANOISE
0.2 ; PNOISE

to PoPy:-

EFFECTS:
POP: |

f[ANOISE] = 0.001
f[PNOISE] ~ P0.2

In PoPy the fixed effect noise variance parameters f[ANOISE] and f[PNOISE] are explicitly declared
at the ID level, i.e. there is one value for both parameters over the population.

The ‘=’ sign is used instead of the Nonmem ‘FIX’ keyword. The ‘~P’ notation is a shortcut for defining a ~unif()
distribution, which is equivalent to the following:-

f[PNOISE] ~ unif(0.001, +inf) 0.2

The initial value 0.2 is added as a suffix after the distribution.

Note that PoPy can deduce automatically that f[ANOISE] and f[PNOISE] are noise parameters (i.e.
sigma like variables) by examining the c[DV_CENTRAL] ~norm() distribution likelihood definition from
the PREDICTIONS section:-

PREDICTIONS: |
p[DV_CENTRAL] = s[CENTRAL]
var = m[ANOISE] + m[PNOISE]*p[DV_CENTRAL]**2
c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)

Where m[ANOISE] and m[PNOISE] are copies of the f[ANOISE] and f[PNOISE] parameters
as defined in the MODEL_PARAMS section.
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5.3.9 $PK

Nonmem:-

$PK
KE = THETA(1) * exp(ETA(1))

to PoPy:-

MODEL_PARAMS: |
m[KE] = f[KE] * exp(r[KE])
m[ANOISE] = f[ANOISE]
m[PNOISE] = f[PNOISE]

The PoPy MODEL_PARAMS section has exactly the same purpose as the Nonmem $PK section. Some differences
are:-

• Nonmem uses numbered THETA and ETA variables, whilst PoPy uses named f[X] and r[X] vari-
ables.

• Nonmem uses bare variable names on the left hand side of equations in the $PK section and exports all of
the variables for use in the $DES and $ERROR sections (just ‘KE’ in this case). PoPy requires explicit use
of the m[X] syntax to export variables from the MODEL_PARAMS section.

You can use the local variable syntax in the PoPy MODEL_PARAMS section e.g.:-

MODEL_PARAMS: |
f = f[KE]
r = r[KE]
m = f * exp(r)
m[KE] = m

However only m[KE] will be available in the PoPy DERIVATIVES and PREDICTIONS sections not ‘f’, ‘r’
or ‘m’. Some other differences are:-

• PoPy requires that the f[ANOISE] and f[PNOISE] variables (which are sigmas in Nonmem) are
converted to m[X] variables, because f[X] variables can not be used as inputs to the DERIVATIVES
and PREDICTIONS sections.

• Nonmem implements IOV using ‘if’ statements. PoPy MODEL_PARAMS can handle IOV r[X]
variables without using ‘if’ statements, see DDMoRe0238 Conversion Example.

• Nonmem converts the $PK section into a Fortran function, whilst PoPy converts the MODEL_PARAMS
section into executable C++ code.

Otherwise the $PK and MODEL_PARAMS sections are quite similar. They both accept procedural pseudocode,
e.g. ‘if’ statements etc. and compute model variables for each row of the data set when fitting PK/PD models.

5.3.10 $DES

Nonmem:-

$DES
DADT(1) = -KE*A(1)

to PoPy:-

DERIVATIVES: |
d[CENTRAL] = @bolus{amt:c[AMT]} - m[KE]*s[CENTRAL]
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The PoPy DERIVATIVES section has exactly the same of purpose as the Nonmem $DES section. Some differences
are:-

• Nonmem uses numbered DADT and A variables, whilst PoPy uses named d[X] and s[X] variables.

• Nonmem will allow you to use any previously specified variables as input, whereas PoPy restricts input
variables to be of type c[X] and m[X].

• Nonmem specifies the dosing time, amount and compartment (either bolus or infusion) entirely from the
data file, however PoPy has Dosing Functions that have explicitly declared input parameters. The dosing
compartment is clearly defined by the dose function location in the DERIVATIVES section. The time of
each dose is still defined in the data file. See Dosing Fields for more info.

• Nonmem uses the magic variable ‘T’ to specify continuous time in the $DES section, PoPy uses the more
obviously magic x[TIME] variable to do the same thing.

• Nonmem converts the $DES section into a Fortran function, whilst PoPy converts the DERIVATIVES section
into a C++ function, that can be called by a numerical ordinary differential equation solver.

Otherwise the $DES and DERIVATIVES sections are quite similar. They both accept procedural pseudocode,
e.g. ‘if’ statements etc. and generate code that be executed by a numerical ordinary differential equation solver
to compute compartment model amount/state variables at time points specified in the data file.

5.3.11 $ERROR

Nonmem:-

$ERROR
Y = F + EPS(1) + F*EPS(2)

to PoPy:-

PREDICTIONS: |
p[DV_CENTRAL] = s[CENTRAL]
var = m[ANOISE] + m[PNOISE] * p[DV_CENTRAL]**2
c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)

The PoPy PREDICTIONS section has the same of purpose as the Nonmem $ERROR section. They both compare
observations from the data file with model predictions. In a fitting script these sections compute a likelihood,
when simulating these sections produce a noisy measurement prediction.

Some differences are:-

• The Nonmem $error section is much shorter, it relies on the convention that ‘Y’ is the dependant variable
‘DV’ column from the data file and ‘F’ is the model prediction for the compartment specified by the ‘CMT’
column in the data file.

• The PoPy PREDICTIONS explicitly creates p[X] prediction variables, often based on s[X] amounts
from the compartment model, which all have human readable names.

• The Nonmem likelihood is expressed as a sum of ‘EPS’ normal distributions, which Nonmem combines
into a single ~norm() distribution to compute the likelihood for each data row.

• The PoPy likelihood is constructed using the ‘~’ notation and uses named Probability Distributions.

In PoPy you have to work out how to compute the ~norm() distribution parameters yourself. Here the mean
is simply the model prediction p[DV_CENTRAL]. The m[ANOISE] and m[PNOISE] parameters are
separate additive and proportional variances, so have a combined variance as follows:-

5.3. Nonmem control file to PoPy Fit Script 126



The PoPy Manual, Release 1.1.2

var = m[ANOISE] + m[PNOISE] * p[DV_CENTRAL]**2

Otherwise the $ERROR and PREDICTIONS sections are quite similar. They both accept procedural pseudocode,
e.g. ‘if’ statements etc. and generate code that can be used to compute a likelihood value for each row of a data
set (when fitting).

5.3.12 $ESTIMATION

Nonmem:-

$ESTIMATION METHOD=ITS INTERACTION PRINT=1 MAXEVALS=100

Or

$ESTIMATION METHOD=FOCE INTERACTION PRINT=1 MAXEVALS=100

to PoPy:-

FIT_METHODS: [JOE: {max_n_main_iterations: 100}]

Note estimation methods can be called sequentially in Nonmem:-

$ESTIMATION METHOD=ITS INTERACTION PRINT=1 MAXEVALS=100
$ESTIMATION METHOD=FOCE INTERACTION PRINT=1 MAXEVALS=100

Similarly the JOE fitting method can be called sequentially in PoPy as:-

FIT_METHODS:
- JOE: {max_n_main_iterations: 100}
- FOCE: {max_n_main_iterations: 100}

In PoPy the JOE fitting method, optimises the same ObjV as Nonmem FOCE and ITS, but the fitting algorithm
is slightly different.

Note that in PoPy v1.0.5 the most accurate, but slower fitting method is ND specifed as follows:-

FIT_METHODS:
- ND: {max_n_main_iterations: 100}

ND optimises the FOCE ObjV so can be compared to Nonmem FOCE directly.

5.4 Nonmem Advan1,2,3,4,11,12 to PoPy analytic compartment mod-
els

Table 5.14 shows how to convert each Nonmem inbuilt ADVAN analytic functions to PoPy equivalents.

See ADVAN 1,2,3,4,11,12 Example for info on Nonmem $SUBROUTINES section.

Note to use the analytic compartment models in PoPy you should always set ODE_SOLVER as follows:-

ODE_SOLVER: {ANALYTIC:{}}

For more information on PoPy analytic functions see Analytic Compartment Functions.
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Table 5.14: Nonmem to PoPy Analytic ODEs
Nonmem ADVAN Parameters PoPy CMP Parameters
ADVAN1 K @iv_one_cmp_k KE
ADVAN1 TRANS2 CL/V @iv_one_cmp_cl CL/V
ADVAN2 KA/K @dep_one_cmp_k KA/KE
ADVAN2 TRANS2 KA/CL/V @dep_one_cmp_cl KA/CL/V
ADVAN3 K/K12/K21 @iv_two_cmp_k KE/K12/K21
ADVAN3 TRANS4 CL/V1/Q/V2 @iv_two_cmp_cl CL/V1/Q/V2
ADVAN4 KA/K/K23/K32 @dep_two_cmp_k KA/KE/K12/K21
ADVAN4 TRANS4 KA/CL/V1/Q/V2 @dep_two_cmp_cl KA/CL/V1/Q/V2
ADVAN11 K/K12/K21/K13/K31 @iv_three_cmp_k KE/K12/K21/K13/K31
ADVAN11 TRANS4 CL/V1/Q2/V2/Q3/V3 @iv_three_cmp_cl CL/V1/Q2/V2/Q3/V3
ADVAN12 KA/K/K23/K32/K24/K42 @dep_three_cmp_k KA/KE/K12/K21/K13/K31
ADVAN12 TRANS4 KA/CL/V2/Q3/V3/Q4/V4 @dep_three_cmp_cl KA/CL/V1/Q2/V2/Q3/V3

5.4.1 ADVAN1

In Nonmem:-

$SUBROUTINES ADVAN1

With following parameters defined in the Nonmem $PK section:-

• K = elimination rate

Equivalent PoPy DERIVATIVES section:-

DERIVATIVES: |
s[CEN] = @iv_one_cmp_k{dose: @bolus{amt:c[AMT]}, KE: m[KE]}

The Nonmem parameters are mapped to PoPy as follows:-

• K -> KE

See @iv_one_cmp_k.

5.4.2 ADVAN1 TRANS2

In Nonmem:-

$SUBROUTINES ADVAN1 TRAN2

With following parameters defined in the Nonmem $PK section:-

• CL = clearance

• V = volume of distribution

Equivalent PoPy DERIVATIVES section:-

DERIVATIVES: |
s[CEN] = @iv_one_cmp_cl{dose: @bolus{amt:c[AMT]}, CL: m[CL], V: m[V]}

The Nonmem parameters are mapped to PoPy as follows:-

• CL -> CL
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• V -> V

See @iv_one_cmp_cl.

5.4.3 ADVAN2

In Nonmem:-

$SUBROUTINES ADVAN2

With following parameters defined in the Nonmem $PK section:-

• KA = absorption rate

• K = elimination rate

Equivalent PoPy DERIVATIVES section:-

DERIVATIVES: |

→˓ s[DEP,CEN] = @dep_one_cmp_k{dose: @bolus{amt:c[AMT]}, KA: m[KA], KE: m[KE]}

The Nonmem parameters are mapped to PoPy as follows:-

• KA -> KA

• K -> KE

See @dep_one_cmp_k.

5.4.4 ADVAN2 TRANS2

In Nonmem:-

$SUBROUTINES ADVAN2 TRAN2

With following parameters defined in the Nonmem $PK section:-

• KA = absorption rate

• CL = clearance

• V = volume of distribution

Equivalent PoPy DERIVATIVES section:-

DERIVATIVES: |
s[DEP,CEN] = @dep_one_cmp_cl{

dose: @bolus{amt:c[AMT]},
KA: m[KA], CL: m[CL], V: m[V]

}

The Nonmem parameters are mapped to PoPy as follows:-

• KA -> KA

• CL -> CL

• V -> V

See @dep_one_cmp_cl.
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5.4.5 ADVAN3

In Nonmem:-

$SUBROUTINES ADVAN3

With following parameters defined in the Nonmem $PK section:-

• K = elimination rate from central compartment

• K12 = elimination rate from central to peripheral compartment

• K21 = elimination rate from peripheral to central compartment

Equivalent PoPy DERIVATIVES section:-

DERIVATIVES: |
s[CEN,PERI] = @iv_two_cmp_k{

dose: @bolus{amt:c[AMT]},
KE: m[KE], K12: m[K12], K21: m[K21]}

The Nonmem parameters are mapped to PoPy as follows:-

• K -> KE

• K12 -> K12

• K21 -> K21

See @iv_two_cmp_k.

5.4.6 ADVAN3 TRANS4

In Nonmem:-

$SUBROUTINES ADVAN3 TRANS4

With following parameters defined in the Nonmem $PK section:-

• CL = clearance from central compartment

• V1 = volume of distribution for central compartment

• Q = clearance between central and peripheral compartment

• V2 = volume of distribution for peripheral compartment

Equivalent PoPy DERIVATIVES section:-

DERIVATIVES: |
s[CEN,PERI] = @iv_two_cmp_cl{

dose: @bolus{amt:c[AMT]},
CL: m[CL], V1: m[V1], Q: m[Q], V2: m[V2]}

The Nonmem parameters are mapped to PoPy as follows:-

• CL -> CL

• V1 -> V1

• Q -> Q

• V2 -> V2
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See @iv_two_cmp_cl.

5.4.7 ADVAN4

In Nonmem:-

$SUBROUTINES ADVAN4

With following parameters defined in the Nonmem $PK section:-

• KA = absorption rate from depot to central compartment

• K = elimination rate from central compartment

• K23 = elimination rate from central to peripheral compartment

• K32 = elimination rate from peripheral to central compartment

Equivalent PoPy DERIVATIVES section:-

DERIVATIVES: |
s[DEP,CEN,PERI] = @dep_two_cmp_k{

dose: @bolus{amt:c[AMT]},
KA: m[KA], KE: m[KE], K12: m[K12], K21: m[K21]}

The Nonmem parameters are mapped to PoPy as follows:-

• KA -> KA

• K -> KE

• K23 -> K12

• K32 -> K21

Note PoPy uses consistent parameter names between @iv_two_cmp_k (advan3) and @dep_two_cmp_k (advan4),
whereas Nonmem renumbers the parameters.

See @dep_two_cmp_k.

5.4.8 ADVAN4 TRANS4

In Nonmem:-

$SUBROUTINES ADVAN4 TRANS4

With following parameters defined in the Nonmem $PK section:-

• KA = absorption rate from depot to central compartment

• CL = clearance from central compartment

• V2 = volume of distribution for central compartment

• Q = clearance between central and peripheral compartment

• V3 = volume of distribution for peripheral compartment

Equivalent PoPy DERIVATIVES section:-
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DERIVATIVES: |
s[DEP,CEN,PERI] = @dep_two_cmp_cl{

dose: @bolus{amt:c[AMT]},
KA: m[KA], CL: m[CL], V1: m[V1],
Q: m[Q], V2: m[V2]}

The Nonmem parameters are mapped to PoPy as follows:-

• KA -> KA

• CL -> CL

• V2 -> V1

• Q -> Q

• V3 -> V2

Note PoPy uses consistent parameter names between @iv_two_cmp_cl (advan3 trans 4) and @dep_two_cmp_cl
(advan4 trans4), whereas Nonmem renumbers the parameters.

See @dep_two_cmp_cl.

5.4.9 ADVAN11

In Nonmem:-

$SUBROUTINES ADVAN11

With following parameters defined in the Nonmem $PK section:-

• K = elimination rate from central compartment

• K12 = elimination rate from central to first peripheral compartment

• K21 = elimination rate from first peripheral to central compartment

• K13 = elimination rate from central to second peripheral compartment

• K31 = elimination rate from second peripheral to central compartment

Equivalent PoPy DERIVATIVES section:-

DERIVATIVES: |
s[CEN,PERI1,PERI2] = @iv_three_cmp_k{

dose: @bolus{amt:c[AMT]},
KE: m[KE], K12: m[K12], K21: m[K21],
K13: m[K13], K31: m[K31]}

The Nonmem parameters are mapped to PoPy as follows:-

• K -> KE

• K12 -> K12

• K21 -> K21

• K13 -> K13

• K31 -> K31

See @iv_three_cmp_k.
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5.4.10 ADVAN11 TRANS4

In Nonmem:-

$SUBROUTINES ADVAN11 TRANS4

With following parameters defined in the Nonmem $PK section:-

• CL = clearance from central compartment

• V1 = volume of distribution for central compartment

• Q2 = clearance between central and first peripheral compartment

• V2 = volume of distribution for first peripheral compartment

• Q3 = clearance between central and first peripheral compartment

• V3 = volume of distribution for second peripheral compartment

Equivalent PoPy DERIVATIVES section:-

DERIVATIVES: |
s[CEN,PERI1,PERI2] = @iv_three_cmp_cl{

dose: @bolus{amt:c[AMT]},
CL: m[CL], V1: m[V1], Q2: m[Q2],
V2: m[V2], Q3: m[Q3], V3: m[V3]}

The Nonmem parameters are mapped to PoPy as follows:-

• CL -> CL

• V1 -> V1

• Q2 -> Q2

• V2 -> V2

• Q3 -> Q3

• V3 -> V3

See @iv_three_cmp_cl.

5.4.11 ADVAN12

In Nonmem:-

$SUBROUTINES ADVAN12

With following parameters defined in the Nonmem $PK section:-

• KA = absorption rate from depot to central compartment

• K = elimination rate from central compartment

• K23 = elimination rate from central to first peripheral compartment

• K32 = elimination rate from first peripheral to central compartment

• K24 = elimination rate from central to second peripheral compartment

• K42 = elimination rate from second peripheral to central compartment
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Equivalent PoPy DERIVATIVES section:-

DERIVATIVES: |
s[DEP,CEN,PERI1,PERI2] = @dep_three_cmp_k{

dose: @bolus{amt:c[AMT]},
KA: m[KA], KE: m[KE],
K12: m[K12], K21: m[K21],
K13: m[K13], K31: m[K31]}

The Nonmem parameters are mapped to PoPy as follows:-

• KA -> KA

• K -> KE

• K23 -> K12

• K32 -> K21

• K24 -> K13

• K42 -> K31

Note PoPy uses consistent parameter names between @iv_three_cmp_k (advan11) and @dep_three_cmp_k
(advan12), whereas Nonmem renumbers the parameters.

See @dep_three_cmp_k.

5.4.12 ADVAN12 TRANS4

In Nonmem:-

$SUBROUTINES ADVAN12 TRANS4

With following parameters defined in the Nonmem $PK section:-

• KA = absorption rate from depot to central compartment

• CL = clearance from central compartment

• V2 = volume of distribution for central compartment

• Q3 = clearance between central and first peripheral compartment

• V3 = volume of distribution for first peripheral compartment

• Q4 = clearance between central and first peripheral compartment

• V4 = volume of distribution for second peripheral compartment

Equivalent PoPy DERIVATIVES section:-

DERIVATIVES: |
s[DEP,CEN,PERI1,PERI2] = @dep_three_cmp_cl{

dose: @bolus{amt:c[AMT]},
KA: m[KA],
CL: m[CL], V1: m[V1],
Q2: m[Q2], V2: m[V2],
Q3: m[Q3], V3: m[V3]}

The Nonmem parameters are mapped to PoPy as follows:-

• KA -> KA
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• CL -> CL

• V2 -> V1

• Q3 -> Q2

• V3 -> V2

• Q4 -> Q3

• V4 -> V3

Note PoPy uses consistent parameter names between @iv_three_cmp_cl (advan11 trans 4) and @dep_three_cmp_cl
(advan12 trans4), whereas Nonmem renumbers the parameters.

See @dep_three_cmp_cl.

5.5 DDMoRe0061 Conversion Example

5.5.1 Overview

A real world model, based on a gentamicin PK study [Harling2015]. It has a combined bolus + infusion dose and
the original PK model uses ADVAN3 TRANS4 in Nonmem. There are some covariate effects on the clearance
and volume of distribution of the central compartment parameters. There are 210 individuals and 1949 data
rows. See DDMoRe: 0061

5.5.2 Data Conversion

We describe the conversion of this data set in Nonmem format:-

c:\PoPy\validation\ddmore0061\Simulated_gentamicin_pk.csv

To this data set in PoPy format:-

c:\PoPy\validation\ddmore0061\popy\popy_data.csv

Using the N2PDat Script located here:-

c:\PoPy\validation\ddmore0061\popy\n2p_script.pyml

The original Nonmem data set looks something like Table 5.15.

Table 5.15: Main data fields for Nonmem (first six rows)
ID TIME AMT RATE DUR DV MDV EVID
1 0 150 0 0 12.376 1 1
1 9 150 0 0 13.156 1 1
1 14.25 0 0 0 2.2347 0 0
1 16.92 150 0 0 13.599 1 1
1 25 150 250 0.5 1.322 1 1
1 33 0 0 0 1.459 0 0

The critical entries for the N2PDat Script are as follows:-
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INPUT_NONMEM_FIELDS:
obs_cmt_numbers: [1]
dose_cmt_numbers: [1]

These two entries specify that the observations and doses all occur in compartment one. Technically the Nonmem
data set above has no CMT field. However CMT defaults to one in Nonmem if it is NOT provided.

The dataset output by N2PDat Script is the same as the input, but with the 3 extra columns shown in Table 5.16.

Table 5.16: Extra data fields for PoPy (first six rows)
DRUG_CONC DRUG_CONC_FLAG TYPE
0 0 dose:DOSE_bolus
0 0 dose:DOSE_bolus
2.2347 1 obs
0 0 dose:DOSE_bolus
0 0 dose:DOSE_infrate
1.459 1 obs

Here the new ‘DRUG_CONC’ field will be the target value for the new PoPy script. The ‘DRUG_CONC_FLAG’
switches the observations on/off appropriately. Note that ‘DRUG_CONC_FLAG’ is the inverse of the Nonmem
‘MDV’ flag. The new ‘TYPE’ field is formatted to process either bolus or infusion doses in PoPy.

5.5.3 Script Conversion

We describe the manual conversion of the Nonmem script file:-

c:\PoPy\validation\ddmore0061\Executable_gentamicin_pk.mod

To create the PoPy Fit Script here:-

c:\PoPy\validation\ddmore0061\popy\fit_script.pyml

The Nonmem script loads the data as follows:-

$DATA Simulated_gentamicin_pk.csv IGNORE=@

Whereas the PoPy script uses this syntax:-

FILE_PATHS: {input_data_file: popy_data.csv}

In the Nonmem script, the theta/omega/sigma fixed effect definitions are:-

$THETA
(0,4.1) ; CL
(1,8.63) ; V1
(0,1.21) ; Q
(0,8.12) ; V2

(-0.01,0.00982,0.016) ; BCLC
(-0.409) ; ALB
(0,0.00683) ; DCLC

$OMEGA
0.0465 ; CL
0.376 ; Q
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$SIGMA
0.0297 ; E1
0.0486 ; E2

In PoPy these fixed effect are defined in EFFECTS:-

EFFECTS:
POP: |

f[CL] ~ P 4.1
f[V1] ~ unif(1, +inf) 8.63
f[Q] ~ P 1.21
f[V2] ~ P 8.12
f[BCLC_eff] ~ unif(-0.01, 0.016) 0.00982
f[ALB_eff] = -0.409
f[DCLC_eff] ~ P 0.00683

f[CL_isv, Q_isv] ~ diag_matrix() [ [ 0.0465, 0.376 ] ]

f[PNOISE_var] ~ P 0.0297
f[ANOISE_var] ~ P 0.0486

Note the ranges and initial values of the f[X] variables are defined using different syntax from the $THETA
variables. Note also that the f[X] have explicit names, whereas the Nonmem list of thetas has to be clumsily
annotated with comments to make it human readable.

In PoPy you can specify a diagonal matrix, which can be explicitly used as a covariance matrix input to a
Multivariate Normal Distribution distributed r[X] vector, as follows:-

EFFECTS:
ID: |

r[CL_isv, Q_isv] ~ mnorm([0,0], f[CL_isv, Q_isv])

There r[CL_isv] is the equivalent of ‘ETA(1)’ and r[Q_isv] is the equivalent of ‘ETA(2)’. In Nonmem
you just have to remember the index values, whereas PoPy uses actual real life variable names.

In PoPy the sigmas are fixed effects and also defined in EFFECTS.

The Nonmem PK section is as follows:-

$PK
BSA = 71.84*(WT**0.425)*(HT**0.725)
BSA = BSA/10000
HT1 = HT/100
BMI = WT/HT1**2

IF(NEWIND.NE.2) BCLC = CLC
DCLC = CLC-BCLC
IF(NEWIND.NE.2) BBSA = BSA

TVCL = THETA(1) * (1 + THETA(5)*(BCLC-81) + THETA(7)*DCLC)
TVV1 = THETA(2) * BBSA*(ALB/34)**THETA(6)
TVQ = THETA(3)
TVV2 = THETA(4)

CL = TVCL * EXP(ETA(1))
V1 = TVV1
Q = TVQ * EXP(ETA(2))
V2 = TVV2
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S1 = V1

This maps almost exactly to the PoPy MODEL_PARAMS section:-

MODEL_PARAMS: |
BSA = 71.84 * (c[WT]**0.425) * (c[HT]**0.725)
BSA = BSA / 10000
HT1 = c[HT] / 100
BMI = c[WT] / HT1**2

BCLC = c[CLC]
DCLC = c[CLC] - BCLC
BBSA = BSA

TVCL = f[CL] * (1 + f[BCLC_eff]*(BCLC-81) + f[DCLC_eff]*DCLC)
TVV1 = f[V1] * BBSA * (c[ALB]/34)**f[ALB_eff]
TVQ = f[Q]
TVV2 = f[V2]

m[CL] = TVCL * EXP(r[CL_isv])
m[V1] = TVV1
m[Q] = TVQ * EXP(r[Q_isv])
m[V2] = TVV2

m[PNOISE_var] = f[PNOISE_var]
m[ANOISE_var] = f[ANOISE_var]

Note in the above Nonmem specifies ‘S1 = V1’, to scale the amounts in compartment one. This is not necessary
in PoPy, as the compartment amounts are converted to concentrations in the PREDICTIONS section explicitly.

Also note that PoPy requires the lines:-

m[PNOISE_var] = f[PNOISE_var]
m[ANOISE_var] = f[ANOISE_var]

To propagate the f[X] noise fixed effects which are similar to the Nonmem builtin sigma variables.

Note in this example the Nonmem ‘NEWIND’ keyword is superfluous, as the c[CLC] covariate and BSA
variable are constant within each individual.

The Nonmem control file prescribes the compartment model on this line:-

$SUBROUTINE ADVAN3 TRANS4

That uses the inbuilt ‘ADVAN3’ model with ‘TRANS4’ parametrisations. This uses the analytic solution for
a two compartment model that expects the CL, V1, Q, V2 parameters to be defined in the Nonmem PK section.

The PoPy control file here specifies the compartment model equations explicitly in the DERIVATIVES section:-

DERIVATIVES: |
dose[DOSE_bolus] = @bolus{amt:c[AMT], lag:0.0}
dose[DOSE_infrate] = @inf_rate{amt:c[AMT], lag:0.0, rate:c[RATE]}
d[CENTRAL] = dose[DOSE_bolus] + dose[DOSE_infrate]

→˓- s[CENTRAL]*m[Q]/m[V1] + s[PERI]*m[Q]/m[V2] - s[CENTRAL]*m[CL]/m[V1]
d[PERI] =

→˓ s[CENTRAL]*m[Q]/m[V1] - s[PERI]*m[Q]/m[V2]

Note that PoPy has an equivalent builtin version of ‘ADVAN3 TRANS4’ as follows:-
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DERIVATIVES: |
s[CENTRAL, PERI] = @iv_two_

→˓cmp_cl{ dose: @bolus{amt:c[AMT]}, CL: m[CL], V1: m[V1], Q: m[Q], V2: m[V2] }

However this function is unable to process two different types of dose (bolus + infusion), unlike the long hand
version above. Note that PoPy will be using an ordinary differential equation solver here (instead of a built
in analytic solution), so we also need to specify this PoPy field:-

ODE_SOLVER: {CPPLSODA: {}}

Which tells PoPy to use the c++ LSODA solver, the same method as Nonmem Advan13.

The Nonmem ERROR section is as follows:-

$ERROR
Y = F*EXP(ERR(1)) + ERR(2)
IPRED=F
IRES=DV-IPRED

The PoPy equivalent is shown below in the PREDICTIONS section:-

PREDICTIONS: |
p[DV_CENTRAL] = s[CENTRAL]/m[V1]
var = m[PNOISE_var] * p[DV_CENTRAL]**2 + m[ANOISE_var]
c[DRUG_CONC] ~ norm(p[DV_CENTRAL], var)

Note here the line ‘Y = F*EXP(ERR(1)) + ERR(2)’ defines an proportional exponential normal noise model
with an additional additive normal noise component. It is not clear (to the PoPy developers) what the distribution
of a log normal + a normal distribution is. PoPy requires a known distribution to calculate a likelihood. If you
approximate the exponential (assuming ERR(1) is small) and get ‘Y = F*(1+ ERR(1)) + ERR(2)’. Then this
is the standard proportional + additive noise model. In this case, the PoPy Fit Script return a very similar objective
function to the DDMoRe Nonmem objective function. Indicating that Nonmem also makes the same approximation.

The Nonmem control file specifies using FOCE fitting (METHOD=1) below:-

$ESTIMATION MAXEVALS=0 SIG=3 PRINT=10 METHOD=1 INTER

The PoPy equivalent, specifying the ND fitting method is:-

FIT_METHODS: [ND: {max_n_main_iterations: 0}]

Setting ‘max_n_main_iterations’ to zero, means that PoPy will optimise the r[X] parameters and leave the
f[X] unchanged.

5.6 DDMoRe0093 Conversion Example

5.6.1 Overview

A real world model, based on a QT study [Cheung2015]. The model incorporates a circadian function with
no compartment derivatives. There are 59 individuals and 5790 total data rows. See DDMoRe: 0093

5.6.2 Data Conversion

We describe the conversion of this data set in Nonmem format:-
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c:\PoPy\validation\ddmore0093\Simulated_dataset.csv

To this data set in PoPy format:-

c:\PoPy\validation\ddmore0093\popy\popy_data.csv

Using the N2PDat Script located here:-

c:\PoPy\validation\ddmore0093\popy\n2p_script.pyml

The final data set looks something like Table 5.17.

Table 5.17: Main data fields for Nonmem and PoPy
ID TIME AMT EVID QTCF MDV CPP TYPE
1001 0 0 2 0 1 0 pred
1001 31.2575 0 0 351.7 0 0 obs
1001 31.2655556 0 0 343.7 0 0 obs
1001 31.2736111 0 0 354.1 0 0 obs
1001 31.4072222 0 0 351.5 0 0 obs
1001 31.4152778 0 0 359 0 0 obs
1001 33.6672222 600 1 0 1 0 dose:dose_bolus
1001 34.1683333 0 2 0 1 1083 pred
1001 34.5841667 0 0 353.6 0 1447 obs

Note the main output of the data conversion is the ‘TYPE’ field which has the correct entries for PoPy
corresponding to the Nonmem ‘EVID’ field. as follows:-

2 -> pred
0 -> obs
1 -> dose:dose_bolus

Note however that in this model the dosing is not actually used in the Nonmem control file.

5.6.3 Script Conversion

We describe the manual conversion of the Nonmem script file:-

c:\PoPy\validation\ddmore0093\Executable_run7b.ctl

To create the PoPy Fit Script here:-

c:\PoPy\validation\ddmore0093\popy\fit_script.pyml

The Nonmem script loads the data as follows:-

$DATA Simulated_dataset.csv
IGNORE = #
IGNORE = (EVID == 1)

Note the ‘IGNORE’ syntax removes the dosing rows from the data set.

Whereas the PoPy script uses this syntax:-
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FILE_PATHS: {input_data_file: output_popy_data.csv}
PREPROCESS: |

if c[TYPE] == 'dose:dose_bolus': return

Which loads the PoPy data and also excludes the dosing rows.

In the Nonmem script, the theta/omega/sigma variable definitions are:-

$THETA (0, 372.6) ; 1 Baseline QTcF [ms]
$THETA (0, 0.01844) ; 2 Amplitude 24h
$THETA (0, 3.62) ; 3 Peak shift 24h
$THETA (0, 0.01392) ; 4 Amplitude 12h circadian rhythm
$THETA (0, 1.301) ; 5 Peak shift 12h circadian rhythm
$THETA (0, 0.003441) ; 6 Slope (linear effect) parameter
$OMEGA 0.0392 ; 1 Baseline QTcF - (BSV)
$OMEGA 0.3523 ; 2 Amplitude 24h - BSV
$OMEGA 2.007 ; 3 Peak shift 24h - BSV
$OMEGA 0.3848 ; 4 Amplitude 12h - BSV
$OMEGA 0.993 ; 5 Peak shift 12h - BSV
$OMEGA 0.0001 ; 6 Slope - BSV
$SIGMA 0.01802 ; 1 Proportional residual error [ms]

The equivalent f[X] in the PoPy script are:-

EFFECTS:
POP: |

f[BASE] ~ P 372.6
f[AMP24] ~ P 0.01844
f[SHFT24] ~ P 3.62
f[AMP12] ~ P 0.01392
f[SHFT12] ~ P 1.301
f[SLOPE] ~ P 0.003441
f[BASE_

→˓bsv,AMP24_bsv,SHFT24_bsv,AMP12_bsv,SHFT12_bsv,SLOPE_bsv] ~ diag_matrix() [
[ 0.0392, 0.3523, 2.007, 0.3848, 0.993, 0.0001 ]

]
f[NOISEVAR] ~ P 0.01802

Additionally PoPy has the ‘ID’ section of the EFFECTS:-

EFFECTS:
ID: |

r[ BASE, AMP24, SHFT24, AMP12, SHFT12, SLOPE ] ~ mnorm(
[0,0,0,0,0,0],
f[BASE_bsv,AMP24_bsv,SHFT24_bsv,AMP12_bsv,SHFT12_bsv,SLOPE_bsv]

)

This section defines r[BASE] and r[AMP24] etc. These r[X] definitions are a more explicit version
of Nonmem implicitly creating ETA(X) variables for each of the omega variables. With Nonmem you have to
remember what each of the ETA indices represent. Hence the heavily commented ‘PRED’ block below, which
defined the variables for each individual in the Nonmem script:-

$PRED
BASE = THETA(1) * EXP(ETA(1))

→˓ ; Baseline QTcF with between subject varaibility (BSV)
AMP24 = THETA(2) * EXP(ETA(2))

→˓ ; The amplitude of the 24h circadian rhythm
SHFT24 = THETA(3) + ETA(3)

→˓ ; The peak shift of the 24h circadian rhythm
AMP12 = THETA(4) * EXP(ETA(4))

→˓ ; The amplitude of the 12h circadian rhythm
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SHFT12 = THETA(5) + ETA(5)
→˓ ; The peak shift of the 12h circadian rhythm

CIRC24
→˓= AMP24 * COS(2 * 3.14 * (TIME - SHFT24)/24) ; 24 hour circadian rhythm

CIRC12
→˓= AMP12 * COS(2 * 3.14 * (TIME - SHFT12)/12) ; 12 hour circadian rhythm

RYTM = BASE * (1 + CIRC24 + CIRC12)
→˓ ; Change in baseline QTcF over the day due to circadian rhythm

SLOPE = THETA(6) + ETA(6) ; Linear effect
EFF = SLOPE * CPP ; Linear effect

The MODEL_PARAMS section of the PoPy script is very similar:-

MODEL_PARAMS: |

BASE = f[BASE] * exp(r[BASE])
AMP24 = f[AMP24] * exp(r[AMP24])
SHFT24 = f[SHFT24] + r[SHFT24]
AMP12 = f[AMP12] * exp(r[AMP12])
SHFT12 = f[SHFT12] + r[SHFT12]

CIRC24 = AMP24 * COS(2 * 3.14 * (c[TIME] - SHFT24)/24)
CIRC12 = AMP12 * COS(2 * 3.14 * (c[TIME] - SHFT12)/12)
m[RYTM] = BASE * (1 + CIRC24 + CIRC12)

SLOPE = f[SLOPE] + r[SLOPE]
m[EFF] = SLOPE * c[CPP]
m[NOISEVAR] = f[NOISEVAR]

The above is almost identical apart from the line ‘m[NOISEVAR] = f[NOISEVAR]’. Note in MODEL_PARAMS
it is necessary to define m[X] variables that you wish to use in subsequent sections, e.g. DERIVATIVES or
PREDICTIONS.

The Nonmem error model (also here part of the ‘PRED’ section) is defined as follows:-

IPRED
→˓ = RYTM + EFF ; Linear direct effect model
W = IPRED * SIGMA(1,1)
IWRES = (QTCF - IPRED)/W

Y = IPRED + IPRED*EPS(1)

The equivalent in PoPy is the PREDICTIONS block:-

PREDICTIONS: |
p[CONC_PLASMA] = m[RYTM] + m[EFF]
var = m[NOISEVAR] * p[CONC_PLASMA]**2
c[QTCF] ~ norm(p[CONC_PLASMA], var)

Note PoPy explicitly defines the likelihood by comparing c[QTCF] from the data file with the predicition
p[CONC_PLASMA], using a normal distribution with proportional variance.

This is more explicit than the Nonmem line ‘Y = IPRED + IPRED*EPS(1)’, which implicitly uses the ‘DV’
Nonmem magic variable for Y. The likelihood is expressed as a function of EPS normal distributions.

The Nonmem control file specifies using FOCE fitting (METHOD=1) below:-
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$ESTIMATION METHOD=1 MAXEVALS=99999 INTER NOABORT PRINT=5

The PoPy equivalent, specifying the ND fitting method is:-

FIT_METHODS: [ND: {max_n_main_iterations: 100}]

5.7 DDMoRe0238 Conversion Example

5.7.1 Overview

A real world model, based on a gentamicin PK study [Germovsek2017]. A Population PK model with IOV,
infusion dosing and custom derivative equations to implement the PK. The dataset consists of 205 individuals
and 2788 rows. See DDMoRe: 0238

5.7.2 Data Conversion

We describe the conversion of this data set in Nonmem format:-

c:\PoPy\validation\ddmore0238\Simulated_simdataDDM.csv

To this data set in PoPy format:-

c:\PoPy\validation\ddmore0238\popy\output_popy_data.csv

Using the N2PDat Script located here:-

c:\PoPy\validation\ddmore0238\popy\n2p_script.pyml

The original Nonmem data set looks something like Table 5.18.

Table 5.18: Main data fields for Nonmem (first 8 rows)
ID TIME RATE EVID AMT WT CREAT DV OCC
1001 0 72 1 6 2120 78 0 1
1001 11.5 0 0 0 2120 78 1.109 1
1001 12 72 1 6 2120 78 0 2
1001 12.5 0 0 0 2120 78 7.0181 2
1001 24 48 1 4 2120 78 0 2
1001 36 48 1 4 2120 78 0 2
1001 48 48 1 4 2120 78 0 3
1001 58.5 0 0 0 2120 78 2.2136 3

The final data set looks something like Table 5.19.
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Table 5.19: Extra data fields for PoPy (first 8 rows)
DV_CENTRAL DV_CENTRAL_FLAG TYPE
0 0 dose:DOSE_infrate
1.109 1 obs
0 0 dose:DOSE_infrate
7.0181 1 obs
0 0 dose:DOSE_infrate
0 0 dose:DOSE_infrate
0 0 dose:DOSE_infrate
2.2136 1 obs

Here the PoPy ‘TYPE’ field is a more explicit version of the Nonmem ‘EVID’ field. The PoPy ‘DV_CENTRAL’
field is a copy of the Nonmem ‘DV’ field, with an additional ‘DV_CENTRAL_FLAG’ field to make the true
observed values more obvious. Note here PoPy could also use the Nonmem ‘DV’ field because it is always
defined for all rows with c[EVID] =0 or equivalently c[TYPE] =’obs’.

5.7.3 Script Conversion

We describe the manual conversion of the Nonmem script file:-

c:\PoPy\validation\ddmore0238\Executable_run35b_ddm2.ctl

To create the PoPy Fit Script here:-

c:\PoPy\validation\ddmore0238\popy\fit_script.pyml

The Nonmem script loads the data as follows:-

$DATA simdataDDM.csv IGNORE=@

Whereas the PoPy script uses this syntax:-

FILE_PATHS:
# path to input comma separated value file in popy data format
input_data_file: output_popy_data.csv

In the Nonmem script, the theta variable definitions are:-

$THETA (0,6.20684) ; 1. TVCL (lower bound,initial estimate)
$THETA (0,26.5004) ; 2. TVV1 (lower bound,initial estimate)
$THETA (0,2.15099) ; 3. TVQ
$THETA (0,21.151) ; 4. TVV2
$THETA (0,0.270697) ; 5. TVQ2
$THETA (0,147.893) ; 6. TVV3
$THETA 55.4 FIX ; 7. T50
$THETA 3.33 FIX ; 8. Hill
$THETA -0.129934 ; 9. power exponent on creatinine
$THETA (0,1.70302) ; 10. PNA50

In the PoPy script the equivalent f[X] variables are:-

EFFECTS:
POP: |

f[TVCL] ~ P 6.20684
f[TVV1] ~ P 26.5004
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f[TVQ] ~ P 2.15099
f[TVV2] ~ P 21.151
f[TVQ2] ~ P 0.270697
f[TVV3] ~ P 147.893
f[T50] = 55.4
f[HILL] = 3.33
f[CRPWR] = -0.129934
f[P50] ~ P 1.70302

Notice that PoPy uses the natural equal sign for f[X] that are fixed and the ‘~’ for f[X] that need to be
estimated.

In the Nonmem script, the omega variable definitions are:-

$OMEGA BLOCK(2)
0.175278 ; variance for ETA(1), initial estimate
0.115896
→˓0.112362 ; COvariance ETA(1)-ETA(2), var for ETA(2), initial estimate
$OMEGA 0 FIX
$OMEGA 0.131759
$OMEGA 0 FIX
$OMEGA 0.177214
$OMEGA BLOCK(1)
0.0140684 ; 7. IOV_CL
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME

The ugly code above defines a 2x2 matrix of omega fixed effects, followed by 4 scalar omega fixed effects. The
‘$OMEGA BLOCK(1)’ + ‘$OMEGA BLOCK(1) SAME’ lines defines a single IOV omega fixed effects to be esti-
mated over up to 22 occasions. Nonmem creates an ETA normal variable for each individual corresponding to each
$OMEGA above. Hence, each individual will have 4 ETAs (with 2 set to zero) and an additional 22 occasion ETAS.

You just have to do all the indexing in your head to use the ETAs in the subsequent PK block. In contrast the
PoPy script defines the equivalent var f[X] variables as:-

EFFECTS:
POP: |

f[TCVL_isv, TVV1_isv] ~ spd_matrix() [
[ 0.175278 ],
[ 0.115896, 0.112362 ]

]
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f[TVQ_isv] = 0
f[TVV2_isv] ~ P 0.131759
f[TVQ2_isv] = 0
f[TVV3_isv] ~ P 0.177214
f[TVCL_iov] ~ P 0.0140684

Here the inter-subject variability (isv) variables are just more f[X] variables with convenient labels. Note in
contrast to Nonmem the f[TVCL_iov] occasion variance is just defined once here (it being one fixed effect).

In PoPy the mechanism for creating the appropriate number of r[X] variables given the var f[X] is as
shown in the ‘ID’ and ‘OCC’ sections:-

EFFECTS:
ID: |

r[TVCL_isv, TVV1] ~ mnorm([0,0], f[TCVL_isv, TVV1_isv])
r[TVQ] ~ norm(0, f[TVQ_isv])
r[TVV2] ~ norm(0, f[TVV2_isv])
r[TVQ2] ~ norm(0, f[TVQ2_isv])
r[TVV3] ~ norm(0, f[TVV3_isv])

OCC: |
r[TVCL_iov] ~ norm(0, f[TVCL_iov])

This syntax means that each individual has one r[TVCL_isv, TVV1] and one r[TVQ] instance etc.
However the number of instances of r[TVCL_iov] are dependent on the number of values of the ‘OCC’
field for each individual in the data file. i.e. Each individual will have a different sample of r[TVCL_iov]
for each occasion. You do not need to know the highest occasion number here (unlike in Nonmem).

In the Nonmem script, the sigma variable definitions are:-

$SIGMA 0.036033 ; variance PROP res error, initial estimate
$SIGMA 0.0164023 ; additional res error, initial estimate

In the PoPy script the equivalent noise f[X] variables are:-

EFFECTS:
POP: |

f[PNOISE_var] ~ P 0.036033
f[ANOISE_var] ~ P 0.0164023

The Nonmem ‘PK’ section is defined as follows:-

$PK
; Three-comp model
IF(NEWIND.NE.2)OTIM1=0
IF(NEWIND.NE.2)OCOV1=0
IF(NEWIND.NE.2)OTIM2=0
IF(NEWIND.NE.2)OCOV2=0
;
STUDY=0
IF(ID.LT.2000) STUDY=1 ;Glasgow, Thomson1988
IF(ID.GE.2000.AND.ID.LT.3000) STUDY=2 ;Uppsala, Nielsen2009
IF(ID.GE.3000) STUDY=3 ;Estonia, unpublished
;
WTKG = WT/1000
;
T50 = THETA(7)
HILL = THETA(8)
MF = PMA**HILL/(PMA**HILL+T50**HILL)
;
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CREAT2 = CREAT
IF(CREAT.

→˓LT.0) CREAT2 = TCREA ; when SCr is NA=-99, it is the typical SCr
;OF = (CREAT2/TCREA)**(THETA(9))
;
P50 = THETA(10)
;PNAF = PNA/(P50+PNA)
;
CRPWR = THETA(9)
;IOV code
BOVC = 0
IF(OCC.EQ.1) BOVC = ETA(7)
IF(OCC.EQ.2) BOVC = ETA(8)
IF(OCC.EQ.3) BOVC = ETA(9)
IF(OCC.EQ.4) BOVC = ETA(10)
IF(OCC.EQ.5) BOVC = ETA(11)
IF(OCC.EQ.6) BOVC = ETA(12)
IF(OCC.EQ.7) BOVC = ETA(13)
IF(OCC.EQ.8) BOVC = ETA(14)
IF(OCC.EQ.9) BOVC = ETA(15)
IF(OCC.EQ.10) BOVC = ETA(16)
IF(OCC.EQ.11) BOVC = ETA(17)
IF(OCC.EQ.12) BOVC = ETA(18)
IF(OCC.EQ.13) BOVC = ETA(19)
IF(OCC.EQ.14) BOVC = ETA(20)
IF(OCC.EQ.15) BOVC = ETA(21)
IF(OCC.EQ.16) BOVC = ETA(22)
IF(OCC.EQ.17) BOVC = ETA(23)
IF(OCC.EQ.18) BOVC = ETA(24)
IF(OCC.EQ.19) BOVC = ETA(25)
IF(OCC.EQ.20) BOVC = ETA(26)
IF(OCC.EQ.21) BOVC = ETA(27)
IF(OCC.EQ.22) BOVC = ETA(28)
;
TVCL = THETA(1)*MF*(WTKG/70)**(0.632) ; typical value of CL
TVV1 = THETA(2)*(WTKG/70) ; typical value of V1
TVQ = THETA(3)*(WTKG/

→˓70)**(0.75) ; ty. value of intercompartmental CL
TVV2 = THETA(4)*(WTKG/70) ; ty. value of V2
TVQ2 = THETA(5)*(WTKG/70)**(0.75) ; ty value of CL3
TVV3 = THETA(6)*(WTKG/70) ; ty value of V3
;
CL = TVCL*EXP(ETA(1)+BOVC) ; individual value of CL
V1 = TVV1*EXP(ETA(2))
Q = TVQ*EXP(ETA(3))
V2 = TVV2*EXP(ETA(4))
Q2 = TVQ2*EXP(ETA(5))
V3 = TVV3*EXP(ETA(6))
;
K = CL/V1
K12 = Q/V1
K21 = Q/V2
K13 = Q2/V1
K31 = Q2/V3
;
IF(EVID.EQ.1) TM=TIME
IF(EVID.EQ.1) TAD=0
IF(EVID.NE.1) TAD=TIME-TM
;
SL1 = 0
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IF(TIME.GT.OTIM1) SL1 = (PNA-OCOV1)/(TIME-OTIM1)
A_0(4) = PNA
;
SL2 = 0
IF(TIME.GT.OTIM2) SL2 = (CREAT2-OCOV2)/(TIME-OTIM2)
A_0(5) = CREAT2

The equivalent in PoPy is the MODEL_PARAMS section:-

MODEL_PARAMS: |

WTKG = c[WT] / 1000
MF = c[PMA]**f[HILL]/(c[PMA]**f[HILL] + f[T50]**f[HILL])
TVCL = f[TVCL] * (WTKG/70)**(0.632) * MF
TVV1 = f[TVV1] * (WTKG/70)
TVQ = f[TVQ] * (WTKG/70)**(0.75)
TVV2 = f[TVV2] * (WTKG/70)
TVQ2 = f[TVQ2] * (WTKG/70)**(0.75)
TVV3 = f[TVV3] * (WTKG/70)
BOVC = r[TVCL_iov]
CL = TVCL * exp(r[TVCL_isv] + BOVC)
V1 = TVV1 * exp(r[TVV1])
Q = TVQ * exp(r[TVQ])
V2 = TVV2 * exp(r[TVV2])
Q2 = TVQ2 * exp(r[TVQ2])
V3 = TVV3 * exp(r[TVV3])
m[K] = CL/V1
m[K12] = Q/V1
m[K21] = Q/V2
m[K13] = Q2/V1
m[K31] = Q2/V3
m[CRPWR] = f[CRPWR]
m[P50] = f[P50]
m[SL1] = 0
if c[CREAT] < 0:

m[CREAT2] = c[TCREA]
else:

m[CREAT2] = c[CREAT]
m[SL2] = 0
m[V1] = V1
m[PNOISE_var] = f[PNOISE_var]
m[ANOISE_var] = f[ANOISE_var]

The PoPy version is shorter, mainly because it does not have to write an if statement for all values of the OCC
variable i.e. ‘IF(OCC.EQ.1) BOVC = ETA(7)’ etc.

Note that the Nonmem $PK section contains the lines:-

A_0(4) = PNA
A_0(5) = CREAT2

These are necessary to provide initial values for the $DES section. The equivalent in PoPy is the STATES section:-

STATES: |
s[COVCMT1] = c[PNA]
s[COVCMT2] = m[CREAT2]

which provides s[X] values at t=0.0 for the PoPy DERIVATIVES section. Note by default in both PoPy s[X]
=0.0, unless the STATES section says otherwise. A similar convention is used in Nonmem.
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The Nonmem $DES section is as follows:-

$DES
TCOV1 = A(4)
TCOV2 = A(5)
PNAF = TCOV1/(P50+TCOV1)
OF = (TCOV2/TCREA)**CRPWR

DADT(1) = A(3)*K31+A(2)*K21-A(1)*(K*PNAF*OF+K12+K13)
DADT(2) = A(1)*K12-A(2)*K21
DADT(3) = A(1)*K13-A(3)*K31
DADT(4)= SL1
DADT(5)= SL2

This is very similar to the PoPy DERIVATIVES section:-

DERIVATIVES: |
TCOV1 = s[COVCMT1]
TCOV2 = s[COVCMT2]
PNAF = TCOV1 / (m[P50]+TCOV1)
OF = (TCOV2/c[TCREA])**m[CRPWR]
dose[DOSE_infrate] = @inf_rate{ amt: c[AMT], rate: c[RATE], lag: 0 }
d[CENTRAL] = dose[DOSE_infrate] + m[K31]*s[PERIPH2]

→˓+ m[K21]*s[PERIPH1] - (m[K]*PNAF*OF+m[K12]+m[K13])*s[CENTRAL]
d[PERIPH1] = - m[K21]*s[PERIPH1] + m[K12] *s[CENTRAL]
d[PERIPH2] = - m[K31]*s[PERIPH2] + m[K13] *s[CENTRAL]
d[COVCMT1] = m[SL1]
d[COVCMT2] = m[SL2]

except that in PoPy the dose[DOSE_infrate] is defined and explicitly placed in the s[CENTRAL]
compartment. Nonmem puts all boluses/infusions in compartment one by convention, unless a CMT field is
defined in the data set (it isn’t in this case). In Nonmem you have to examine the data file to determine the
type of dose, however in the PoPy syntax above it’s pretty clear it’s an infusion defined by the c[AMT] and
c[RATE] data entries in each dosing data row.

The ordinary differential equation solver parameters for Nonmem are set here:-

$SUBROUTINE ADVAN6 TOL=6

Here ‘ADVAN6’ is the Nonmem ode solver for non-stiff systems. With a relative tolerance of 1e-6. Note this
solver is different from the CPPLSODA method employed by PoPy which is similar to selecting ‘ADVAN13’
in Nonmem. In this case the ordinary differential equation solver method makes little difference, as both PoPy
and Nonmem return similar objective values for this model.

In PoPy the ordinary differential equation solver parameters are defined as follows:-

ODE_SOLVER:
CPPLSODA:

# Absolute tolerance of ode solver.
atol: 1e-12

# Relative tolerance of ode solver.
rtol: 1e-12

# Maximum number of steps allowed in ode solver.
max_nsteps: 10000000

The $ERROR block in the Nonmem script defines a proportional + additional noise model:-

5.7. DDMoRe0238 Conversion Example 149



The PoPy Manual, Release 1.1.2

$ERROR
IPRED = A(1)/V1
Y = IPRED*(1+EPS(1)) + EPS(2)

The PREDICTIONS section in the PoPy script defines the same error model:-

PREDICTIONS: |
p[DV_CENTRAL] = s[CENTRAL]/m[V1]
var = p[DV_CENTRAL]**2 * m[PNOISE_var] + m[ANOISE_var]
c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)

The Nonmem script defines the FOCE fitting method (METHOD=1) here:-

$ESTIMATION METHOD=1 INTER MAXEVAL=0 PRINT=1

The equivalent in the PoPy script is here:-

FIT_METHODS: [ND: {max_n_main_iterations: 0}]

Note both Nonmem and PoPy only optimize the r[X] in the fitting run as the number of main iterations is
set to zero.
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CHAPTER

SIX

POPY REFERENCE GUIDE

6.1 Open a PoPy Command Prompt

To gain access to the Command Line Tools you need to invoke the PoPy command prompt environment.

There are three main ways of starting a PoPy command prompt:-

• Desktop Shortcut Method

• Terminal popy_env Method

• Copy popy_cmd.exe Method

To check that you are currently within a PoPy environment, see Verify PoPy Environment.

6.1.1 Desktop Shortcut Method

Left mouse click on the ‘PoPy Command Prompt’ shortcut on your Desktop or alternatively within the Start
Menu (in the PoPy folder). This will open a PoPy command prompt in the directory where you installed PoPy.

For example, if you click the PoPy shortcut and installed PoPy to the directory:-

c:\PoPy

You should see something like Fig. 6.1:-

Fig. 6.1: PoPy dos prompt

6.1.2 Terminal popy_env Method

Open a command prompt in any folder on your computer. It is highly recommended that you use the traditional
‘cmd’ dos prompt, in preference to the Windows Powershell.

A simple way of opening a command prompt in a specific folder is to:-
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• navigate to the folder in Windows Explorer

• left mouse click on the path dialog box

• type ‘cmd’

• press return

For example if you navigate to the directory:-

c:\Users\david\

Then type ‘cmd’ over the Windows Explorer path, a plain dos command prompt should appear like this Fig. 6.2:-

Fig. 6.2: Plain command prompt

Then type:-

$ popy_env

You should see the text:-

Welcome to PoPy Binary

After running popy_env the terminal should look something like Fig. 6.3:-

Fig. 6.3: PoPy command prompt

Note the colour of the dos prompt text will change from white to pale blue.

6.1.3 Copy popy_cmd.exe Method

An alternative method for starting PoPy in any folder is to simply copy the file ‘popy_cmd.exe’ from your PoPy
install directory to a new location.
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Then simply clicking on ‘popy_cmd.exe’ will start a PoPy environment in the same directory.

For example copy this file:-

c:\PoPy\popy_cmd.exe

to the directory:-

c:\Users\david\my_work\

Click on ‘popy_cmd.exe’ within the ‘my_work’ directory and you should see Fig. 6.4:-

Fig. 6.4: PoPy command prompt in the ‘c:\Users\david\my_work’ folder.

6.1.4 Verify PoPy Environment

The light blue text signifies that you are within a PoPy environment. You can verify this further by running
popy_info:-

$ popy_info

You can also verify that the system path has changed. e.g in a command prompt:-

$ echo %PATH%

The system path should start with:-

c:\PoPy\bin

Or wherever PoPy is installed.

You should be able to run all the Command Line Tools now.

6.2 PoPy Activation

PoPy comes with a 60 day trial period. To continue using PoPy after this period has expired, you will need
a licence to activate the product.

You should have been supplied with a free activation code if you signed up for the PoPy academic version.

To obtain a valid PoPy licence see Licensing.
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6.2.1 Activation Status

To check the current activation status and licencing of your PoPy installation, Open a PoPy Command Prompt
and type:-

popy_info

If you see output like this:-

INFO - product_key=None

Then PoPy is not yet activated. The trial period may or may not be active, which determines if PoPy will run
without a product key. If you see the following:-

INFO - should_run=True

then PoPy is within the trial period.

If you have a product key, but this line is displayed:-

INFO - should_run=False

Then the product key is invalid and you need to obtain a new product key to successfully Activate PoPy.

6.2.2 Activate PoPy

To activate PoPy Open a PoPy Command Prompt and type:-

popy_activate XXXX-XXXX-XXXX-XXXX-XXXX-XXXX-XXXX

Where XXXX etc., is the product key supplied by Wright Dose Ltd. Just cut and paste the product key from
the email.

Verify Activation

Run:-

popy_info

and you should see something like this:-

INFO - In a PoPy Binary environment
INFO - popy_flavour=binary
INFO - popy_python_path=C:\PoPy\
INFO - popy_release=<X.Y.Z>
INFO - popy_version=academic
INFO - python_version=3.8.6
INFO - windows_version=('10', '10.0.17134', 'SP0', 'Multiprocessor Free')
INFO - machine_name=mickey
INFO - product_key=<XXXX-XXXX-XXXX-XXXX-XXXX-XXXX-XXXX>
status=Product key is activated and within licence period
Licence has been running for 3613 days
Licence needs renewing in 1868 days
INFO - name=Phil Tresadern
INFO - email=phil@popypkpd.com
INFO - company=Wright Dose Ltd
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INFO - licence_start_date=2009-02-12 00:00:00
INFO - licence_end_date=2024-02-16 00:00:00
INFO - should_run=True

showing the paths used by PoPy, a few internal variables, and details about the licence (if you have run
popy_activate successfully).

6.2.3 Deactivate PoPy

To remove a PoPy product key from your machine Open a PoPy Command Prompt and type:-

popy_deactivate

Verify Deactivation

Run:-

popy_info

and you should see something like this:-

INFO - product_key=None

6.2.4 Transfer Product Key Between Machines

If you wish to move a PoPy licence from one computer to another. Then you simply need to Deactivate PoPy
on the current machine, noting the current product key. And then Activate PoPy on the new machine, using
the same product key.

Note if you activate the same product key on multiple machines and you exceed the number of activations
associated with the product key, this will invalidate your licence and may cause problems.

6.2.5 Licensing

There are currently two licences for PoPy:-

PoPy Academic Licence A free licence for PoPy distributed to academics, which may not be used for
commercial analyses.

PoPy Commercial Licence A paid licence granting the end user one year of PoPy usage on a single machine.
A commercial license is required to use PoPy in regulator submissions or publications regarding work
that is sponsored or funded by drug companies i.e. research that leads to profit.

Both licences comes with a 60 day trial period, so you can try out PoPy before obtaining a product key.

All versions of PoPy have the same functionality. There are no crippled versions. Any version of PoPy can
be upgraded to the latest version of PoPy at any time. The terms of the licence (i.e. duration etc.) are unaffected
by upgrading PoPy.

Please email the following address for further information:-

info@popypkpd.com

We will endeavour to respond promptly to questions regarding our licencing.
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6.3 Configure PoPy

6.3.1 PoPy Config File

The local settings of your PoPy installation can be altered by editing this file:-

C:\popy\popy_config.pyml

We recommend that you do not alter this file unless you know exactly what you are doing.

6.3.2 Configuration Options

You should probably restrict yourself to editing the following two paths:-

# path to text editor invoked using popy_edit
text_editor_path: "C:/Program Files/Notepad++/notepad++.exe"

# path to Inkscape binary invoked using popy_imconv
inkscape_exe_path: "C:/Program Files/Inkscape/inkscape.exe"

You should change these paths if you have installed Notepad++ or Inkscape to non-standard locations.

6.3.3 Factory Reset Options

If you edit your ‘popy_config.pyml’ and PoPy no longer functions correctly, please restore to the following
default settings:-

# path to favicon
favicon_path: ${POPY_PYTHON_PATH}/conf/4p_white_border.ico

# path to graphviz dot.exe for creating diagrams
graphviz_dot_path: ${POPY_PYTHON_PATH}/thirdparty/graphviz/bin/dot.exe

# path to sphinx confuration options - used when generating html or latex
sphinx_conf_folder: ${POPY_PYTHON_PATH}/conf

# path to memcached executable
memcached_path: ${POPY_PYTHON_PATH}/thirdparty/memcached-amd64/memcached.exe

# path rabbitmq sbin folder
rabbitmq_sbin_folder:
→˓${POPY_PYTHON_PATH}/thirdparty/RabbitMQ Server/rabbitmq_server-3.5.1/sbin

# path to text editor invoked using popy_edit
text_editor_path: "C:/Program Files/Notepad++/notepad++.exe"

# path to Inkscape binary invoked using popy_imconv
inkscape_exe_path: "C:/Program Files/Inkscape/inkscape.exe"

6.3.4 Inkscape

We recommend Inkscape, an open source graphics tool, for converting between image file formats.
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Install Inkscape

Download it from:-

https://inkscape.org/en/release/

If you install the 64bit binary installer the default install directory is:-

C:\Program Files\Inkscape

Configure Inkscape Path

Note that to use Inkscape with popy_imconv you need to make sure PoPy Config File contains this entry:-

inkscape_exe_path: "C:/Program Files/Inkscape/inkscape.exe"

With this path set correctly you can now Open a PoPy Command Prompt and do:-

$ popy_imconv *.svg png

To convert .svg images to .png format. See popy_imconv.

6.3.5 Uninstall PoPy

Note that if you are moving your product key to another machine, it is wise to Deactivate PoPy before uninstalling.
If you are upgrading PoPy then it is best to keep the current product key.

Run the uninstaller

You can click on the shortcut at:-

Start Menu > PoPy > popy_uninstall

Or you could, instead, run the .exe at:-

C:\PoPy\popy_uninstall.exe

The uninstaller will remove the PoPy desktop shortcut and Windows start menu items, but does not change
the Windows Registry.

6.4 PoPy Website

6.4.1 PoPy introductory site

We have an introductory site here:-

https://popypkpd.com/

This website describes the main features of PoPy and why you should use it.
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6.4.2 PoPy demo site

We have a site where you can try Popy out online here:-

https://demo.popypkpd.com/

This site provides an easy-to-use interface to create and run Popy scripts for popular model types.

6.4.3 PoPy product website

The main website to support PoPy is here:-

https://product.popypkpd.com/

This site contains the binary downloads and up-to-date documentation for PoPy.

6.4.4 Obtain a website account

If you want to try out PoPy please contact:-

info@popypkpd.com

Your website account consists of an email address and password, and will permit access to the latest binary
installer and up-to-date PoPy documentation.

6.4.5 Website Structure

Overview

Introduction to PoPy PK/PD system.

News

Recent news about PoPy. E.g. up-coming conferences + new releases/features.

Downloads

Access to all PoPy binaries. Note we will keep all our release binaries online indefinitely to support reproducibility
of your results.

However you are encouraged to update to the latest version to get the most out of PoPy.

Documentation

Documentation for all releases of PoPy. Note the online documentation (for the latest release) will be updated con-
tinuously. So the online documentation will be more up-to-date than the static html supplied with the PoPy binary.

To access the online documentation for your version of PoPy simply type:-

popy_doc -o

Where the “o” stands for online. If you type:-
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popy_doc

You will see the local documentation under:-

c:\PoPy\html

About

Some information about the developers and contact email.

6.5 Validate PoPy

Before using PoPy for an important analysis it is best to run the validation process. This verifies that the outputs
of your PoPy installation agree with the outputs obtained by the developers of PoPy.

6.5.1 Check the PoPy Configuration

To see the current configuration, Open a PoPy Command Prompt and type:-

popy_info

and you should see something like this:-

INFO - In a PoPy Binary environment
INFO - popy_flavour=binary
INFO - popy_python_path=C:\PoPy\
INFO - popy_release=<X.Y.Z>
INFO - popy_version=academic
INFO - python_version=3.8.6
INFO - windows_version=('10', '10.0.17134', 'SP0', 'Multiprocessor Free')
INFO - machine_name=mickey
INFO - product_key=<XXXX-XXXX-XXXX-XXXX-XXXX-XXXX-XXXX>
status=Product key is activated and within licence period
Licence has been running for 3613 days
Licence needs renewing in 1868 days
INFO - name=Phil Tresadern
INFO - email=phil@popypkpd.com
INFO - company=Wright Dose Ltd
INFO - licence_start_date=2009-02-12 00:00:00
INFO - licence_end_date=2024-02-16 00:00:00
INFO - should_run=True

showing the paths used by PoPy, a few internal variables, and details about the licence (if you have run
popy_activate).

6.5.2 Run the Validator

Because computers vary in their architecture, it is possible that running the same code and the same script could
give different results on different installations. We therefore bundle a tool, popy_validate, that runs PoPy on a suite
of examples and compares the results you compute locally to some reference results generated at Wright Dose Ltd.

These Validation Examples are largely drawn from the DDMoRe repository and cover models with different
features, e.g. inter-occasion variability.
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To run this suite of examples Open a PoPy Command Prompt and type:-

$ popy_validate

Some of the examples take a few minutes to run, the full validation takes about 20 minutes, but you should
only need to run the validation once.

If the validation is successful, you should get output on the command line as the validation examples are processed.
The end of the output should look like:-

INFO -
INFO - Validation results: 4 passed; 0 failed.
INFO - Passes:
INFO - ddmore0061
INFO - ddmore0093
INFO - ddmore0215
INFO - ddmore0238
INFO -

VALIDATION RESULT: PASS

INFO -
INFO - time to complete val = 915.338s
INFO - Main script val completed.
INFO - time to complete main + sub scripts = 916.993s
Finished: SUCCESS

which will also be written to the log file ‘validation_script.pyml.run.main.log’ in the ‘validation’ subdirectory
of your PoPy installation, which is normally located here:-

c:\PoPy\validation\validation_script.pyml.run.main.log

This log file can be used as a form of verification for a validation report, if PoPy is to be used in a commercial setting.

6.5.3 Validation Examples

The validation examples are often taken from the publicly available DDMoRe repository. Typically these are
a Nonmem control file and Nonmem data file that together illustrate fitting a PK/PD model.

You can see the validation examples supplied with PoPy here:-

c:\PoPy\validation

Each subdirectory contains a ‘readme.txt’ file that gives a brief overview of the example and how it was created
from the DDMoRe equivalent.

Table 6.1 lists each of the models in this folder:-

Table 6.1: Validation Models
Name Summary Link Citation
ddmore0061 Combined bolus + infusion PK model. DDMoRe: 0061

[Harling2015]
ddmore0093 Circadian function with covariates. DDMoRe: 0093

[Cheung2015]
ddmore0215 Markov and dropout hazard. DDMoRe: 0215

[Girard2012]
ddmore0238 PopPK with infusion dosing + IOV. DDMoRe: 0238

[Ger-
movsek2017]
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6.5.4 Troubleshoot

If the validation fails for any reason, please contact the PoPy developers at info@popypkpd.com.

6.6 Command Line Tools

The PoPy tools and their functions are summarised in Table 6.2:-

Table 6.2: PoPy Command Line Tools
Name Example Function
popy_env popy_env invoke the PoPy environment
popy_run popy_run my_script.pyml run a PoPy script
popy_check popy_check my_script.pyml check a PoPy script
popy_create popy_create fit my_script.pyml create an example PoPy script
popy_format popy_format my_script.pyml update PoPy script format
popy_edit popy_edit my_script.pyml open PoPy script in editor
popy_doc popy_doc open PoPy documentation in browser
popy_view popy_view my_script.pyml.html open PoPy html output in browser
popy_info popy_info display PoPy install details
popy_validate popy_validate run validation
popy_activate popy_activate XXXX Activate PoPy using a product key
popy_deactivate popy_deactivate Deactivate PoPy a product key
popy_imconv popy_imconv *.svg png convert images using Inkscape

6.6.1 popy_env

For all the Command Line Tools to work, we must first update the internal paths on your computer and set some
environment variables. To do this, we provide a popy_env tool that you run from a command prompt (or
Powershell):-

$ popy_env

If the command is successful, the text in the command prompt should change from white to light blue (if in
a dos prompt).

You can achieve the same thing by opening the Open a PoPy Command Prompt from your desktop or the Start
Menu - the shortcut starts a new DOS prompt then automatically calls ‘popy_env’.

The settings initialised by popy_env are summarised by the popy_info tool.

6.6.2 popy_run

The most important command in the suite of Command Line Tools is popy_run. It processes PoPy scripts.

Running a script

To run a PoPy script Open a PoPy Command Prompt and type:-

$ popy_run my_script.pyml
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What happens with the script depends on its type. There are many script formats:-

• fit - Fit a model to data

• gen - Generate data from a model

• sim - Simulate PK/PD curves

• tut - gen data and fit and compare the results

• comp - Compare gen and fit results

• mfit - Fit a model to multiple data sets

• mgen - Generate multiple data from a model

• msim - Simulate multiple PK/PD curves

• mtut - mgen multiple data and mfit and compare

• mcomp - Compare mgen and mfit results

• grph - Plot graphs

• vpc - Plot VPCs

• fitsum - HTML summary of fit results

• gensum - HTML summary of gen results

• tutsum - HTML summary of tut results

• n2pdat - converts Nonmem to PoPy data

• p2ndat - converts PoPy to Nonmem data

See Script File Formats for more information.

Note a common switch to use with popy_run is:-

$ popy_run -o my_script.pyml

Here the ‘-o’ option overwrites previous output automatically. If the script has already been run and you do
not use the ‘-o’ option, you will be asked to confirm you want to overwrite any previous output.

For other command line options see Command line options.

Running multiple scripts

Note you can also run all scripts in a directory using:-

$ popy_run *.pyml

This runs all files with the ‘.pyml’ extension in serial.

Log files created by popy_run

When popy_run processes a script file, it creates a log file:-

my_script.pyml.run.main.log

as a record of the output. If a runtime error occurs during processing, a stack trace is sent to:-
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my_script.pyml.run.error.log

as a record of what went wrong.

Command line options

usage: popy_run [-h] [-a] [-c] [-f] [-i] [-l] [-m] [-o] [-r] [-s] [-t]
[-v {noset,info,debug,warning,error,critical}]
input_file

Runs a PoPy script

positional arguments:
input_file Required path to input configuration file.

optional arguments:
-h, --help show this help message and exit
-a, --all_config Optionally output all possible config file entries in

output script files. If set to false, the default
entries with default values are suppressed for the
sake of brevity.

-c, --comment_scripts
Optionally add explanatory comments to all entries in
output script files.

-f, --format_on_fly Optionally attempt to format the input config file
during run. And switch to the new formatted verison of
the file. Note this re-formatting is only useful if
the input config is a valid version of an older PoPy
format.

-i, --i_am_feeling_lucky
Optionally do NOT run the PoPy script checking i.e
silence the warnings and errors output at the start
this option is not recommended, but you can use if you
do not believe the warnings/errors and want to run
your script regardless.

-l, --line_breaks Optionally enforce line breaks in the config file.
This increases the length of files, but may improve
clarity. If set to False, short dictionary lines are
compacted instead using {} notation.

-m, --manual_mode Optionally do NOT run output scripts automatically,
even if 'output_mode: run' set in config file.
Effectively uses 'output_mode: create' instead. Then
user has to run output scripts manually.

-o, --overwrite Optionally overwrite existing output files without
asking.

-r, --replicate_scripts
Optionally replicate input config files in log files.

-s, --spaces Optionally add more spaces to the output config file
for greater clarity, but longer config files. Off by
default.

-t, --timestamp Optionally included timestamp string in log file name
and output folder name.

-v {noset,info,debug,warning,
→˓error,critical}, --verbosity {noset,info,debug,warning,error,critical}

verbosity of output in log file
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6.6.3 popy_check

When developing a PoPy script file it is sometimes useful to sanity check the input and automatically detect
common errors.

Note this checking process also happens when using popy_run, however the popy_check enables you to
check before you are ready to run a script.

Checking a script

Check a script by opening a Open a PoPy Command Prompt and typing:-

$ popy_check my_script.pyml

Note a common switch to use with popy_check is:-

$ popy_check -o my_script.pyml

Here the ‘-o’ option overwrites previous output automatically. If the script has already been run and you do
not use the ‘-o’ option, you will be asked to confirm you want to overwrite any previous output.

For other command line options see Command line options.

Checking multiple scripts

Note you can also check all scripts in a directory using:-

$ popy_check *.pyml

This checks all files with the ‘.pyml’ extension in serial.

Log files created by popy_check

When popy_check processes a script file, it creates a log file:-

my_script.pyml.check.log

Hopefully the various error and warning messages will enable you to more easily edit and fix a broken script file.

Command line options

usage: popy_check [-h] [-o] input_file

Checks PoPy script for consistency and returns errors + warnings. Can use
optionally prior to running script.

positional arguments:
input_file Required path to input configuration file.

optional arguments:
-h, --help show this help message and exit
-o, --overwrite Optionally overwrite existing output files without asking.
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6.6.4 popy_create

To help you get started with a new script, we provide a tool called popy_create that generates an example
of one of the Script File Formats. You do this by opening a Open a PoPy Command Prompt and typing:-

$ popy_create [script_type] my_script.pyml

where [script_type] is one of the script names (“fit”, “gen”, “tut”, and so on.). See Script File Formats for a
list of all script types.

Typically, the new script can then be edited using popy_edit to suit current requirements or immediately run
using popy_run. See Creating Example Scripts for more information.

Command line options

usage: popy_create [-h] [-a] [-c] [-l] [-o] [-s]
[-v {noset,info,debug,warning,error,critical}]
{fit,fitsum,gen,gensum,grph,

→˓n2pdat,p2ndat,msim,rst,sim,sumdoc,tut,tutsum,val,vpc,mfit,mgen,mtut,mcomp}
output_file

Creates an example PoPy script

positional arguments:
{fit,fitsum,gen,gensum,grph,

→˓n2pdat,p2ndat,msim,rst,sim,sumdoc,tut,tutsum,val,vpc,mfit,mgen,mtut,mcomp}
type of script to create

output_file path to output configuration file

optional arguments:
-h, --help show this help message and exit
-a, --all_config Optionally output all possible config file entries in

output script files. If set to false, the default
entries with default values are suppressed for the
sake of brevity.

-c, --comment_scripts
Optionally add explanatory comments to all entries in
output script files.

-l, --line_breaks Optionally enforce line breaks in the config file.
This increases the length of files, but may improve
clarity. If set to False, short dictionary lines are
compacted instead using {} notation.

-o, --overwrite Optionally overwrite existing output files without
asking.

-s, --spaces Optionally add more spaces to the output config file
for greater clarity, but longer config files. Off by
default.

-v {noset,info,debug,warning,
→˓error,critical}, --verbosity {noset,info,debug,warning,error,critical}

verbosity of output in log file

6.6.5 popy_format

Occasionally, we make changes to the Script File Formats that render old script files defunct. So that you do not
need to rewrite all of your old script files, we provide a tool called popy_format that reads in the old-style
script file and outputs it with the new format.
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Format a script

Do this by opening a Open a PoPy Command Prompt and typing:-

$ popy_format my_script.pyml

which will output a new version of my_script.pyml called:-

my_script.pyml.new

You can also edit the script ‘inplace’ using:-

$ popy_format -i my_script.pyml

This creates a backup file called ‘my_script.pyml.old’ and updates the format of ‘my_script.pyml’ directly. See
Command line options for other options.

The output of popy_format may need to be manually edited to obtain desired results (e.g. to change from
the default value for newly added options).

As usual, a log file will be created to document the formatting process.

Format multiple scripts

Note you can also format all scripts in a directory using:-

$ popy_format *.pyml

This formats all files with the ‘.pyml’ extension in serial.

Command line options

usage: popy_format [-h]
[-f {no_change,fit,fitsum,gen,gensum,grph,

→˓n2pdat,p2ndat,msim,rst,sim,sumdoc,tut,tutsum,val,vpc,mfit,mgen,mtut,mcomp}]
[-i] [-d] [-a] [-c] [-l] [-o] [-s]
[-v {noset,info,debug,warning,error,critical}]
input_file

Tries to reformat an old version of a PoPy script

positional arguments:
input_file Required path to input configuration file.

optional arguments:
-h, --help show this help message and exit
-f {no_change,fit,

→˓fitsum,gen,gensum,grph,n2pdat,p2ndat,msim,rst,sim,sumdoc,tut,tutsum,val,vpc,
→˓mfit,mgen,mtut,mcomp}, --force_type {no_change,fit,fitsum,gen,gensum,grph,
→˓n2pdat,p2ndat,msim,rst,sim,sumdoc,tut,tutsum,val,vpc,mfit,mgen,mtut,mcomp}

Optionally force the input config file to be a certain
type of script, by default no change.

-i, --inplace Optionally overwrite original file, i.e fix in place.
-d, --delete Optionally delete extra files, e.g. log + backup file

etc.
-a, --all_config Optionally output all possible config file entries in

output script files. If set to false, the default
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entries with default values are suppressed for the
sake of brevity.

-c, --comment_scripts
Optionally add explanatory comments to all entries in
output script files.

-l, --line_breaks Optionally enforce line breaks in the config file.
This increases the length of files, but may improve
clarity. If set to False, short dictionary lines are
compacted instead using {} notation.

-o, --overwrite Optionally overwrite existing output files without
asking.

-s, --spaces Optionally add more spaces to the output config file
for greater clarity, but longer config files. Off by
default.

-v {noset,info,debug,warning,
→˓error,critical}, --verbosity {noset,info,debug,warning,error,critical}

verbosity of output in log file

6.6.6 popy_edit

Opens a text file in an editor from the command line.

Edit a script

To edit a script in a text editor, Open a PoPy Command Prompt and call:-

$ popy_edit my_script.pyml

The editor invoked by popy_edit is defined in the PoPy Config File file.

Edit multiple scripts

Note you can also open all scripts in a directory using:-

$ popy_edit *.pyml

This opens all files with the ‘.pyml’ extension in your default editor.

Specify text editor

By default this uses the entry text_editor_path in this file:-

c:\PoPy\popy_config.pyml

If the default editor does not exist then the chosen editor is the first binary found in this list:-

• C:\Program Files\Notepad++\notepad++.exe

• C:\Program Files (x86)\Notepad++\notepad++.exe

• C:\Windows\notepad.exe

Also see Configure Editor.
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Command line options

usage: popy_edit [-h] input_file

Opens a PoPy .pyml script file with an appropriate editor. By default uses
editor specified in $POPY_PYTHON_PATH\popy_config.pyml. Alternatively will
look in the following paths:- C:\Program
Files\Notepad++\notepad++.exe,C:\Program Files
(x86)\Notepad++\notepad++.exe,C:\Windows\notepad.exe

positional arguments:
input_file Required path to input configuration file.

optional arguments:
-h, --help show this help message and exit

6.6.7 popy_doc

For convenient access to PoPy’s documentation, Open a PoPy Command Prompt and type:-

$ popy_doc

This opens the The PoPy Manual HTML documentation page.

Examples

You can access the online documentation as follows (default is locally installed .html files):-

$ popy_doc -o

Alternatively you can open documentation for a specific tool (e.g., popy_run) with the -t or –tool option:-

$ popy_doc --tool run

You can also open documentation for specific Script File Formats (e.g., a Fit Script) with the -s or –script option:-

$ popy_doc --script fit

Command line options

usage: popy_doc [-h] [-o]
[-s {none,fit,fitsum,gen,gensum,grph,

→˓n2pdat,p2ndat,msim,rst,sim,sumdoc,tut,tutsum,val,vpc,mfit,mgen,mtut,mcomp}]

→˓ [-t {none,activate,create,check,deactivate,doc,edit,env,fix,info,run}]

Opens PoPy html documentation in web browser.

optional arguments:
-h, --help show this help message and exit
-o, --online Optionally access online documentation instead of

local.
-s {none,

→˓fit,fitsum,gen,gensum,grph,n2pdat,p2ndat,msim,rst,sim,sumdoc,tut,tutsum,
→˓val,vpc,mfit,mgen,mtut,mcomp}, --script {none,fit,fitsum,gen,gensum,grph,
→˓n2pdat,p2ndat,msim,rst,sim,sumdoc,tut,tutsum,val,vpc,mfit,mgen,mtut,mcomp}
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Optionally open documentation for a specific script
type.

-t {none,activate,create,check,deactivate,doc,edit,env,fix,info,run}
→˓, --tool {none,activate,create,check,deactivate,doc,edit,env,fix,info,run}

Optionally open documentation for a specific PoPy tool

6.6.8 popy_view

Opens a html file in a browser from the command line.

Open a html file

For convenient access to PoPy’s html output, Open a PoPy Command Prompt and type:-

$ popy_view my_tut.pyml.html

This opens a html page in your browser.

It is a fast way of viewing local .html files output by PoPy.

Open multiple html files

Note you can also open all html files in a directory using:-

$ popy_view *.html

This opens all files with the ‘.html’ extension in your default browser.

Command line options

usage: popy_view [-h] url

Opens local PoPy html summary output in web browser.

positional arguments:
url Url path, you can use *.html.

optional arguments:
-h, --help show this help message and exit

6.6.9 popy_info

A handy tool, popy_info, displays information about the installation so that you can check at a glance that
the installation worked.

Open a PoPy Command Prompt and type:-

$ popy_info

and you should see something like this:-
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INFO - In a PoPy Binary environment
INFO - popy_flavour=binary
INFO - popy_python_path=C:\PoPy\
INFO - popy_release=<X.Y.Z>
INFO - popy_version=academic
INFO - python_version=3.8.6
INFO - windows_version=('10', '10.0.17134', 'SP0', 'Multiprocessor Free')
INFO - machine_name=mickey
INFO - product_key=<XXXX-XXXX-XXXX-XXXX-XXXX-XXXX-XXXX>
status=Product key is activated and within licence period
Licence has been running for 3613 days
Licence needs renewing in 1868 days
INFO - name=Phil Tresadern
INFO - email=phil@popypkpd.com
INFO - company=Wright Dose Ltd
INFO - licence_start_date=2009-02-12 00:00:00
INFO - licence_end_date=2024-02-16 00:00:00
INFO - should_run=True

The exact details will depend on where you installed PoPy and the PoPy Activation status of PoPy on your machine.

6.6.10 popy_validate

A tool to Validate PoPy. To run popy_validate, Open a PoPy Command Prompt and type:-

$ popy_validate

See Validate PoPy for more information.

6.6.11 popy_activate

A tool to Activate PoPy. To run popy_activate, Open a PoPy Command Prompt and type:-

$ popy_activate [product key]

where [product key] is the product key supplied by Wright Dose Ltd.

See Activate PoPy for more information.

Command line options

usage: popy_activate [-h] product_key

Activates a PoPy install using a product key.

positional arguments:
product_key A bare product key, cut and paste to the command line.

optional arguments:
-h, --help show this help message and exit

6.6.12 popy_deactivate

A tool to Deactivate PoPy. To run popy_deactivate, Open a PoPy Command Prompt and type:-
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$ popy_deactivate

See Deactivate PoPy for more information.

6.6.13 popy_imconv

A convenient multi-image conversion tool. Open a PoPy Command Prompt and type:-

$ popy_imconv *.svg png

This relies on Inkscape to convert all images on disk matching the pattern *.svg to .png format.

A .png file is created for each .svg file in the folder.

Note to get this working correctly you need Inkscape installed and configured on your machine.

Examples

You can convert to many output formats using Inkscape:-

$ popy_imconv *.svg jpg

You can also just convert a single image:-

$ popy_imconv graph.svg tiff

Command line options

usage: popy_imconv [-h] input_images {png,jpg,emf,svg,pdf,wmf,tiff}

Converts images using inkscape.

positional arguments:
input_images input images path, you can use *.svg.
{png,jpg,emf,svg,pdf,wmf,tiff}

image output format

optional arguments:
-h, --help show this help message and exit

6.7 Script File Formats

The PoPy script formats are shown in Table 6.3:-
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Table 6.3: Script Format
Name Purpose Child Scripts
fit Fit a model to data grph/sim/msim/fitsum
gen Generate data from a model grph/sim/gensum
sim Simulate PK/PD curves grph
tut Gen data and fit + compare grph/fit/comp/tutsum
comp Compare gen and fit results none
mfit Fit a model to multiple data sets none
mgen Generate multiple data from a model none
msim Simulate multiple PK/PD curves vpc
mtut Gen multiple data and fit + compare mgen/mfit/mcomp
mcomp Compare mgen and mfit results none
grph Plot graphs none
vpc Plot VPCs none
fitsum HTML summary of fit results none
gensum HTML summary of gen results none
tutsum HTML summary of tut results none
n2pdat converts Nonmem to PoPy data none
p2ndat converts PoPy to Nonmem data none

A PoPy script file is a text file that defines how PoPy works with a PK/PD model. Each configuration file typically
has a ‘.pyml’ file extension. The file suffix .pyml stands for PoPy YAML format.

To run a PoPy command on a particular script, Open a PoPy Command Prompt in the directory containing the
script file and type:-

$ popy_XXXX YYYY.pyml

Where XXXX is one of the Command Line Tools, such as ‘run’, ‘create’, ‘check’ or ‘format’. And YYYY.pyml
is the file name of the script itself. For example:-

$ popy_run my_fit_file.pyml

for running a script to fit PK/PD parameters to a pre-existing data set, or:-

$ popy_create gen my_gen_file.pyml

for creating a new script file that will generate synthetic PK/PD data.

PoPy will first parse the script to check it is in the correct format. If so, PoPy will then process the script.

A PoPy script file can be one of multiple formats, as specified at the start of each script, in METHOD_OPTIONS.
For example a Fit Script starts with:-

METHOD_OPTIONS: {py_module: fit}

And a Gen Script starts with:-

METHOD_OPTIONS: {py_module: gen}

6.7.1 Fit Script

The fit script is probably the script you will use most often, as it performs the most common form of PK/PD
analysis - finding parameter estimates for a PK/PD model given a set of observations.
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See Fitting a Simple PopPK Model using PoPy or Fitting a Two Compartment PopPK Model for walk through
examples.

Main Sections of a Fit Script

• METHOD_OPTIONS

• PARALLEL

• DESCRIPTION

• FILE_PATHS

• DATA_FIELDS

• PREPROCESS

• EFFECTS

• MODEL_PARAMS

• STATES

• DERIVATIVES

• PREDICTIONS

• ODE_SOLVER

• FIT_METHODS

• COVARIANCE

• OUTPUT_SCRIPTS

6.7.2 Gen Script

Generates example synthetic observations from a PopPK/PD model.

Note that running PoPy on a Gen Script creates similar outputs to running it on a Sim Script. However, a Gen
Script also generates the time point and dose data to simulate the entire data file not just the observations.

Main Sections of a Gen Script

• METHOD_OPTIONS

• PARALLEL

• DESCRIPTION

• FILE_PATHS

• DATA_FIELDS

• EFFECTS

• PREPROCESS

• MODEL_PARAMS

• STATES

• DERIVATIVES
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• PREDICTIONS

• POSTPROCESS

• ODE_SOLVER

• OUTPUT_SCRIPTS

6.7.3 Sim Script

Running PoPy on a Sim Script generates dense time point simulations of PK/PD curves given a PopPK/PD
model and an input data set.

Main Sections of a Sim Script

• METHOD_OPTIONS

• PARALLEL

• DESCRIPTION

• FILE_PATHS

• DATA_FIELDS

• PREPROCESS

• STATES

• DERIVATIVES

• PREDICTIONS

• POSTPROCESS

• ODE_SOLVER

• OUTPUT_OPTIONS

• OUTPUT_SCRIPTS

6.7.4 Tut Script

This script performs data generation using a Gen Script, then fits the model using a Fit Script and compares
the fitting parameters to the true parameters using a Comp Script.

See Generate data and Fit using Simple PopPK Model and Generate data and Fit using a Two Compartment
Model for walk through examples.

Main Sections of a Tut Script

• METHOD_OPTIONS

• PARALLEL

• DESCRIPTION

• FILE_PATHS

• DATA_FIELDS
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• GEN_EFFECTS

• FIT_EFFECTS

• PREPROCESS

• MODEL_PARAMS

• STATES

• DERIVATIVES

• PREDICTIONS

• POSTPROCESS

• ODE_SOLVER

• FIT_METHODS

• COVARIANCE

• OUTPUT_SCRIPTS

6.7.5 Comp Script

A comp script compares the outputs of a Gen Script and a Fit Script. Usually a Comp Script is created
automatically using a Tut Script.

6.7.6 MFit Script

Fits a PK/PD model to multiple data sets. A multi population version of Fit Script.

A MFit Script can be created by a MTut Script in a similar fashion to how a Fit Script can be created by a Tut Script.

Main Sections of a MFit Script

• METHOD_OPTIONS

• PARALLEL

• DESCRIPTION

• FILE_PATHS

• DATA_FIELDS

• PREPROCESS

• EFFECTS

• MODEL_PARAMS

• STATES

• DERIVATIVES

• PREDICTIONS

• ODE_SOLVER

• FIT_METHODS

• COVARIANCE
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6.7.7 MGen Script

Simulates multiple datasets from a PopPK/PD model. A multi population version of Gen Script.

Note that running PoPy on a MGen Script creates similar outputs to running it on a MSim Script. However,
a MGen Script also generates new time points and dose data for each data set.

A MGen Script can be created by a MTut Script in a similar fashion to how a Gen Script can be created by a
Tut Script.

Main Sections of a MGen Script

• METHOD_OPTIONS

• PARALLEL

• DESCRIPTION

• FILE_PATHS

• DATA_FIELDS

• EFFECTS

• PREPROCESS

• MODEL_PARAMS

• STATES

• DERIVATIVES

• PREDICTIONS

• POSTPROCESS

• ODE_SOLVER

• OUTPUT_OPTIONS

6.7.8 MSim Script

Generates multiple simulations of PK/PD curves from given a PopPK/PD model and an input data set.

An MSim Script often outputs a Vpc Script, which generates a VPC plot from the multiple population simulations.

See Visual Predictive Check for Two Compartment PopPK Model for a working example.

Main Sections of a MSim Script

• METHOD_OPTIONS

• PARALLEL

• DESCRIPTION

• FILE_PATHS

• DATA_FIELDS

• PREPROCESS
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• EFFECTS

• MODEL_PARAMS

• STATES

• DERIVATIVES

• PREDICTIONS

• ODE_SOLVER

• OUTPUT_OPTIONS

• OUTPUT_SCRIPTS

6.7.9 MTut Script

Generates multiple synthetic populations sets from a PK/PD model, then fits the same model to each population.
A multi population version of Tut Script.

Generates a MGen Script and a MFit Script. Also creates a MComp Script to compare the true parameters from
the synthetic populations with the fitted parameters.

See Generate multiple data sets and Fit using Simple PopPK Model and Generate multiple data sets and Fit
using a Two Compartment Model for walk through examples.

Main Sections of a MTut Script

• METHOD_OPTIONS

• PARALLEL

• DESCRIPTION

• FILE_PATHS

• DATA_FIELDS

• GEN_EFFECTS

• FIT_EFFECTS

• PREPROCESS

• MODEL_PARAMS

• STATES

• DERIVATIVES

• PREDICTIONS

• ODE_SOLVER

• FIT_METHODS

• COVARIANCE

• OUTPUT_OPTIONS

• OUTPUT_SCRIPTS
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6.7.10 MComp Script

A MComp Script compares the outputs of a MGen Script with a MFit Script. Usually a MComp Script is created
automatically using a MTut Script.

A MComp Script is a multiple population version of a Comp Script.

6.7.11 Grph Script

Outputs basic plots given input data sets and fitting results.

6.7.12 Vpc Script

Creates VPC plots. The visual predictive check is designed to plot a population of PK/PD curves on one graph.

A Vpc Script is usually created as a child script of a MSim Script.

See Visual Predictive Check for Simple PopPK Model and Visual Predictive Check for Two Compartment PopPK
Model for working examples.

6.7.13 FitSum Script

A FitSum Script generates a HTML report on the results of a Fit Script.

6.7.14 GenSum Script

A GenSum Script generates a HTML report on the results of a Gen Script.

6.7.15 TutSum Script

A TutSum Script generates a HTML report on the results of a Tut Script.

6.7.16 N2PDat Script

Converts a data set in Nonmem format to PoPy format. See Nonmem to PoPy Data conversions using P2NDAT
and N2PDAT Scripts for a walk through example.

6.7.17 P2NDat Script

Converts a data set in PoPy format to Nonmem format. See Nonmem to PoPy Data conversions using P2NDAT
and N2PDAT Scripts for a walk through example.

6.8 Script File Sections

A PoPy script file is hierarchical and based on YAML.

The file is indented with the main sections defined at the start of a line. Subsections are indented within the
main sections.
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In Table 6.4 we list the main sections that are common to many Script File Formats.

Table 6.4: Common Script Sections
Section Purpose
METHOD_OPTIONS Script type and run options
PARALLEL Speed up processing by running in parallel
DESCRIPTION Title and summary of model
FILE_PATHS Paths to load and output data
DATA_FIELDS Define type/id/time fields for data
PREPROCESS Filter or expand the input data
EFFECTS Define population f[X] and r[X] variable structure
MODEL_PARAMS Define m[X] for each data row, given f[X], r[X] and c[X]
STATES Define initial value s[X], given m[X] and c[X]
DERIVATIVES Define d[X] wrt time, given m[X], c[X] and s[X]
PREDICTIONS Define p[X] for each data row, given m[X], c[X] and s[X]
POSTPROCESS Filter or expand the generated data
ODE_SOLVER Define ordinary differential equation method and parameters
FIT_METHODS Define fit methods and parameters
COVARIANCE Define a method for computing standard errors
OUTPUT_SCRIPTS Declare child scripts for post processing
OUTPUT_OPTIONS Miscellaneous output parameters

6.8.1 METHOD_OPTIONS

This details the methods to be used in the script and is a required section.

Example METHOD_OPTIONS from a Fit Script

METHOD_OPTIONS:
# Python module required to process this script file
py_module: fit

# Option to set seed to make run result
# reproducible -e.g. when debugging.
# rand_seed: 12345
rand_seed: auto

# Format string for numerical output
float_format: default

Main METHOD_OPTIONS Fields

py_module

When calling this script using popy_run, PoPy needs to know which type of script is being called. This is
determined by the ‘py_module’ field.

In the example above a ‘fit’ script is specified. Other possible entries are ‘fit’, ‘tut’, ‘gen’, ‘mtut’ etc. See Script
File Formats for more information.
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rand_seed

There are two types of scripts run by PoPy:-

• Deterministic - given the same inputs the same outputs are always returned

• Stochastic - given the same inputs the result are dependent on a random number generator

For example a Gen Script is inherently stochastic. Whereas a Fit Script using the JOE, FOCE or ND fitting
method is inherently deterministic.

When running a stochastic method you have two options, this setting:-

rand_seed: auto

Will ensure that the random number generator is seeded with a different random number, every time the script
is run. This will generate different output each time. Alternatively you set the seed explicitly:-

rand_seed: 314159

This will initialise the pseudorandom number generator with the value ‘314159’, which will then generate the
same output every time, given the same inputs. For more information on seeding and pseudorandom number
generators, see Wikipedia page:-

http://en.wikipedia.org/wiki/Random_seed

Note: if your script is deterministic then the ‘rand_seed’ setting will have no effect.

float_format

This field allows you to control how numbers output by PoPy are rendered as strings. If you leave this field
out it defaults to:-

float_format: default

This has the effect of outputting float values to 4 decimal places. Table 6.5 shows both named float formats.

Table 6.5: float format options
Entry Format String Example Input Example Output
default .4F 1.0123456 ‘1.0123’
2 decimal places in exponent format .2E 1.0123456 ‘1.01E+00’

You can also specify your own custom format, e.g. ‘.3G’ for 3 significant figures in general format or ‘.6F’ for
6 decimal places in float point format or ‘.4E’ for 4 decimal places in exponent format. Examples of different
format strings on the Python command prompt are:-

>>> '{:.4E}'.format(1.0123456)
'1.0123E+00'
>>> '{:.6F}'.format(1.0123456)
'1.012346'
>>> '{:.3G}'.format(1.0123456)
'1.01'

You can experiment with your own formatting. See the rather esoteric instructions here:-

https://docs.python.org/3.4/library/string.html#format-specification-mini-language
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Setting the output to six decimal places in PoPy could be achieved by:-

float_format: .6F

Note that PoPy adds the prefix ‘{:’ and the suffix ‘}’ to your ‘float_format’ config file entry.

6.8.2 PARALLEL

An optionally section to run PoPy in parallel to increase the speed of the program by separating tasks amongst
the different nodes of a computer.

You can add the PARALLEL section to the following scripts:-

• Tut Script

• Gen Script

• Fit Script

• Sim Script

• Comp Script

• MTut Script

• MGen Script

• MFit Script

• MSim Script

• MComp Script

• Grph Script

• Vpc Script

i.e. Any script that does a significant amount of processing over all individuals in the population.

If you leave out the parallel section then the script will be executed in serial, i.e. using one processor.

Example PARALLEL section

You can make your PoPy script use parallel processing by adding the following:-

PARALLEL:
MPI_WORKERS:

n_workers: 4

This section invokes the ‘MPI_WORKERS’ parallel method, that uses mpi to process individuals in parallel
where possible.

The ‘n_workers’ parameter requests 4 separate processors. You can also use:-

PARALLEL:
MPI_WORKERS:

n_workers: auto

To utilise all processors on a given machine.

Note if you leave out the the ‘PARALLEL’ section from your script, this is equivalent to using the following:-
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PARALLEL: {SINGLE: {}}

That requests using a single processor.

6.8.3 DESCRIPTION

This optional section is an opportunity to provide notes about the model. The script is given a (short) name
and a (longer) title. The author of the model can be named and the abstract is used to describe the model.
You can define keywords to aid future searches.

Example DESCRIPTION

DESCRIPTION:
# Unique name used to distinguish script
name: builtin_fit_example

# A longer text string that could serve as a title
title: First order absorption model with peripheral compartment

# Author of the model
author: J.R. Hartley

# Abstract paragraph describing model
abstract: |

A two compartment PK model with bolus dose and
first order absorption.

# Keywords list used to categorise models.
keywords: ['fitting', 'pk', 'advan4', 'dep_two_cmp', 'first order']

Main DESCRIPTION Fields

name

The optional name entry is used as an identifier for the script. It is also used to form the name of child scripts.
For example when specifying the name:-

If you do not specify a name the field defaults to:-

name: none

the child Sim Script will be named ‘none_sim.pyml’ and the child FitSum Script will be named ‘none_fitsum.pyml’
etc.. For this reason it’s a good idea to keep the name short and only use alpha numeric characters and underscores.

For more info see Files Generated by Fit Script.

title

The title field is optional, but otherwise appears in the summary output and on graphical plots.
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author

The author field is optional but allows you to store the name of the person who created the script.

abstract

The abstract field is optional, but allows a longer description of the purpose of the script.

This field is verbatim, so it is suffixed with a ‘|’ symbol. See:-

abstract: |
A two compartment PK model with bolus dose and
first order absorption.

The abstract is included in the summary output. It can contain any text you like. Note it is indented relative
to the ‘abstract’ field name, like all verbatim sections.

keywords

The keywords field is optional and contains a list of strings, for example:-

keywords: ['fitting', 'pk', 'dep_two_cmp', 'first order','advan4']

Here the Python notation for a list is used, i.e. an opening square bracket ‘[‘ followed by comma separated strings
and a closing square bracket ‘]’.

Note: it is intended that the keywords will eventually form part of a publicly available index of PoPy script files.

6.8.4 FILE_PATHS

This required field, defines where any input files can be found and where the results of the computation are
to be stored.

Example from FILE_PATHS from a Fit Script

FILE_PATHS:
# path to input comma separated value file in popy data format
input_data_file: builtin_fit_example_data.csv

# Output folder - results of computation stored here
output_folder: auto

# Temp folder - temporary files stored here
temp_folder: auto

# Output file extension - determines graphical output file format.
output_file_ext: ['svg', 'pdf']

# Solution containing f[X] values from a previous run.
input_solution_file: none

6.8. Script File Sections 183



The PoPy Manual, Release 1.1.2

Main FILE_PATH Fields

input_file

Required path to input a .csv file in popy data format:-

input_data_file: builtin_fit_example_data.csv

Note that this field is required and the .csv file must exist else PoPy will throw an error message.

output_folder

Optional field that specifies the output folder, where the results of computation are stored.

The default is:-

output_folder: auto

Using auto will specify an output folder based on the script name. E.g if your script is called ‘my_fit_script.pyml’,
the output folder will be:-

my_fit_script.pyml.output

Using auto is safest, as then it is impossible to over-write the output from other scripts.

temp_folder

Optional field that specifies the temp folder, where temporary functions generated by PoPy are stored.

The default is:-

temp_folder: auto

The default folder name is ‘_temp’ within the output_folder. If you have a script named ‘my_fit_script.pyml’
and miss out the ‘output_folder’ and ‘temp_folder’ you will end up with temporary functions in this folder:-

my_fit_script.pyml.output
/fit

/_temp

Note the subfolders within ‘_temp’ have random names, this is to avoid re-using old temporary functions if
the same script is run twice (and altered slightly).

output_file_ext

This is an optional list of file types to output when plotting. The default is:-

output_file_ext: ['svg']

This outputs plots in .svg format, which stands for scalable vector graphics, see:-

https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
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.svg is a good format because it can be displayed at any resolution without being pixelated. For example if you
used .png or any other raster format.

The input is a Python list. This is to enable you to output plots in multiple formats. For example many of the
documentation examples use the following:-

output_file_ext: ['svg', 'pdf']

To generate plots in .svg and also .pdf format. We do this with the documentation so that the HTML documentation
can display .svg and the pdf version can use .pdf plots.

input_solution_file

This field is only available in the Fit Script. It is an optional link to a ‘solution.pyml’ file to initialise the f[X]
starting values during a fit. The default is:-

input_solution_file: none

This does nothing and uses the f[X] starting values specified in the EFFECTS section of the script.

If a solution file is specified, e.g.:-

input_solution_file: ./previous_fit_script.pyml_output/fit/solN/solution.pyml

Then the ‘solution.pyml’ file will be loaded, specifically the ‘fx_params.csv’ part of the solution.

FILE_PATHS:
fx_params_path: fx_params.csv

The f[X] params are used as new starting values.

You can use the ‘input_solution_file’ to restart a Fit Script from a previous fitting script. This is useful if the
previous script fails, for example if the machine is accidentally switched off or some other system failure.

6.8.5 DATA_FIELDS

An optional section where the names of the type_field, id_field and time_field can be redefined.

Example Data Fields

DATA_FIELDS:
# Field name in data file that contains row type info, e.g. obs/dose etc
type_field: TYPE

# Field name in
→˓data file that contains identity string for each data row e.g. obs/dose etc

id_field: ID

# Field name in data file that contains time or event for each data row
time_field: TIME
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Main Fields

type_field

By default this field is:-

type_field: TYPE

This means the ‘TYPE’ field in data file specifies the type of row e.g. ‘dose’, ‘obs’, ‘reset’ etc.

id_field

By default this field is:-

id_field: ID

This means the ‘ID’ field in the data file specifies the identity of each subject in the population.

time_field

By default this field is:-

time_field: TIME

This means the ‘TIME’ field in data file specifies the time stamp of each observation, dose etc.

6.8.6 PREPROCESS

An optional verbatim section that creates extra c[X] variables after loading in a input data file and can also
remove some rows from the data. A kind of flexible filter implemented in Python.

The PREPROCESS is available in the following scripts:-

• Fit Script

• Sim Script

• MFit Script

• MSim Script

i.e. where there is a data file loaded by the script.

Example PREPROCESS section

PREPROCESS: |
# exclude negative concentrations
if c[CONC] < 0.0: return
# create new OCCASION variable
if c[DAY] <= 3:

c[OCCASION] = 1
elif 3 < c[DAY] <= 6:

c[OCCASION] = 2
elif 6 < c[DAY] <= 8:
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c[OCCASION] = 3
else:

c[OCCASION] = 4

The example above shows the two operations a PREPROCESS section can perform, namely:-

• Exclude data rows

• Create extra c[X] data columns

The line:-

if c[CONC] < 0.0: return

Removes all rows from the data set with CONC less than zero. The null return is a PoPy convention for ignoring
a particular row.

The other rows create a new c[OCCASION] variable, as follows:-

if c[DAY] <= 3:
c[OCCASION] = 1

elif 3 < c[DAY] <= 6:
c[OCCASION] = 2

elif 6 < c[DAY] <= 8:
c[OCCASION] = 3

else:
c[OCCASION] = 4

The simple Python assignment to c[OCCASION] creates the ‘OCCASION’ field. The if/elif/else
statements are standard Python syntax and partition the data rows into occasions according to the existing
c[DAY] data field.

Note that the remaining sections of the script file, e.g. EFFECTS, DERIVATIVES etc are able to use the new
c[OCCASION] variable as though it already existed in the data file.

The use of Python syntax here means the above can be expanded in arbitrary complex ways to add more c[X]
variables or exclude other rows from the data set.

Note a common usage of the PREPROCESS section is to remove an individual from the analysis as follows:-

PREPROCESS: |
# exclude an individual
if c[ID] == '7': return

Or alternatively keep just one individual:-

PREPROCESS: |
# exclude all individuals apart from 7
if c[ID] != '7': return

Or potentially exclude multiple individuals:-

PREPROCESS: |
# exclude multiple individuals
if c[ID] in ['7','9','41']: return

Or retain only a few individuals:-

PREPROCESS: |
# exlude all individuals apart from 1-3
if c[ID] not in ['1','2','3']: return
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Note here the ‘ID’ field is a Python string not a float or integer.

If you want to exclude individuals based on a numerical calculation, you can do this:-

PREPROCESS: |
# exlude all individuals apart from 1-3
if int(c[ID]) > 3: return

The code above assumes that all c[ID] values can be converted to an integer. This will not be the case if
one of your individuals has the identifier ‘3A’ for example.

Rules for PREPROCESS section

Like all verbatim sections the PREPROCESS section of the config file accepts free form pseudo Python code,
but there are some rules regarding which variables are allowed in a PREPROCESS section as follows:-

• Only c[X] variables and local Python variables are allowed

• c[X] on the right hand side and within if statements must be previously defined on the left hand
side or in the data file

• c[X] declared on the left hand side must not already exist in the data file

• return must always be null

So you can not use m[X], f[X], r[X], d[X] etc variables in this section.

The PREPROCESS function is run once, shortly after loading in the data file, so it is efficient to create required
c[X] variables in this section, as opposed to creating temporary variables in the MODEL_PARAMS or
DERIVATIVES sections.

Like all verbatim sections it is possible to introduce syntax errors by writing malformed Python. This will
hopefully be picked up when PoPy attempts to compile or run the PREPROCESS function as a temporary .py file.

6.8.7 EFFECTS

A required verbatim section that defines fixed effects and random effects for use in mixed effects models. The
EFFECTS section defines a level structure, which dictates the number of instances of the f[X] and r[X]
effect variables.

For example, f[X] variables representing fixed effects are usually declared at the POP level, so there is only
one value of each f[X]. Whereas r[X] variables representing random effects are usually declared at the
ID level, so each individual has a sample from each random effect. It is also possible to define further sub
levels below the ID level, for example within individual occasions which have there own r[X] variables, see
Inter-Occasion Variation (IOV).

The EFFECTS section is required by the following scripts:-

• Tut Script

• Gen Script

• Fit Script

• MTut Script

• MGen Script

• MFit Script
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• MSim Script

i.e. Any script that defines a mixed effect model. Note that a Tut Script or MTut Script has two separate EFFECTS
sections named GEN_EFFECTS and FIT_EFFECTS.

EFFECTS with two levels from a fit_script

The example below is used in Fitting a Two Compartment PopPK Model.

EFFECTS:
POP: |

f[KA] ~ P1.0
f[CL] ~ P1.0
f[V1] ~ P20
f[Q] ~ P0.5
f[V2] ~ P100
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] ~ spd_matrix() [

[0.05],
[0.01, 0.05],
[0.01, 0.01, 0.05],
[0.01, 0.01, 0.01, 0.05],
[0.01, 0.01, 0.01, 0.01, 0.05],

]
f[PNOISE] ~ P0.1

ID: |
r[KA,

→˓ CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])

The example above defines two levels:-

• POP - single value of each f[X] variable over whole population

• ID - one value per individual for each r[X] variable

This example defines 5 mean fixed effect parameters i.e. f[KA], f[CL], f[V1], f[Q], f[V2],
a 5x5 covariance matrix f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv], a proportional noise
variable f[PNOISE] and a 5 element vector r[KA, CL, V1, Q, V2] of random effects defined for
each individual.

Every variable declared at the POP level has one shared value over the whole population. The ID level creates
a single instance of each r[X] distribution for each ‘ID’ field present in the data file. This is similar to the
factor concept in R. The structure of the mixed effects is a tree, see Fig. 6.5.

global

id1 id2 id3 id4 idN

Fig. 6.5: EFFECTS structure with two levels
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Here the number of r[X] values is dependent on the number of individuals in the data file.

EFFECTS with three levels from a fit_script

It is possible to add a further level as follows:-

EFFECTS:
POP: |

f[KA] ~ P1.0
f[CL] ~ P1.0
f[V1] ~ P20
f[Q] ~ P0.5
f[V2] ~ P100
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] ~ spd_matrix() [

[0.05],
[0.01, 0.05],
[0.01, 0.01, 0.05],
[0.01, 0.01, 0.01, 0.05],
[0.01, 0.01, 0.01, 0.01, 0.05],

]
f[KA_iov,CL_iov,V1_iov,Q_iov,V2_iov] ~ spd_matrix() [

[0.05],
[0.01, 0.05],
[0.01, 0.01, 0.05],
[0.01, 0.01, 0.01, 0.05],
[0.01, 0.01, 0.01, 0.01, 0.05],

]
f[PNOISE] ~ P0.1

ID: |
r[KA, CL, V1, Q, V2] ~ mnorm(

[0,0,0,0,0],
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv]

)
IOV: |

r[KA_iov, CL_iov, V1_iov, Q_iov, V2_iov] ~ mnorm(
[0,0,0,0,0],
f[KA_iov, CL_iov, V2_iov, Q_iov, V3_iov]

)

The example above defines three levels:-

• POP - single value of each f[X] variable

• ID - one value per individual for each r[X] variable

• IOV - one value per iov per individual for each r[X] variable

The IOV level creates an extra level of r[KA_iov, CL_iov, V1_iov, Q_iov, V2_iov] variables.
If there are say 2 different values of c[IOV] in the data file (i.e. two occasions) then each individual has
a 5 element vector r[KA, CL, V1, Q, V2] at the ID level and additionally two 5 element vectors
r[KA_iov, CL_iov, V1_iov, Q_iov, V2_iov] (one for each occasion) at the IOV level.

The structure of the mixed effects is now as show in Fig. 6.6.

For more information on this topic see Inter-Occasion Variation (IOV).
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global

id1 id2 id3 id4 idN

oc1 oc2 oc1 oc2 oc1 oc2 oc1 oc2 oc1 oc2

Fig. 6.6: EFFECTS structure with three levels

EFFECTS with two levels from a gen_script

The example below is used in Generate a Two Compartment PopPK Data Set.

EFFECTS:
POP: |

c[AMT] = 100.0
f[KA] = 0.2
f[CL] = 2.0
f[V1] = 50
f[Q] = 1.0
f[V2] = 80
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [

[0.1],
[0.01, 0.03],
[0.01, -0.01, 0.09],
[0.01, 0.02, 0.01, 0.07],
[0.01, 0.02, 0.01, 0.01, 0.05],

]
f[PNOISE] = 0.15

ID: |
c[ID] = sequential(50)
t[DOSE] = 2.0
t[OBS] ~ unif(1.0, 50.0; 5)
# t[OBS] = range(1.0, 50.0; 5)
r[KA,

→˓ CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])

The example above defines two levels and is similar to the EFFECTS with two levels from a fit_script section.
The Fit Script defines f[X] and r[X] variables. Additionally this Gen Script version defines c[X]
variables and additionally t[DOSE] and t[OBS] variables that define the dosing and observation rows
of the generated data file.

In the POP section:-

POP: |
c[AMT] = 100.0

This syntax creates a c[AMT] field in the data file which is constant over all rows. In the ID section:-

ID: |
c[ID] = sequential(50)

This syntax creates a c[ID] field in the data file which has values of [1,50]. i.e. 50 individuals. Also in the
ID sections these t[X] variables are declared:-
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ID: |
t[DOSE] = 2.0
t[OBS] ~ unif(1.0, 50.0; 5)

The t[DOSE] creates a dose row at time 2.0 for all individuals. The t[OBS] line creates 5 observation
rows at random time points in the range [1,50.0].

EFFECTS with three levels from a gen_script

It is possible to add a further level to the Gen Script EFFECTS as follows:-

EFFECTS:
POP: |

c[AMT] = 100.0
f[KA] = 0.2
f[CL] = 2.0
f[V1] = 50
f[Q] = 1.0
f[V2] = 80
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [

[0.1],
[0.01, 0.03],
[0.01, -0.01, 0.09],
[0.01, 0.02, 0.01, 0.07],
[0.01, 0.02, 0.01, 0.01, 0.05],

]
f[KA_iov,CL_iov,V1_iov,Q_iov,V2_iov] = [

[0.1],
[0.01, 0.03],
[0.01, -0.01, 0.09],
[0.01, 0.02, 0.01, 0.07],
[0.01, 0.02, 0.01, 0.01, 0.05],

]
f[PNOISE] = 0.15

ID: |
c[ID] = sequential(50)
r[KA,

→˓ CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])

IOV: |
c[IOV] = sequential(2)
t[DOSE] = 2.0
t[OBS] ~ unif(1.0, 50.0; 5)
# t[OBS] = range(1.0, 50.0; 5)
r[KA_iov, CL_iov, V1_iov, Q_iov, V2_iov] ~ mnorm(

[0,0,0,0,0],
f[KA_iov, CL_iov, V2_iov, Q_iov, V3_iov]

)

The obvious difference between EFFECTS with two levels from a gen_script and the three level version above
is the addition of the third section:-

IOV: |
c[IOV] = sequential(2)
t[DOSE] = 2.0
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t[OBS] ~ unif(1.0, 50.0; 5)
# t[OBS] = range(1.0, 50.0; 5)
r[KA_iov, CL_iov, V1_iov, Q_iov, V2_iov] ~ mnorm(

[0,0,0,0,0],
f[KA_iov, CL_iov, V2_iov, Q_iov, V3_iov]

)

This denotes an IOV level with two occasions for each individual. Note that this line creates two occasions:-

IOV: |
c[IOV] = sequential(2)

i.e. rows with c[IOV] taking the values [1,2] are created. Within each occasion the t[DOSE] and
t[OBS] create a dosing row and 5 observation rows. Note it is necessary to move the t[X] variables from the
ID level to the IOV level. In a Gen Script it usually makes sense to place the t[X] variables at the lowest level.

Combining EFFECTS in a tut_script

A Tut Script combines a Gen Script and a Fit Script, so has to encode both a generating EFFECTS section and
a fitting EFFECTS section.

GEN_EFFECTS

The generating EFFECTS section in a Tut Script is called GEN_EFFECTS. This section is transcribed into the
EFFECTS section in the child Gen Script.

The GEN_EFFECTS can contain f[X], r[X], t[X] and c[X] variable definitions in each level.

FIT_EFFECTS

The fitting EFFECTS section in a Tut Script is called FIT_EFFECTS. This section is transcribed into the
EFFECTS section in the child Fit Script.

The FIT_EFFECTS section can contain f[X] and r[X] variable definitions in each level.

EFFECTS with two levels from a tut_script

The examples below are used in Generate data and Fit using a Two Compartment Model.

GEN_EFFECTS:
POP: |

c[AMT] = 100.0
f[KA] = 0.2
f[CL] = 2.0
f[V1] = 50
f[Q] = 1.0
f[V2] = 80
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [

[0.1],
[0.01, 0.03],
[0.01, -0.01, 0.09],
[0.01, 0.02, 0.01, 0.07],
[0.01, 0.02, 0.01, 0.01, 0.05],
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]
f[PNOISE] = 0.15

ID: |
c[ID] = sequential(50)
t[DOSE] = 2.0
t[OBS] ~ unif(1.0, 50.0; 5)
# t[OBS] = range(1.0, 50.0; 5)
r[KA,

→˓ CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])

FIT_EFFECTS:
POP: |

f[KA] ~ P1.0
f[CL] ~ P1.0
f[V1] ~ P20
f[Q] ~ P0.5
f[V2] ~ P100
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] ~ spd_matrix() [

[0.05],
[0.01, 0.05],
[0.01, 0.01, 0.05],
[0.01, 0.01, 0.01, 0.05],
[0.01, 0.01, 0.01, 0.01, 0.05],

]
f[PNOISE] ~ P0.1

ID: |
r[KA,

→˓ CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])

The Tut Script combines the Gen Script and Fit Script levels.

EFFECTS with three levels from a tut_script

It is possible to add the third level to a Tut Script as follows:-

GEN_EFFECTS:
POP: |

c[AMT] = 100.0
f[KA] = 0.2
f[CL] = 2.0
f[V1] = 50
f[Q] = 1.0
f[V2] = 80
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [

[0.1],
[0.01, 0.03],
[0.01, -0.01, 0.09],
[0.01, 0.02, 0.01, 0.07],
[0.01, 0.02, 0.01, 0.01, 0.05],

]
f[KA_iov,CL_iov,V1_iov,Q_iov,V2_iov] = [

[0.1],
[0.01, 0.03],
[0.01, -0.01, 0.09],
[0.01, 0.02, 0.01, 0.07],
[0.01, 0.02, 0.01, 0.01, 0.05],

]
f[PNOISE] = 0.15
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ID: |
c[ID] = sequential(50)
r[KA,

→˓ CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])
IOV: |

c[IOV] = sequential(2)
t[DOSE] = 2.0
t[OBS] ~ unif(1.0, 50.0; 5)
# t[OBS] = range(1.0, 50.0; 5)
r[KA_iov, CL_iov, V1_iov, Q_iov, V2_iov] ~ mnorm(

[0,0,0,0,0],
f[KA_iov, CL_iov, V2_iov, Q_iov, V3_iov]

)

FIT_EFFECTS:
POP: |

f[KA] ~ P1.0
f[CL] ~ P1.0
f[V1] ~ P20
f[Q] ~ P0.5
f[V2] ~ P100
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] ~ spd_matrix() [

[0.05],
[0.01, 0.05],
[0.01, 0.01, 0.05],
[0.01, 0.01, 0.01, 0.05],
[0.01, 0.01, 0.01, 0.01, 0.05],

]
f[KA_iov,CL_iov,V1_iov,Q_iov,V2_iov] ~ spd_matrix() [

[0.05],
[0.01, 0.05],
[0.01, 0.01, 0.05],
[0.01, 0.01, 0.01, 0.05],
[0.01, 0.01, 0.01, 0.01, 0.05],

]
f[PNOISE] ~ P0.1

ID: |
r[KA,

→˓ CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])
IOV: |

r[KA_iov, CL_iov, V1_iov, Q_iov, V2_iov] ~ mnorm(
[0,0,0,0,0],
f[KA_iov, CL_iov, V2_iov, Q_iov, V3_iov]

)

This is similar to the EFFECTS with three levels from a fit_script and EFFECTS with three levels from a
gen_script examples. The Tut Script copies GEN_EFFECTS into Gen Script EFFECTS and FIT_EFFECTS
into Fit Script EFFECTS.

Rules for each EFFECTS level

Each individual level of the EFFECTS is a verbatim section, as follows:-

EFFECTS:
<level_name>: |

However the level section is limited in what expressions it can accept. For example it is not pseudo Python code,
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unlike the PREPROCESS, MODEL_PARAMS or DERIVATIVES sections, which act more like Python functions.

Generally only declarative expressions of the type:-

x[VAR] = <some definition>

Or

x[VAR] ~ <some definition>

Are allowed. You cannot use if statements for example. And all effect levels are declarative and unordered.
i.e. the order of the statements in a single effects level makes no difference to the mixed effect model.

The variables you are allowed to declare on the left hand side depends on which type of script you are running:-

• In a Fit Script you are allowed to declare f[X] and r[X] only.

• In a Gen Script you are allowed to declare f[X], r[X], c[X] and t[X]

• All variables must have a unique name, i.e. no duplicate c[X] or f[X] or r[X]

• If a variable is on the right hand side of an expression it must be defined in a level above the current level

You can not use m[X], d[X], p[X] etc variables in EFFECTS.

Like all verbatim sections it is possible to introduce syntax errors by writing malformed code in EFFECTS.
Any errors will be brought to the users attention when PoPy attempts to interpret the verbatim sections and form
a tree structure to manage the fixed effect and random effect variables.

6.8.8 MODEL_PARAMS

A required verbatim section that creates m[X] variables for each row of the data set. Taking the previously
defined f[X], r[X] and c[X] as input.

The MODEL_PARAMS section is used in the following scripts:-

• Tut Script

• Gen Script

• Fit Script

• MTut Script

• MGen Script

• MFit Script

• MSim Script

i.e. Any script that defines a mixed effect model.

Example MODEL_PARAMS section

The example below is used in Fitting a Two Compartment PopPK Model.

MODEL_PARAMS: |
m[KA] = f[KA] * exp(r[KA])
m[CL] = f[CL] * exp(r[CL])
m[V1] = f[V1] * exp(r[V1])
m[Q] = f[Q] * exp(r[Q])
m[V2] = f[V2] * exp(r[V2])
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m[ANOISE] = 0.001
m[PNOISE] = f[PNOISE]

In the example above the main parameters are defined with the following structure:-

MODEL_PARAMS: |
m[X] = f[X] * exp(r[X])

This form ensures that the m[X] have a log normal distribution and are therefore constrained to be positive,
assuming the f[X] input is positive. An alternative formulation is:-

MODEL_PARAMS: |
m[X] = f[X] + r[X]

Which means the m[X] values have a ~norm() distribution. However if the variance of the r[X] is large
(relative to f[X]) this can result in m[X] having negative values sometimes. Often negative values are not
physically sensible in PK/PD models (e.g. a negative clearance).

Parameters can also be defined here in terms of c[X] values from the data file. For example, if an individual’s
weight has an effect on the volume of distribution, it could be defined as:-

MODEL_PARAMS: |
m[V] = (f[V] + c[WT]*f[WT_EFF]) * exp(r[V])

Here the f[WT_EFF] is an extra parameter to be estimated by PoPy that needs to be defined in the EFFECTS
section.

Another common pattern in MODEL_PARAMS is the incorporation of IOV r[X] variables. This can be done
using declarations like:-

MODEL_PARAMS: |
m[X] = f[X] * exp(r[X] + r[X_iov])

Where in EFFECTS:-

• f[X] is typically defined in the first POP level

• r[X] is typically defined in the second ID level

• r[X_iov] is typically defined in the third IOV level

This is a common pattern in PoPy. It allows the simple combination of r[X] from different levels, without
using cumbersome and error prone if statements. Although you can use if statements if you wish. For
example a more complex covariate example:-

if c[GENDER] == "male":
m[Y] = f[Y_male] * exp(r[Y])

else:
m[Y] = f[Y_female] * exp(r[Y])

Here the c[GENDER] field from the data file is used as a switch to decide whether to use f[Y_male]
or f[Y_female] for each row as appropriate.

Static Workspace Variables in MODEL_PARAMS

The MODEL_PARAMS function operates independently on each row of the data file and relies on the EFFECTS
to arrange the f[X] and r[X] correctly in each data row (which PoPy handles for you).
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However, there may be times when you want a variable’s value to persist from one row to the next. In the
MODEL_PARAMS you can explicitly define static workspace variables using the notation w[X]. For example:-

if c[TIME] < 0.0:
w[PERSISTENT] = 1.0

else:
w[PERSISTENT] *= 1.1

This fairly artificial example keeps updating the variable w[PERSISTENT] between rows. Here the Python
notation ‘*=’ multiplies the variable w[PERSISTENT] by itself and the number 1.1. Note by default all
variables in PoPy are local, so a naive attempt to do this say:-

if c[TIME] < 0.0:
PERSISTENT = 1.0

else:
PERSISTENT *= 1.1

Would fail with a Python error, because in the line ‘PERSISTENT *= 1.1’, the local variable ‘PERSISTENT’
has not been previously defined, so can not multiply itself by 1.1.

The w[X] notation provides a means of remembering variable values between rows. Note having all variables
as static by default is a bad idea as it makes it easier to introduce hard to find coding errors.

Rules for MODEL_PARAMS section

Like all verbatim sections the MODEL_PARAMS section of the config file accepts free form Python pseudocode,
but there are some rules regarding which variables are allowed in a MODEL_PARAMS section as follows:-

• Only new m[X] variables and local Python variables can be defined on the left hand side

• f[X], r[X], c[X] and m[X] are allowed on the right hand side of expressions

• c[X] on the right hand side and within if statements must be in the data file or defined in the
PREPROCESS section, in a Fit Script

• c[X] on the right hand side must be defined within the EFFECTS in a Gen Script or Tut Script.

• newly declared m[X] on the left hand side must have unique names

So you can not use d[X], p[X], s[X] or t[X] etc variables in this section.

Like all verbatim sections it is possible to introduce syntax errors by writing malformed Python. Any coding errors
will be reported by PoPy when attempting to compile or run the MODEL_PARAMS function as a temporary .py file.

6.8.9 STATES

An optional verbatim section that defines initial s[X] variables for the DERIVATIVES block. The ordinary differ-
ential equation model in PoPy is typically a initial value problem. The STATES section defines the initial values.

Note the STATES section is optional. If it is not provided, then by default all s[X] variables are initialised
to zero. In PK problems this is often sufficient, but a STATES section is often required for PD models.

The STATES section takes as input the previously defined m[X] and c[X] variables and computes the initial
s[X] variables. The STATES function is run on the first row of each individual and for every reset row in
the data file. The STATES section is available in the following scripts:-

• Tut Script

• Gen Script
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• Fit Script

• Sim Script

• MTut Script

• MGen Script

• MFit Script

• MSim Script

i.e. Any script that contains a DERIVATIVES ordinary differential equation model.

Example STATES for PK Model

In Fitting a Two Compartment PopPK Model, a null states section is used:-

STATES: |

This is equivalent to just removing the STATES section altogether. It is also equivalent to writing this:-

STATES: |
s[DEPOT] = 0.0
s[CENTRAL] = 0.0
s[PERI] = 0.0

The form of the STATES section is very dependent on the DERIVATIVES section that it is initialising. The s[X]
variables that are defined in STATES must exist in the DERIVATIVES section.

DERIVATIVES: |
# s[DEPOT,CENTRAL,PERI] = @dep_two_cmp_cl{dose:@bolus{amt:c[AMT]}}
d[DEPOT] = @bolus{amt:c[AMT]} - m[KA]*s[DEPOT]
d[CENTRAL] = m[KA]*s[DEPOT]

→˓- s[CENTRAL]*m[CL]/m[V1] - s[CENTRAL]*m[Q]/m[V1] + s[PERI]*m[Q]/m[V2]
d[PERI] = s[CENTRAL]*m[Q]/m[V1] - s[PERI]*m[Q]/m[V2]

Setting all amounts to zero in the PK compartments is fairly common. As before any dose is administered no
drug is expected to be present in the body.

The steady state is therefore zero. The amounts in each compartment only become positive after a dose is admin-
istered. As the drug is excreted from the body the amount of drug in each compartment converges back to zero.

Note a reset row in the data file short cuts the wash out process by removing all of the drug from the body,
by calling the null STATES function above.

Example STATES for PD Model

See Direct PD Model for example Tut Script, using the following STATES and DERIVATIVES sections for a
PD model:-

STATES: |
s[CENTRAL] = 0.0
s[MARKER] = m[BASE]

DERIVATIVES: |
d[CENTRAL] = @bolus{amt:c[AMT]} - s[CENTRAL]*c[CL]/c[V]
d[MARKER] = m[BASE]*m[KOUT] - (1+s[CENTRAL]/c[V])*m[KOUT]*s[MARKER]
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In this example the s[MARKER] initial value is set to m[BASE]. This is in order to make sure that the
‘MARKER’ PD compartment is at equilibrium, when the ‘CENTRAL’ PK compartment is zero.

You can usually deduce the equilibrium conditions for a PD compartment by setting the d[X] variables to
zero and solving for s[X], with the PK compartments set to zero.

For example in this case, setting d[CENTRAL] to zero:-

0.0 = -s[CENTRAL]*c[CL]/c[V]

implies:-

s[CENTRAL] = 0.0

Then setting d[MARKER] to zero:-

0.0 = m[BASE]*m[KOUT] - (1+0.0)*m[KOUT]*s[MARKER]

implies:-

s[MARKER] = m[BASE]

These equilibrium conditions ensures that the amounts in ‘CENTRAL’ and ‘MARKER’ are fixed until the
system is disrupted by a drug dose being administered. As the drug is washed out of the system, the system
should smoothly return back to equilibrium.

Alternatively if a reset row is encountered in the data file then the system is jolted back to the equilibrium by
running the STATES function.

The non-zero equilibrium value of s[MARKER] is meant to model the endogenous amount of a substance
within the body. i.e. a substance that is naturally present without drug intervention. This biological fact makes
PD models inherently more complex than PK models and they usually require a more complex STATES section.

Rules for STATES section

Like all verbatim sections the STATES section of the config file accepts free form Python pseudocode, but there
are some rules regarding which variables are allowed in a STATES section as follows:-

• Only s[X] and local variables can be defined on the left hand side

• s[X] variables defined on the left hand side must also exist in the DERIVATIVES section

• s[X] variables present in DERIVATIVES but not in STATES are initialised to zero.

• c[X] and m[X] are only allowed on the right hand side of expressions

• c[X] must be defined in the data file or created in the PREPROCESS section in a Fit Script

• c[X] must be defined within the EFFECTS in a Gen Script or the GEN_EFFECTS in a Tut Script.

• m[X] must be defined in the MODEL_PARAMS

You can not use d[X], p[X], r[X], f[X] or t[X] etc. variables at all in this section.

Like all verbatim sections it is possible to introduce syntax errors by writing malformed Python. Coding errors
will be reported when PoPy attempts to compile or run the STATES function as a temporary .py file.

6.8.10 DERIVATIVES

An optional verbatim section that defines an ordinary differential equation model in a PoPy script.
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The DERIVATIVES section computes s[X] state amounts at multiple time points using ordinary differential
equations given initial s[X] from the STATES section and previously computed m[X] and c[X]
parameters for each row in the data file.

Note the DERIVATIVES section is optional. It is possible to not have a compartment model in your script. For
example you can just directly use individual m[X] variables in the PREDICTIONS section instead of generating
s[X] values.

The DERIVATIVES section is available in the following scripts:-

• Tut Script

• Gen Script

• Fit Script

• Sim Script

• MTut Script

• MGen Script

• MFit Script

• MSim Script

i.e. Any script that processes PK/PD models.

Example DERIVATIVES for PK Model

The example below is used in Fitting a Two Compartment PopPK Model.

DERIVATIVES: |
# s[DEPOT,CENTRAL,PERI] = @dep_two_cmp_cl{dose:@bolus{amt:c[AMT]}}
d[DEPOT] = @bolus{amt:c[AMT]} - m[KA]*s[DEPOT]
d[CENTRAL] = m[KA]*s[DEPOT]

→˓- s[CENTRAL]*m[CL]/m[V1] - s[CENTRAL]*m[Q]/m[V1] + s[PERI]*m[Q]/m[V2]
d[PERI] = s[CENTRAL]*m[Q]/m[V1] - s[PERI]*m[Q]/m[V2]

The example above defines a two compartment PK model with a Depot compartment. The same model can
be expressed as:-

DERIVATIVES: |
s[DEPOT,CENTRAL,PERI] = @dep_two_cmp_cl{

dose:@bolus{amt:c[AMT]},
KA: m[KA],
CL: m[CL],
V1: m[V1],
Q: m[Q],
V2: m[V2],

}

Where @dep_two_cmp_cl is a analytic compartment function. That uses the analytic solution to the ordinary
differential equation instead of using a numerical ODE_SOLVER.

Note you can also write:-

DERIVATIVES: |
s[DEPOT,CENTRAL,PERI] = @dep_two_cmp_cl{ dose:@bolus{amt:c[AMT]} }
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As the default values for ‘KA’, ‘CL’ etc are the equivalent m[X] variables. You still need to have all the
appropriate m[X] variables defined in MODEL_PARAMS and c[AMT] defined in your data file.

PoPy also provides multiple alternative ways of formulating the d[X] equations as follows:-

DERIVATIVES: |

d[DEPOT] = @bolus{amt:c[AMT]}
d[CENTRAL] = 0.0
d[PERI] = 0.0

d[DEPOT] -= m[KA]*s[DEPOT]
d[CENTRAL] += m[KA]*s[DEPOT]

d[CENTRAL] -= s[CENTRAL]*m[CL]/m[V1]

d[CENTRAL] -= s[CENTRAL]*m[Q]/m[V1]
d[PERI] += s[CENTRAL]*m[Q]/m[V1]

d[CENTRAL] += s[PERI]*m[Q]/m[V2]
d[PERI] -= s[PERI]*m[Q]/m[V2]

The syntax above is standard Python, but makes the inputs and outputs of each compartment clear. You can
also use this flow based syntax:-

DERIVATIVES: |

d[DEPOT] = @bolus{amt:c[AMT]}
d[CENTRAL] = 0.0
d[PERI] = 0.0

d[DEPOT->CENTRAL] += m[KA]*s[DEPOT]

d[CENTRAL] -= s[CENTRAL]*m[CL]/m[V1]

d[CENTRAL->PERI] += s[CENTRAL]*m[Q]/m[V1]
d[PERI->CENTRAL] += s[PERI]*m[Q]/m[V2]

This expresses the flows between compartments explicitly and avoids having to manually pair up the positive
and negative flows. Note an unintentional mis-match between inputs and outputs in compartment models usually
leads to mass balance issues and models that are difficult to interpret and fit.

Note a sanity check on the DERIVATIVES section is to view the compartment diagram that is automatically
created by PoPy, see Fig. 6.7.

IN

DEPOT

 bolus{amt:c[AMT]}      

CENTRAL

PERI

 m[Q]*s[CENTRAL]/m[V1]      

OUT

 m[CL]*s[CENTRAL]/m[V1]      

 m[KA]*s[DEPOT]      

 m[Q]*s[PERI]/m[V2]      

Fig. 6.7: Two compartment model with depot dosing, computed automatically from DERIVATIVES section.

All the example DERIVATIVES sections presented here generate the same diagram. If you make a mass balance
error your diagram may well not look like you expect. This is a useful safety feature built into PoPy.
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Example DERIVATIVES for PD Model

See Direct PD Model for example Tut Script, using the following DERIVATIVES section for a PD model:-

DERIVATIVES: |
d[CENTRAL] = @bolus{amt:c[AMT]} - s[CENTRAL]*c[CL]/c[V]
d[MARKER] = m[BASE]*m[KOUT] - (1+s[CENTRAL]/c[V])*m[KOUT]*s[MARKER]

As discussed in Example STATES for PD Model. The following STATES section is required to initialise the
derivative model in an equilibrium state:-

STATES: |
s[CENTRAL] = 0.0
s[MARKER] = m[BASE]

Note it’s possible to split this DERIVATIVES model up into separate flows:-

DERIVATIVES: |

d[CENTRAL] = @bolus{amt:c[AMT]}
d[MARKER] = 0.0

d[CENTRAL] -= s[CENTRAL]*c[CL]/c[V]

d[MARKER] += m[BASE]*m[KOUT]
d[MARKER] -= (1+s[CENTRAL]/c[V])*m[KOUT]*s[MARKER]

It’s also possible to mix and match s[X] and d[X] variables, by using a analytic compartment function
for the PK compartment:-

DERIVATIVES: |
s[CENTRAL] = @iv_one_cmp_cl{ dose:@bolus{amt:c[AMT]}, CL:c[CL], V:c[V]}
d[MARKER] = m[BASE]*m[KOUT] - (1+s[CENTRAL]/c[V])*m[KOUT]*s[MARKER]

Note in the above if you use a analytic compartment function then you need s[X] on the left hand side (see
Central compartment). If you use numerical equations then you need d[X] on the left hand side and s[X]
variables on the right hand side (see Marker compartment).

All of the above DERIVATIVES sections should result in the same compartment diagram as shown in Fig. 6.8.

IN

CENTRAL

 bolus{amt:c[AMT]}      

MARKER

 m[BASE]*m[KOUT]      

OUT

 c[CL]*s[CENTRAL]/c[V]       m[KOUT]*s[MARKER]+m[KOUT]*s[CENTRAL]*s[MARKER]/c[V]      

Fig. 6.8: direct PD model, computed automatically from DERIVATIVES section.

Example DERIVATIVES using x[TIME]

See Sine circadian model for example Tut Script, using the following DERIVATIVES section:-
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DERIVATIVES: |
conc_central = s[CENTRAL]/c[V]
circ = exp(m[AMP] * sin(2*pi*(x[TIME]-m[INT])/12))
d[CENTRAL] = @bolus{lag:0, amt:c[AMT]} - c[CL]*conc_central # PK
d[MARKER] = m[KIN]*conc_central + circ - m[KOUT]*s[MARKER] # PD

This PK model has a circadian input to the ‘MARKER’ compartment, so is in a equilibrium oscillating about
a mean value, until a dose is administered in the PK compartment, which then causes an effect in the PD
compartment through the ‘conc_central’ variable.

The main point of interest in this model is that the variable x[TIME] is used within the DERIVATIVES section.
x[TIME] is a special variable that uses the continuous time when solving the ordinary differential equations.
This is distinct from using c[TIME], which is constant at time points between data rows.

Note you can use c[TIME] as an approximation if you have lots of data rows, but generally it’s better to use
x[TIME] to model explicit time dependent components such as circadian variation within the DERIVATIVES
section.

The compartment diagram for this PK/PD model is as shown in Fig. 6.9.

conc_central = s[CENTRAL]/c[V]
circ = exp(m[AMP] * sin(2*pi*(x[TIME]-m[INT])/12))

IN

CENTRAL

 bolus{lag:0,amt:c[AMT]}      

MARKER

 circ+conc_central*m[KIN]      

OUT

 c[CL]*conc_central       m[KOUT]*s[MARKER]      

Fig. 6.9: circadian PD model, computed automatically from DERIVATIVES section.

Rules for DERIVATIVES section

Like all verbatim sections the DERIVATIVES section of the config file accepts free form Python pseudocode,
but there are some rules regarding which variables are allowed in a DERIVATIVES section as follows:-

• Only d[X] and local variables can be defined on the left hand side without using Analytic Compartment
Functions.

• s[X] variables are usually on the right hand side and must have a corresponding d[X] variable

• s[X] variables can only be defined on the left hand side if you use a analytic compartment function

• s[X] variables present in DERIVATIVES but not in STATES are initialised to zero.

• c[X] and m[X] are only allowed on the right hand side of expressions

• c[X] must be defined in the data file or PREPROCESS section in a Fit Script
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• c[X] must be defined within the EFFECTS section in a Gen Script or GEN_EFFECTS section in a
Tut Script.

• m[X] must be defined in the MODEL_PARAMS

• x[TIME] can be used to model continuous time, as opposed to discrete c[TIME]

You can not use p[X], r[X], f[X] or t[X] etc. variables at all in this section.

Like all verbatim sections it is possible to introduce syntax errors by writing malformed Python. Any coding
errors will be reported when PoPy attempts to compile or run the DERIVATIVES function as a temporary .py file.

6.8.11 PREDICTIONS

A required verbatim section that defines model p[X] prediction variables, but also compares p[X] variables
to c[X] data and evaluates likelihoods or samples new c[X] data.

The PREDICTIONS section takes as input c[X], m[X] and s[X] variables and outputs p[X] data. The
PREDICTIONS section is required in the following scripts:-

• Tut Script

• Gen Script

• Fit Script

• Sim Script

• MTut Script

• MGen Script

• MFit Script

• MSim Script

i.e. Any Gen Script/Sim Script that samples new data points or any Fit Script that evaluates likelihoods requires
a PREDICTIONS section.

Example PREDICTIONS for PK Model

The example below is used in Fitting a Two Compartment PopPK Model.

PREDICTIONS: |
p[CEN] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[CEN]**2
c[DV_CENTRAL] ~ norm(p[CEN], var)

In a Fit Script the PREDICTIONS section above computes a likelihood by comparing the p[DV_CENTRAL]
predictions computed by the model and the c[DV_CENTRAL] values found in the data file.

The noise model is a combined additive and proportional noise model. See Residual Error Model for more
details on types of noise model.

Note that in Generate a Two Compartment PopPK Data Set, the PREDICTIONS section is exactly the same
as above, however the interpretation of this line is different:-

c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)

In a Gen Script this line is now used to sample new values of c[DV_CENTRAL] when creating a new data set.

The dual nature of the ‘~’ symbol allows the same PREDICTIONS section to be re-used throughout multiple scripts.
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Example PREDICTIONS for PD Model

See Direct PD Model for an example Tut Script, using the following PREDICTIONS section for a PD model:-

PREDICTIONS: |
clabel[TIME] = "Time (minutes)"
plabel[MARKER] = "Biomarker concentration (mg/L)"
p[MARKER] = s[MARKER]
var = m[ANOISE]**2
c[MARKER] ~ norm(p[MARKER], var)

In the above example the structure of the PREDICTIONS section is the same as the Example PREDICTIONS
for PK Model, however this time the likelihood/sampling is between the c[MARKER] data and p[MARKER]
predictions, using an additive noise model.

A more complex PREDICTIONS section is shown below. See Direct PD Model Simultaneous PK/PD Parameter
fit:-

PREDICTIONS: |
clabel[TIME] = "Time (minutes)"
plabel[MARKER] = "Biomarker concentration (mg/L)"
plabel[CENTRAL] = "Drug concentration (mg/L)"
p[CENTRAL] = s[CENTRAL]/m[V]
c[CENTRAL] ~ norm(p[CENTRAL], m[PK_ANOISE]**2)
p[MARKER] = s[MARKER]
c[MARKER] ~ norm(p[MARKER], m[PD_ANOISE]**2)

If the PREDICTIONS block occurs in a Gen Script then both the c[CENTRAL] and c[MARKER] fields
are sampled. If this PREDICTIONS section is included in a Fit Script then there are two different data fields
that contribute to the likelihood, namely ‘CENTRAL’ and ‘MARKER’.

In the Fit Script case the likelihood is evaluated for a particular ‘~’ expression for every observation row in the data
set. The contribution to the likelihood of a particular c[X] variable can also be controlled by the c[X_FLAG]
field, if present in the data file. This mechanism avoids erroneously computing likelihoods against null values.

Each PoPy c[X] variable is allowed to have it’s own c[X_FLAG], which enables PoPy to handles any
number of fields elegantly without changing the natural data file structure. This is especially useful when
performing a simultaneous fit with more than one measured variable because there is no requirement to mangle
the data set by concatenating different fields into one column.

Example PREDICTIONS for BLQ Observations

If your data file contains some observations which are recorded as BLQ, i.e. they are below the LLQ of the
assay used to measure drug concentrations. Then to include these data points in your analysis you can use a
~rectnorm() distribution, see below:-

PREDICTIONS:
p[DV_CENTRAL] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
c[DV_CENTRAL] ~ rectnorm(p[DV_CENTRAL], var, LLQ=2.0)

This formulation will model observations c[DV_CENTRAL] below LLQ as the likelihood of being in the
range [-inf,LLQ] and observations greater than LLQ using a standard ~norm() distribution likelihood. See
~rectnorm() distribution for more information on this topic.
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Rules for PREDICTIONS section

Like all verbatim sections, the PREDICTIONS section of the configuration file accepts free form Python
pseudocode, but there are some rules regarding which variables are allowed in a PREDICTIONS section as follows:-

• Only p[X] and local variables can be defined on the left hand side using ‘=’

• Only c[X] can be defined on the left hand side using ‘~’

• m[X] and s[X] are only allowed on the right hand side of expressions

• c[X] must be in the data file or defined in the PREPROCESS section in a Fit Script

• c[X] must be defined within the EFFECTS in a Gen Script or GEN_EFFECTS in a Tut Script.

• m[X] must be defined in the MODEL_PARAMS section

• s[X] must be defined in the DERIVATIVES section

You can not use f[X], r[X] or t[X] etc. variables at all in this section.

Like all verbatim sections it is possible to introduce syntax errors by writing malformed Python. Such errors
will be reported when PoPy attempts to compile or run the PREDICTIONS function as a temporary .py file.

6.8.12 POSTPROCESS

An optional verbatim section that post processes the c[X] variables after running the PREDICTIONS section.
This section can be used to alter the final c[X] variables, or possibly remove some data, e.g. negative
concentrations.

A kind of flexible post generation filter implemented in Python, similar in functionality to PREPROCESS.

The POSTPROCESS is available in the following scripts:-

• Tut Script

• MTut Script

• Gen Script

• MGen Script

i.e. any script that generates a population data set from a model.

Example POSTPROCESS section

Some simple examples of using a POSTPROCESS section. Use the ‘return’ syntax to remove observation rows
with negative concentrations:-

POSTPROCESS: |
if c[CONC] < 0.0 and c[TYPE] == 'obs':

return

Setting negative concentrations to zero for observation rows:-

POSTPROCESS: |
if c[CONC] < 0.0 and c[TYPE] == 'obs':

c[CONC] = 0.0

Enforcing a below quantification limit for observation rows:-
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POSTPROCESS: |
bql_limit = 5.0
if c[CONC] < bql_limit and c[TYPE] == 'obs':

c[CONC] = bql_limit

Creating some derived data for observation rows:-

POSTPROCESS: |
if c[CONC] > 100 and c[TYPE] == 'obs':

c[HIGH_CONC_FLAG] = 1.0
else:

c[HIGH_CONC_FLAG] = 0.0

Like the PREPROCESS section each row of the data is processed separately, but otherwise any valid Python
function can be used to create new c[X] data or remove rows using the “return” syntax.

Rules for POSTPROCESS section

Like all verbatim sections the POSTPROCESS section of the config file accepts free form pseudo Python code,
but there are some rules regarding which variables are allowed in a POSTPROCESS section as follows:-

• Only c[X] variables and local Python variables are allowed

• c[X] on the right hand side and within if statements must be previously defined on the left hand
side or in the data file

• c[X] declared on the left hand side must not already exist in the data file

• return must always be null

So you can not use m[X], f[X], r[X], d[X] etc variables in this section.

Like all verbatim sections it is possible to introduce syntax errors by writing malformed Python. This will
hopefully be picked up when PoPy attempts to compile or run the POSTPROCESS function as a temporary .py file.

6.8.13 ODE_SOLVER

An optional section that defines how an PoPy will solve the ordinary differential equations in the DERIVATIVES
section.

Note the ODE_SOLVER section is optional, if you have no DERIVATIVES section then you do not need to have
an ODE_SOLVER section.

The ODE_SOLVER section is available in the following scripts:-

• Tut Script

• Gen Script

• Fit Script

• Sim Script

• MTut Script

• MGen Script

• MFit Script

• MSim Script
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i.e. Any script that processes PK/PD models and may have a DERIVATIVES section, may also have an
ODE_SOLVER section.

ODE_SOLVER Options

There are three principle ODE_SOLVER options available:-

• NO_SOLVER - use if there is no DERIVATIVES section

• ANALYTIC - use if DERIVATIVES contains only analytic compartment functions

• CPPLSODA - numerical solver - use if DERIVATIVES contains d[X] equations

• SCIPY_ODEINT - numerical solver - deprecated, slower, SciPy version of CPPLSODA.

The options above are tied to the nature of the DERIVATIVES section. Some examples of DERIVATIVES sections
and appropriate ODE_SOLVER settings are shown below.

Example ODE_SOLVER using NO_SOLVER

In the case where the PoPy script contains no DERIVATIVES section or the DERIVATIVES section is null:-

DERIVATIVES: |

Then the PoPy script should contain no ODE_SOLVER section or the ODE_SOLVER should also be null:-

ODE_SOLVER:
NO_SOLVER: {}

If the DERIVATIVES section is null and ODE_SOLVER is set to ‘ANALYTIC’ or ‘SCIPY_ODEINT’, then
PoPy should issue a warning, but the ODE_SOLVER section will otherwise have no effect.

Note, the simplest solution if you have no compartment model is to just remove the DERIVATIVES and
ODE_SOLVER sections from the script completely.

Example ODE_SOLVER using ANALYTIC

In the case where the PoPy script contains a DERIVATIVES section consisting of only an analytic compartment
function:-

DERIVATIVES: |
s[DEPOT,CENTRAL,PERI] = @dep_two_cmp_cl{dose:@bolus{amt:c[AMT]}

Then the ODE_SOLVER section should be:-

ODE_SOLVER:
ANALYTIC: {}

If the DERIVATIVES section contains only an analytic compartment function and ODE_SOLVER is set to
‘NO_SOLVER’ or ‘SCIPY_ODEINT’, then PoPy should issue a warning, but the ODE_SOLVER section will
otherwise automatically switch to ‘ANALYTIC’.
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Example ODE_SOLVER using CPPLSODA

In the case where the PoPy script contains a DERIVATIVES section consisting of ordinary differential equations
with d[X] variables on the left hand side and s[X] on the right hand side, for example:-

DERIVATIVES: |
# s[DEPOT,CENTRAL,PERI] = @dep_two_cmp_cl{dose:@bolus{amt:c[AMT]}}
d[DEPOT] = @bolus{amt:c[AMT]} - m[KA]*s[DEPOT]
d[CENTRAL] = m[KA]*s[DEPOT]

→˓- s[CENTRAL]*m[CL]/m[V1] - s[CENTRAL]*m[Q]/m[V1] + s[PERI]*m[Q]/m[V2]
d[PERI] = s[CENTRAL]*m[Q]/m[V1] - s[PERI]*m[Q]/m[V2]

Then the ODE_SOLVER section should use ‘CPPLSODA’, for example:-

ODE_SOLVER:
CPPLSODA:

atol: 1e-06
rtol: 1e-06
max_nsteps: 10000000

If the DERIVATIVES section contains d[X] equations and ODE_SOLVER is set to ‘NO_SOLVER’ or
‘ANALYTIC’, then PoPy should issue an error when checking the script, because a numerical solver is required.

CPPLSODA is a C++ version of the Fortran LSODA solver [Radhakrishnan1994]. The same ordinary differential
equation solver method used by the Nonmem ADVAN13 routine.

Note that CPPLSODA exposes the following parameters of LSODA:-

• atol - Additive tolerance of the LSODA error control

• rtol - Relative tolerance of the LSODA error control

• max_nsteps - Maximum number of steps for LSODA integrator

All of the parameters above are optional with the following default values:-

• atol: 1e-12

• rtol: 1e-12

• max_nsteps: 10000000

Hence the following ODE_SOLVER section:-

ODE_SOLVER: {CPPLSODA: {}}

Is equivalent to:-

ODE_SOLVER:
CPPLSODA:

atol: 1e-12
rtol: 1e-12
max_nsteps: 10000000

Example ODE_SOLVER using SCIPY_ODEINT

Note ‘SCIPY_ODEINT’ is deprecated in favour of CPPLSODA above.

SCIPY_ODEINT is a wrapper around the following Python numerical ordinary differential equation solver
from the SciPy package:-
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scipy.integrate.odeint

Which in turn is a wrapper around the Fortran LSODA solver [Radhakrishnan1994]. The same ordinary
differential equation solver that is used by the Nonmem ADVAN13 routine. You can read more about this
integrator here in the SciPy documentation:-

http://lagrange.univ-lyon1.fr/docs/scipy/0.17.1/generated/scipy.integrate.odeint.html

Note that PoPy exposes the following parameters of LSODA:-

• atol - Additive tolerance of the LSODA error control

• rtol - Relative tolerance of the LSODA error control

• max_nsteps - Maximum number of steps for LSODA integrator (called ‘mxstep’ in link above)

All of the parameters above are optional with the following default values:-

• atol: 1e-12

• rtol: 1e-12

• max_nsteps: 10000000

Hence the following ODE_SOLVER section:-

ODE_SOLVER: {SCIPY_ODEINT: {}}

Is equivalent to:-

ODE_SOLVER:
SCIPY_ODEINT:

atol: 1e-12
rtol: 1e-12
max_nsteps: 10000000

Note it is recommended to use CPPLSODA instead, which is faster and will give very similar results.

6.8.14 FIT_METHODS

A required section that defines how PoPy estimates the f[X] and r[X] model parameters given a data file.

The FIT_METHODS section is required in the following scripts:-

• Tut Script

• Fit Script

• MTut Script

• MFit Script

i.e. Any script that estimates PK/PD model parameters is required to have a FIT_METHODS section.

PoPy currently has the following fitting methods:-

• JOE Fitting Method

• FOCE Fitting Method

• ND Fitting Method

Which can be combined using a simple list, see FIT_METHODS Structure.
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FIT_METHODS Structure

The FIT_METHODS section is a list of fitting methods to be applied in order to estimate the f[X] and r[X]
variables of a PK/PD model, for example:-

FIT_METHODS:
- <fitter1>: {}
- <fitter2>: {}
- <fitter3>: {}

This allows in this case <fitter1> to initialise the f[X] for <fitter2> and for <fitter2> to then initialise the
f[X] for <fitter3> etc..

For example it is recommended that with PoPy, you first apply the JOE fitter method, followed by the FOCE
method.

JOE Fitting Method

JOE stands for Joint Optimisation and Estimation and is PoPy’s approximate equivalent of Nonmem’s ITS (Iterative
Two Stage) method. The methods differ in how they update the f[X] provided in a Fit Script by the modeller
to estimate the final optimised f[X].

However both JOE and ITS both attempt to separately optimise the main f[X], variance f[X], noise f[X]
and r[X] parameters to arrive at a reasonable overall fitted f[X] vector. This is in contrast to the FOCE
approach which applies a quasi-newton optimisor to the combined f[X] vector.

In general JOE is more capable of finding sensible fitted f[X] parameters when initialised further away from the
true f[X] compared to FOCE. However, FOCE is often more accurate when started close to the true solution.

FOCE Fitting Method

The FOCE and JOE methods both use a first order version of the Laplace approximation to make the computation
of the likelihood function tractable. See [Wang2007] for details. We refer to this likelihood as the FOCE ObjV,
which was first described in [Lindstrom1990], but is now most commonly associated with the popular FOCE
fitting method in Nonmem.

The FOCE method uses a quasi-newton optimisor inter-leaved with a r[X] optimiser for each individual.
It is the most common fitting method used in PK/PD today. The PoPy implementation of FOCE is similar to
Nonmem, but it is not 100% the same.

Note, given the same PK/PD model, data file and same f[X] and r[X] variables. JOE and FOCE will
return the same FOCE ObjV in PoPy. The fitting results are only likely to agree exactly for very simple PK
models, but should be similar for more complex cases.

Note FOCE is generally more accurate than JOE when initialised close to the true minima. However it is also
capable of falling into false minima away from the global minima. For this reason we recommend using JOE
then FOCE when using PoPy, see FIT_METHODS Examples.

The type of optimisation methods used by PoPy are described in references such as [DennisSchnabel1987]
[NocedalWright2006].

ND Fitting Method

The recommended fitting method for PoPy version 1.0.5 is the ND method.
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The ND method uses the same ObjV as FOCE. This new approach uses FOCE to estimate the f[X] parameters.
However when the gradient based FOCE algorithm converges ND switches to using the non-gradient BOBYQA
optimisation method. When BOBYQA converges it switches back to the FOCE, until both methods have
converged. The ND method is therefore very robust as it utilises two different fitting strategies.

However the ND method will always be slower than FOCE, so for simple cases, or where a quick result, but
not necessarily optimal solution is required, it may be preferable to use JOE or FOCE in preference to ND.

In the more common case, where accuracy is required it is recommended to use ND.

Other Fitting Methods

Note JOE, ITS and FOCE fitting methods are deterministic and fundamentally different from the stochastic
sampling methods such as SAEM and IMP. SAEM and IMP that also estimate f[X] for PK/PD models, but
the stochastic Objective Value is not based on the Laplace approximation used in the FOCE ObjV.

FIT_METHODS Examples

Fit using ND

The recommended fitting method for PoPy version 1.0.5 is the ND method.

The ND method can be implemented as follows:-

FIT_METHODS: [ND:{}]

Or alternatively:-

FIT_METHODS:
- ND: {max_n_main_iterations: 30}

Fit using JOE and FOCE

Another way to fit PK/PD models in PoPy is to use JOE followed by FOCE in a Fit Script is as follows:-

FIT_METHODS: [JOE:{}, FOCE:{}]

This single line, runs the JOE fitting method followed by FOCE with the default settings. Note that the square
bracket notation ‘[]’ is required because ‘FIT_METHODS’ expects a list. Or equivalently:-

FIT_METHODS:
- JOE: {}
- FOCE: {}

Where the ‘-‘ is YAML notation for a list item.

One of the simplest JOE and FOCE parameters is ‘max_n_main_iterations’:-

FIT_METHODS:
- JOE: {max_n_main_iterations: 30}
- FOCE: {max_n_main_iterations: 30}

Which sets the number of times the f[X] parameters are updated. The JOE fitting proceeds iteratively with
interleaved f[X] and r[X] updates, followed by FOCE starting from the final f[X] result returned by
JOE. Setting this limit forces PoPy to stop after a finite number of iterations.
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If you miss out ‘max_n_main_iterations’ it defaults to 50. Another option is as follows:-

FIT_METHODS:
- JOE: {max_n_main_iterations: 0}

This only updates the r[X] parameters and leaves the f[X] fixed.

Fitting Convergence Criteria

Another common setting is the ‘CONVERGER’ field. There are three possible settings:-

• NONE - no convergence termination - estimation stops when ‘max_n_main_iterations’ is reached

• OBJ_INC - terminate convergence if the ObjV increases

• OBJ_SIM - terminate convergence if the ObjV is similar between iterations

These settings decide when a Fit Script will return the final f[X] estimates.

The default setting for JOE and FOCE fitting is ‘OBJ_INC’, hence:-

FIT_METHODS:
- JOE:

max_n_main_iterations: 100
- FOCE:

max_n_main_iterations: 100

Is the same as:-

FIT_METHODS:
- JOE:

max_n_main_iterations: 100
CONVERGER: {OBJ_INC: {}}

- FOCE:
max_n_main_iterations: 100
CONVERGER: {OBJ_INC: {}}

And the fit estimation will stop as soon as any iteration increases the ObjV. To allow the ObjV to increase during
fitting, i.e. if the likelihood gets worse between iterations, but you wish the search to continue, use:-

FIT_METHODS:
- JOE:

max_n_main_iterations: 100
CONVERGER: {OBJ_SIM: {}}

- FOCE:
max_n_main_iterations: 100
CONVERGER: {OBJ_SIM: {}}

Here ‘OBJ_SIM’ will terminate the estimation when two consecutive iterations return similar objective values
(within a relative tolerance of 1e-06).

Note that when fitting complex models the ObjV usually decreases at each iteration, but occasionally increases.
This is due to fact that f[X] and r[X] are optimised separately. Separate optimisation is necessary for
computational efficiency. However optimising components of the likelihood independently can mean the
combined ObjV increases. The ‘OBJ_SIM’ option above is designed to allow the search to continue in these cases.
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6.8.15 COVARIANCE

An optional section that requests PoPy to compute Standard Errors of the f[X] variables, after running a
Fit Script.

The COVARIANCE option is only available in a Fit Script or Tut Script. The Tut Script simply passes the
COVARIANCE section to the Fit Script. The MFit Script and MTut Script do not currently include this option.

COVARIANCE Example

If you miss out the ‘COVARIANCE’ field, that is equivalent to putting:-

COVARIANCE: {NO_COVARIANCE: {}}

In the Fit Script and no standard errors are computed.

If you use this setting:-

COVARIANCE: {SANDWICH: {}}

After the Fit Script outputs the final f[X] estimates, PoPy will compute the standard errors utilising a sandwich
operator. See Standard Errors for more details.

By default PoPy computes standard errors using only the main f[X] estimates and excludes the variance f[X].

You can include the variance f[X] using the following setting:-

COVARIANCE: {SANDWICH: {var_covariance_flag: True}}

This will compute standard error estimates for all f[X] however it will take a long time if you have large
variance f[X] matrices in your model. Also note that the standard error estimates will be different if the
variances are included in the computation.

6.8.16 OUTPUT_SCRIPTS

An optional section that controls the child scripts that are created and possibly run after a parent script has
finished running.

The OUTPUT_SCRIPTS section is available in the following scripts:-

• Tut Script

• Gen Script

• Fit Script

• Sim Script

• MSim Script

• MTut Script

i.e. Any script that can generate child scripts may have an OUTPUT_SCRIPTS section.

Structure of OUTPUT_SCRIPTS

The OUTPUT_SCRIPTS in all Script File Formats share a common format, as follows:-
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OUTPUT_SCRIPTS:
<child_script1>: {output_mode: run}
<child_script2>: {output_mode: create}
<child_script3>: {output_mode: none}

The OUTPUT_SCRIPTS section is a dict record. i.e it is a Python dictionary with child script names as keys.

All child script sections share the ‘output_mode’ field, which can take the following values:-

• run - create the child script and run it

• create - create the child script, but do not run it

• none - do not create the child script

Generally if a child script is not mentioned in the parent script the ‘output_mode’ defaults to ‘none’.

The available child scripts are dependent on the parent script type. Also there maybe additional options for each
child script, see examples below for more concrete details.

Example OUTPUT_SCRIPTS for tut_script

The example below is used in Generate data and Fit using a Two Compartment Model.

OUTPUT_SCRIPTS:
GEN: {output_mode: run, sim_time_step: 1.0, share_axes: True}
FIT: {output_mode: run, sim_time_step: 1.0, share_axes: True}
COMP: {output_mode: run}
TUTSUM: {output_mode: run}

This specifies that a child Gen Script, Fit Script, Comp Script and TutSum Script are all run.

Note it’s possible to miss out the OUTPUT_SCRIPTS section from a Tut Script, then the default settings are
run, which is equivalent to:-

OUTPUT_SCRIPTS:
GEN: {output_mode: run, sim_time_step: -1.0, share_axes: True}
FIT: {output_mode: run, sim_time_step: -1.0, share_axes: True}
COMP: {output_mode: none}
TUTSUM: {output_mode: run}

This results in more limited tutorial outputs compared to the previous example.

Example OUTPUT_SCRIPTS for gen_script

The example below is used in Generate a Two Compartment PopPK Data Set.

OUTPUT_SCRIPTS:
SIM: {output_mode: run, sim_time_step: 1.0, share_axes: True}
GENSUM: {output_mode: run}

This specifies that a child Sim Script and GenSum Script are run.

Note it’s possible to miss out the OUTPUT_SCRIPTS section from a Gen Script, then the default settings are
run, which is equivalent to:-
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OUTPUT_SCRIPTS:
GRPH: {output_mode: none}
SIM: {output_mode: none}
GENSUM: {output_mode: none}

i.e. if you miss out the OUTPUT_SCRIPTS then you just get the Gen Script output and no further processing,
as you might expect.

Example OUTPUT_SCRIPTS for fit_script

The example below is used in Fitting a Two Compartment PopPK Model.

OUTPUT_SCRIPTS:
SIM: {output_mode: run, sim_time_step: 1.0}
MSIM: {output_mode: create}
FITSUM: {output_mode: run}

This specifies that a child Sim Script and FitSum Script are run and a MSim Script is created on disk but not
run automatically.

Note it’s possible to miss out the OUTPUT_SCRIPTS section from a Fit Script, then the default settings are
run, which is equivalent to:-

OUTPUT_SCRIPTS:
GRPH: {output_mode: none}
SIM: {output_mode: none}
MSIM: {output_mode: none}
FITSUM: {output_mode: none}

i.e. if you miss out the OUTPUT_SCRIPTS then you just get the Fit Script output and no further processing,
as you might expect.

Example OUTPUT_SCRIPTS for sim_script

The example below is from a Sim Script generated by a Fit Script in Fitting a Two Compartment PopPK Model.

OUTPUT_SCRIPTS:
GRPH:

output_mode: run
grph_list: ['SPAG_GRPH']
x_var: TIME
y_var_list: ['DV_CENTRAL', 'CEN', 'CEN']
y_var_src_list: ['observed_data', 'pop', 'indiv']
y_var_label_list: ['DV_CENTRAL', 'CEN', 'CEN']

The single ‘GRPH’ child script above, is used to plot the results of the Sim Script simulated PK curves.

You can edit the ‘GRPH’ options to control the graphical output.

Example OUTPUT_SCRIPTS for msim_script

The example below is from a MSim Script generated by a Fit Script in Fitting a Two Compartment PopPK Model.
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OUTPUT_SCRIPTS:
VPC:

output_mode: run
vpc_list: ['COMB_QUANT_SIM_VPC']
y_var_src_list: ['sim', 'orig']
y_var_list: ['DV_CENTRAL_sim', 'DV_CENTRAL']
x_var: TIME_SINCE_LAST_DOSE

The single ‘VPC’ child script above, is used to plot a VPC using the results of the MSim Script multi population
simulated PK curves.

You can edit the ‘VPC’ options to control the graphical output.

Example OUTPUT_SCRIPTS for mtut_script

The example below is used in Generate multiple data sets and Fit using a Two Compartment Model.

OUTPUT_SCRIPTS:
MGEN: {output_mode: run}
MFIT: {output_mode: run}
MCOMP: {output_mode: run, dot_size: 12}

This MTut Script outputs and runs a MGen Script, MFit Script and MComp Script.

Notice you can optionally alter the size of the dots on the MComp Script scatter plots using the ‘dot_size’ field.

6.8.17 OUTPUT_OPTIONS

An optional section that controls the output from a script.

The OUTPUT_OPTIONS section is available in the following scripts:-

• Sim Script

• MSim Script

• MGen Script

• MTut Script

The OUTPUT_OPTIONS contain a script type specific set of extra options.

Example OUTPUT_OPTIONS for sim_script

The OUTPUT_OPTIONS in a Sim Script contain a single field ‘sim_time_step’. For example the following:-

OUTPUT_OPTIONS:
sim_time_step: 0.5

means that PoPy will simulate a p[X] value at every 0.5 time units when simulating from a PK/PD model.

An alternative (and default setting) is:-

OUTPUT_OPTIONS:
sim_time_step: -1.0

Which only simulates p[X] model predictions for time points present in the data file, i.e. dense time point
sampling is switched off by using a negative ‘sim_time_step’.
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Example OUTPUT_OPTIONS for msim_script

The OUTPUT_OPTIONS in a MSim Script contain the ‘sim_time_step’ and ‘n_pop_samples’ fields. For example
the following:-

OUTPUT_OPTIONS:
sim_time_step: -1.0
n_pop_samples: 100

In a MSim Script it is simpler to keep ‘sim_time_step’ set to -1.0. As you usually want the noise c[X] samples
to be at the same time points as the original data file when creating a VPC.

The ‘n_pop_samples’ allows you to vary the number of population samples you collect for your VPC. Generally
the more the better, but you have to wait longer for more samples.

Example OUTPUT_OPTIONS for mtut_script and mgen_script

The OUTPUT_OPTIONS in a MTut Script and MGen Script allow you to control the number of population
samples, for example:-

OUTPUT_OPTIONS: {n_pop_samples: 30}

The more population samples the more comprehensive your data, but the longer the computation will take.

6.9 Script File Elements

See Table 6.6 for more detail on various script file elements.

Table 6.6: Script File Elements
Name Purpose
Variable Types PoPy variables and their usage
Probability Distributions Probability functions for verbatim sections
Matrices Matrix functions for verbatim sections
Dosing Functions Dosing functions in DERIVATIVES section
Analytic Compartment Functions Analytic compartment models in DERIVATIVES section
Script Nodes Elements of a YAML file

6.9.1 Variable Types

Table 6.7 shows the different type of script variables that are available in the verbatim sections of PoPy scripts:-
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Table 6.7: PoPy Variable Types
Type Description Defined Used
c[X] (fit script) covariates (fit) data file/PREPROCESS main sections
c[X] (gen script) covariates (gen) EFFECTS main sections
c[X] observations PREDICTIONS (fit) PREDICTIONS (gen)
f[X] fixed effects EFFECTS MODEL_PARAMS
r[X] random effects EFFECTS MODEL_PARAMS
m[X] Model parameters MODEL_PARAMS main sections
w[X] Workspace Variables MODEL_PARAMS MODEL_PARAMS
x[NEWIND] First row for individual N/A MODEL_PARAMS
d[X] Derivatives wrt time DERIVATIVES N/A
s[X] States DERIVA-

TIVES/STATES
DERIVA-
TIVES/PREDICTIONS

x[TIME] Continuous time N/A DERIVATIVES
p[X] Predictions PREDICTIONS PREDICTIONS

In Table 6.7, the ‘Defined’ column shows where a variable of particular type is first declared, typically on the
left hand side of an ‘=’ or ‘~’ operator. The ‘Used’ column shows where a variable may be used, typically
on the right hand side of an ‘=’ or ‘~’ operator.

Note the entry ‘main sections’ in table Table 6.7 above means the following sections -
MODEL_PARAMS/STATES/DERIVATIVES/PREDICTIONS.

Parameterized Variables

There are circumstances where many compartments in the model follow the same basic structure. When using
delay compartments, for example, there is typically only a flow in from the previous compartment and a flow
out to the next one:

DERIVATIVES: |
d[DEPOT] = @bolus{amt:c[AMT]} - m[K]*s[DEPOT]
d[DELAY1] = m[K]*s[DEPOT] - m[K]*s[DELAY1]
d[DELAY2] = m[K]*s[DELAY1] - m[K]*s[DELAY2]
d[DELAY3] = m[K]*s[DELAY2] - m[K]*s[DELAY3]
d[DELAY4] = m[K]*s[DELAY3] - m[K]*s[DELAY4]
d[CENTRAL] = m[K]*s[DELAY4] - m[KE]*s[CENTRAL]

Expressing these models can be time-consuming and error-prone, so PoPy provides a means to define multiple
compartments with parameters in the definitions.

To define a sequence of numbered compartments (DELAY1, DELAY2, DELAY3, and so on) use braces on
the left hand side to define the index variable (e.g., “i”) and the range of numbers it should take on (e.g., “1..4”
to denote 1, 2, 3 and 4). This line will be replicated for every value of the index, i, in the specified range, and
the braces (along with their contents) will be replaced with the corresponding value of i.

On the right hand side, you may use expressions with simple functions of the index variable (also within braces)
to refer to a parameterised compartment. When i=2, for example, c[DELAY{i-1}] refers to c[DELAY1] and
so on. The model above then becomes:

DERIVATIVES: |
d[DEPOT] = @bolus{amt:c[AMT]} - m[K]*s[DEPOT]
d[DELAY1] = m[K]*s[DEPOT] - m[K]*s[DELAY1]

# this line...
d[DELAY{i:2..4}] = m[K]*s[DELAY{i-1}] - m[K]*s[DELAY{i}]
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# ...expands to, and is therefore equivalent to, these lines:
# d[DELAY2] = m[K]*s[DELAY1] - m[K]*s[DELAY2] # i = 2
# d[DELAY3] = m[K]*s[DELAY2] - m[K]*s[DELAY3] # i = 3
# d[DELAY4] = m[K]*s[DELAY3] - m[K]*s[DELAY4] # i = 4

d[CENTRAL] = m[K]*s[DELAY4] - m[KE]*s[CENTRAL]

It is also possible to use parameterized variables in the same way within a sum() function for the sake of simplicity:

PREDICTIONS: |
p[TOTAL_CONC] = sum(s[CMT{i:1..4}])
...

6.9.2 Probability Distributions

The distributions available for use in PoPy models are shown in Table 6.8:-

Table 6.8: Probability Distributions
Name Syntax
Uniform x ~ unif(min_x, max_x) init_x
Normal y ~ norm(mean, var)
Censored Normal y ~ cennorm(mean, var, LLQ=llq, ULQ=ulq)
Rectified Normal y ~ rectnorm(mean, var, LLQ=llq, ULQ=ulq)
Truncated Normal y ~ truncnorm(mean, var, MIN=min, MAX=max)
Truncated Censored Normal y ~ trunccennorm(mean, var, MIN=min, LLQ=llq, ULQ=ulq, MAX=max)
Truncated Rectified Normal y ~ truncrectnorm(mean, var, MIN=min, LLQ=llq, ULQ=ulq, MAX=max)
Multi Normal y_vec ~ mnorm(mean_vec, var_mat)
Bernoulli y ~ bernoulli(p)
Poisson y ~ poisson(p)
Binomial y ~ binomial(p, n)
Negative Binomial y ~ negbinomial(p, n)

Uniform Distribution

Uniform is a continuous univariate distribution, written as:-

x ~ unif(min_x, max_x) init_x

The uniform distribution is used to define a range of values for an unknown scalar that you wish PoPy to estimate.

The input parameters are:-

• min_x - the minimum value that variable ‘x’ is allowed to take during estimation.

• max_x - the maximum value that variable ‘x’ is allowed to take during estimation.

• init_x - the initial value that variable ‘x’ takes at the start of estimation.

The output ‘x’ and inputs ‘min_x’, ‘max_x’, ‘init_x’ are all continuous values.

For more information see Uniform Distribution on Wikipedia.
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Uniform Distribution Examples

You use the Uniform Distribution in the EFFECTS section of a PoPy Fit Script as follows:-

f[KE] ~ unif(0.1, 100) 0.05

The above expressions limits the f[KE] variable to the range [0.1, 100] with an initial starting value of 0.05.

Alternatively you can use some convenient shortcuts, for example:-

f[KE] ~ P 0.05

Where ‘P’ stands for +ve. The equivalent long form is:-

f[KE] ~ unif(1e-06, +inf) 0.05

Which limits f[KE] to be greater than 1e-06.

You can also have an unconstrained variable as follows:-

f[KE] ~ U 0.05

Where ‘U’ stands for unlimited. The equivalent long form is:-

f[KE] ~ unif(-inf, +inf) 0.05

Normal Distribution

The Normal distribution is used for continuous variables and written in PoPy as:-

x ~ norm(mean, var)

The Normal models a Gaussian distribution with two parameters ‘mean’ and ‘var’.

The input parameters are:-

• mean - the expected value of the Normal

• var - the variance of the Normal

The output ‘x’ and inputs ‘mean’, ‘var’ are all continuous values

For more information see Normal Distribution on Wikipedia.

Normal Random Effect Example

You can use the Normal Distribution in the EFFECTS section of a PoPy script, to define a r[X] random
effect variable as follows:-

EFFECTS:
ID: |

r[KE] ~ norm(0, f[KE_isv])

Here the r[KE] scalar variable is defined as a normal with mean zero and positive scalar variance
f[KE_isv].

r[KE] is defined at the ‘ID’ level, so each individual in the population has an independent sample of this normal
distribution.
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Normal Likelihood Example

You can use the Normal Distribution in the PREDICTIONS section of a PoPy Fit Script as follows:-

PREDICTIONS:
p[DV_CENTRAL] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)

The above syntax in a Fit Script specifies the likelihood of the observed c[DV_CENTRAL] observation from
the data file, when modelled as a Normal variable, with mean p[DV_CENTRAL] and variance ‘var’.

Censored Normal Distribution

The ~cennorm() distribution is used to model whether the output of a Normal random variable lies within a
particular range and is written in PoPy as:-

x ~ cennorm(mean, var, LLQ=llq, ULQ=ulq)

The ~cennorm() distribution models a Censored Gaussian distribution with two parameters ‘mean’ and ‘var’
and two limit parameters ‘llq’ and ‘ulq’.

The input parameters are:-

• mean - the expected value of the Normal

• var - the variance of the Normal

• llq - lower limit of quantification - optional parameter - default value is -inf

• ulq - upper limit of quantification - optional parameter - default value is +inf

The inputs ‘mean’, ‘var’, ‘llq’, ‘ulq’ are all continuous values. The default values above imply that the following:-

x ~ cennorm(mean, var)

Is the same as this:-

x ~ cennorm(mean, var, LLQ=-inf, ULQ=+inf)

Which is completely uninformative, as for any value of x the likelihood is one and the log likelihood contribution
zero.

The ‘llq’ and ‘ulq’ values define 3 adjacent regions in the range [-inf, +inf]. When sampling from a Censored
Normal, the output can take one of three values:-

• llq - represents a sample in the range [-inf, llq]

• (llq + ulq)/2 - represents a sample in the range [llq, ulq]

• ulq - represents a sample in the range [ulq, +inf]

The probability of each value is computed using the cumulative normal distribution for each range. The sum
of all three range probabilities will sum to one.

For more information see Cumulative Normal Distribution on Wikipedia.
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Censored Normal Likelihood Example

You can use the ~cennorm() distribution in the PREDICTIONS section of a PoPy Fit Script to model below
level of quantification (BLQ) data, i.e. observations that are not observed directly, but are known to be below
a certain lower limit of quantification (LLQ), as follows:-

PREDICTIONS:
p[DV_CENTRAL] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
llq = 2.0
if c[DV_CENTRAL] <= llq:

c[DV_CENTRAL] ~ cennorm(p[DV_CENTRAL], var, LLQ=llq)
else:

c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)

The above syntax in a Fit Script specifies the likelihood of the observed c[DV_CENTRAL] observation from
the data file. c[DV_CENTRAL] observations greater than LLQ are modelled as a Standard Normal variable,
with mean p[DV_CENTRAL] and proportional variance ‘var’. c[DV_CENTRAL] observations less than LLQ
are modelled as a cumulative normal distribution with the same mean and variance lying within the range [-inf,
llq]. This BLQ data model is referred to as method ‘M3’ in [Beal2001].

Note that any value for c[DV_CENTRAL] in the data set less than or equal to llq is treated as a BLQ
observation by this model.

Also note that PoPy requires the keyword syntax ‘LLQ=llq’ here to clarify the purpose of the third ~cennorm()
distribution parameter. It is also possible to model above level of quantification (ALQ) observations, as follows:-

PREDICTIONS:
p[DV_CENTRAL] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
ulq = 100.0
if c[DV_CENTRAL] >= ulq:

c[DV_CENTRAL] ~ cennorm(p[DV_CENTRAL], var, ULQ=ulq)
else:

c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)

Or potentially both BLQ and ALQ observations:-

PREDICTIONS:
p[DV_CENTRAL] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
llq = 2.0
ulq = 100.0
if c[DV_CENTRAL] <= llq or c[DV_CENTRAL] >= ulq:

c[DV_CENTRAL] ~ cennorm(p[DV_CENTRAL], var, LLQ=llq, ULQ=ulq)
else:

c[DV_CENTRAL] ~ norm(p[DV_CENTRAL], var)

The ‘if’ statement above, makes it reasonably clear how PoPy models BLQ and ALQ data, when fitting a model,
however these formulae are quite long winded and difficult to sample from, so in practice it is recommended
to use a Rectified Normal Distribution instead, see below.

Rectified Normal Distribution

The ~rectnorm() distribution combines a ~cennorm() distribution and a ~norm() distribution. Its primary purpose
is modelling of BLQ and ALQ observations. It is written in PoPy as:-
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x ~ rectnorm(mean, var, LLQ=llq, ULQ=ulq)

The ~rectnorm() distribution models BLQ and ALQ observations using a ~cennorm() distribution and a ~norm()
distribution for fully observed data, with shared parameters ‘mean’ and ‘var’ over the following ranges:-

• [-inf, llq] - cennorm(mean, var, LLQ=-inf, ULQ=llq)

• [llq, ulq] - norm(mean, var)

• [ulq, +inf] - cennorm(mean, var, LLQ=ulq, ULQ=+inf)

The input parameters are:-

• mean - the expected value of the Normal

• var - the variance of the Normal

• llq - lower limit of quantification - optional parameter - default value is -inf

• ulq - upper limit of quantification - optional parameter - default value is +inf

The inputs ‘mean’, ‘var’, ‘llq’, ‘ulq’ are all continuous values. The default values above imply that the following:-

x ~ rectnorm(mean, var)

Is the same as this:-

x ~ rectnorm(mean, var, LLQ=-inf, ULQ=+inf)

Which is the same as a ~norm() distribution:-

x ~ norm(mean, var)

The ‘llq’ and ‘ulq’ values define 3 adjacent regions in the range [-inf, +inf]. When sampling from a Rectified
Normal, the output can take one of three types of value:-

• llq - represents a sample in the range [-inf, llq]

• [llq, ulq] - a standard Normal sample in the range [llq, ulq]

• ulq - represents a sample in the range [ulq, +inf]

The discrete probability of a value of LLQ or less is computed using the cumulative normal distribution over
the range [-inf, llq]. The discrete probability of a value of ULQ or more is computed using the cumulative normal
distribution over the range [ulq, +inf]. The continous probability density function (pdf) in the range [llq, ulq]
is computed from the standard Normal distribution. The area under the pdf in the range [llq, ulq] added to the
BLQ and ULQ discrete probabilities sums to one.

For more information see Rectified Gaussian Distribution on Wikipedia.

Rectified Normal Likelihood Example

You can use the ~rectnorm() distribution in the PREDICTIONS section of a PoPy Fit Script to model below
level of quantification (BLQ) data, i.e. observations that are not observed directly, but are known to be below
a certain lower limit of quantification (LLQ), as follows:-

PREDICTIONS:
p[DV_CENTRAL] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
llq = 2.0
c[DV_CENTRAL] ~ rectnorm(p[DV_CENTRAL], var, LLQ=llq)

6.9. Script File Elements 225

https://en.wikipedia.org/wiki/Rectified_Gaussian_distribution


The PoPy Manual, Release 1.1.2

The above syntax in a Fit Script specifies the likelihood of the observed c[DV_CENTRAL] observation from
the data file. c[DV_CENTRAL] observations greater than LLQ are modelled as a Standard Normal variable,
with mean p[DV_CENTRAL] and proportional variance ‘var’. c[DV_CENTRAL] observations less than LLQ
are modelled as a cumulative normal distribution with the same mean and variance lying within the range [-inf,
llq]. This BLQ data model is referred to as method ‘M3’ in [Beal2001] and recommended by [Ahn2008].

Note that any value for c[DV_CENTRAL] in the data set less than or equal to llq is treated as a BLQ
observation by this model. You can vary the LLQ limit for each observation by specifying the limit as a separate
field in the data file:-

PREDICTIONS:
p[DV_CENTRAL] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
c[DV_CENTRAL] ~ rectnorm(p[DV_CENTRAL], var, LLQ=c[LLQ])

You can then remove the BLQ limit for selected observations by setting c[LLQ] to zero or a large negative
number. Sometimes a BLQ observation is recorded in the data file using a separate flag field and the
c[DV_CENTRAL] value itself is then the LLQ. In this case you could use the PREDICTIONS section above
and PREPROCESS the data to compute a suitable c[LLQ] field as follows:-

PREPROCESS:
if c[BLQ_FLAG] > 0.5:

c[LLQ] = c[DV_CENTRAL]
else:

c[LLQ] = -inf

Also note that PoPy requires the keyword syntax ‘LLQ=llq’ here to clarify the purpose of the third ~rectnorm()
distribution parameter. It is also possible to model above level of quantification (ALQ) observations, as follows:-

PREDICTIONS:
p[DV_CENTRAL] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
ulq = 100.0
c[DV_CENTRAL] ~ rectnorm(p[DV_CENTRAL], var, ULQ=ulq)

Or potentially both BLQ and ALQ observations:-

PREDICTIONS:
p[DV_CENTRAL] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
llq = 2.0
ulq = 100.0
c[DV_CENTRAL] ~ rectnorm(p[DV_CENTRAL], var, LLQ=llq, ULQ=ulq)

The functionality above is the same as combining a ~cennorm() distribution and a ~norm() distribution using an
‘if’ statement, see Censored Normal Likelihood Example. However using ~rectnorm() distribution is recommended
as it is more compact and also more flexible. For example the syntax above works in the context of a Gen Script,
Sim Script or Tut Script as well as a Fit Script. i.e. you can sample from a ~rectnorm() distribution easily.

The ~rectnorm() distribution is the principle way that PoPy modellers are encouraged to deal with BLQ and
ALQ data.

Truncated Normal Distribution

The ~truncnorm() distribution is based on the ~norm() distribution, but with the domain of the distribution limited to
a range [min,max]. It can be used to restrict a ~norm() distribution to say all positive values. It is written in PoPy as:-
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x ~ truncnorm(mean, var, MIN=min, MAX=max)

The input parameters are:-

• mean - the expected value of the Normal

• var - the variance of the Normal

• min - minimum value of truncated range - optional parameter - default value is -inf

• max - maximum value of truncated range - optional parameter - default value is +inf

The inputs ‘mean’, ‘var’, ‘min’, ‘max’ are all continuous values. The default values above imply that the following:-

x ~ truncnorm(mean, var)

Is the same as this:-

x ~ truncnorm(mean, var, MIN=-inf, MAX=+inf)

Which is the same as a ~norm() distribution:-

x ~ norm(mean, var)

Note the ~truncnorm() distribution is different from the ~rectnorm() distribution. A ~truncnorm() distribution
rescales its probability density function, so that the area under the curve in the domain [min, max] is one. There
is zero probability mass outside of the [min, max] range. A ~rectnorm() distribution keeps the same probability
density function as the ~norm() distribution within the range [llq, ulq], but includes the cumulative probability
outside this region to achieve a total probality of one.

For more information see Truncated Normal Distribution on Wikipedia.

Truncated Normal Likelihood Example

You can use the ~truncnorm() distribution in the PREDICTIONS section of a PoPy Fit Script to model data
that is known to occur in a certain range, e.g. all positive data:-

PREDICTIONS:
p[DV_CENTRAL] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
c[DV_CENTRAL] ~ truncnorm(p[DV_CENTRAL], var, MIN=0)

The above syntax in a Fit Script specifies the likelihood of the observed c[DV_CENTRAL] observation from
the data file.

Also note that PoPy requires the keyword syntax ‘MIN=min’ here to clarify the purpose of the third ~truncnorm()
distribution parameter. It is also possible to model observations with a known upper limit, e.g. data that is known
to be negative, as follows:-

PREDICTIONS:
p[DV_CENTRAL] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
c[DV_CENTRAL] ~ truncnorm(p[DV_CENTRAL], var, MAX=0)

Or potentially observations that are known to be within a single standard deviation:-
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PREDICTIONS:
p[DV_CENTRAL] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
std = sqrt(var)
min = p[DV_CENTRAL] - std
max = p[DV_CENTRAL] + std
c[DV_CENTRAL] ~ truncnorm(p[DV_CENTRAL], var, MIN=min, MAX=max)

Note that if values of c[DV_CENTRAL] lie outside the range [min, max] then this model will make little
sense, as the likelihood of such observations are zero and the loglikelihood is -inf.

You might wish to use ~truncnorm() distribution to generate synthetic positive only observations from a model.
The alternative, is possibly to use ~rectnorm() distribution and generate sythetic data with a small positive LLQ.

Truncated Censored Normal Distribution

The ~trunccennorm() distribution is based on the ~cennorm() distribution, but with the domain of the distribution
limited to a range [min,max]. It can be used to restrict a ~cennorm() distribution to say all positive values. It
is written in PoPy as:-

x ~ trunccennorm(mean, var, MIN=min, LLQ=llq, ULQ=ulq, MAX=max)

The input parameters are:-

• mean - the expected value of the Normal

• var - the variance of the Normal

• min - minimum value of truncated range - optional parameter - default value is -inf

• llq - lower limit of quantification - optional parameter - default value is -inf

• ulq - upper limit of quantification - optional parameter - default value is +inf

• max - maximum value of truncated range - optional parameter - default value is +inf

The inputs ‘mean’, ‘var’, ‘min’, ‘llq’, ‘ulq’, ‘max’ are all continuous values. The default values above imply
that the following:-

x ~ trunccennorm(mean, var)

Is the same as this:-

x ~ trunccennorm(mean, var, MIN=-inf, LLQ=-inf, ULQ=+inf, MAX=+inf)

Which is completely uninformative, as for any value of x the likelihood is one and the log likelihood contribution
zero.

Note the ~trunccennorm() distribution rescales a ~cennorm() distribution, so that the area under the curve in
the domain [min, max] is one. There is zero probability mass outside of the [min, max] range. Effectively the
range [-inf,+inf] is split into 5 sub ranges:-

• [-inf, min] - zero probability

• [min, llq] - cumulative normal probability

• [llq, ulq] - cumulative normal probability

• [ulq, max] - cumulative normal probability

• [max, +inf] - zero probability
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Truncated Censored Normal Likelihood Example

You can use the ~trunccennorm() distribution in the PREDICTIONS section of a PoPy Fit Script to model data
that is known to occur in a certain range, e.g. all positive data:-

PREDICTIONS:
p[DV_CENTRAL] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
if c[DV_CENTRAL] <= llq:

c[DV_CENTRAL] ~ trunccennorm(p[DV_CENTRAL], var, MIN=0, LLQ=2.0)
else:

c[DV_CENTRAL] ~ truncnorm(p[DV_CENTRAL], var, MIN=0)

The above syntax in a Fit Script specifies the likelihood of the c[DV_CENTRAL] known positive observation
from the data file, with a LLQ of 2.0.

The model above shows how you might implement the ‘M4’ method described in [Beal2001], which conditions on
the BLQ data being positive. However a more convenient notation for doing this is described in ~truncrectnorm()
distribution below.

Truncated Rectified Normal Distribution

The ~truncrectnorm() distribution is based on the ~rectnorm() distribution, but with the domain of the distribution
limited to a range [min,max]. It can be used to restrict a ~rectnorm() distribution to say all positive values. It
is written in PoPy as:-

x ~ truncrectnorm(mean, var, MIN=min, LLQ=llq, ULQ=ulq, MAX=max)

The input parameters are:-

• mean - the expected value of the Normal

• var - the variance of the Normal

• min - minimum value of truncated range - optional parameter - default value is -inf

• llq - lower limit of quantification - optional parameter - default value is -inf

• ulq - upper limit of quantification - optional parameter - default value is +inf

• max - maximum value of truncated range - optional parameter - default value is +inf

The inputs ‘mean’, ‘var’, ‘min’, ‘llq’, ‘ulq’, ‘max’ are all continuous values. The default values above imply
that the following:-

x ~ truncrectnorm(mean, var)

Is the same as this:-

x ~ truncrectnorm(mean, var, MIN=-inf, LLQ=-inf, ULQ=+inf, MAX=+inf)

Which is the same as a ~norm() distribution:-

x ~ norm(mean, var)

Note the ~truncrectnorm() distribution rescales a ~rectnorm() distribution, so that the area under the curve in
the domain [min, max] is one. There is zero probability mass outside of the [min, max] range. Effectively the
range [-inf,+inf] is split into 5 sub ranges:-
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• [-inf, min] - zero probability

• [min, llq] - cumulative normal probability

• [llq, ulq] - standard normal probability

• [ulq, max] - cumulative normal probability

• [max, +inf] - zero probability

Truncated Rectified Normal Likelihood Example

You can use the ~truncrectnorm() distribution in the PREDICTIONS section of a PoPy Fit Script to model data
that is known to occur in a certain range, e.g. all positive data:-

PREDICTIONS:
p[DV_CENTRAL] = s[CENTRAL]/m[V1]
var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL]**2
c[DV_CENTRAL] ~ truncrectnorm(p[DV_CENTRAL], var, MIN=0, LLQ=2.0)

The above syntax in a Fit Script specifies the likelihood of the c[DV_CENTRAL] known positive observation
from the data file, with a LLQ of 2.0.

The model above shows the recommend way for PoPy modellers to implement the ‘M4’ method described
in [Beal2001], which conditions on the BLQ data being positive.

The ~truncrectnorm() distribution is easier to sample from and therefore use in a Gen Script, Tut Script and
Sim Script compared to the ‘if’ statment method show in Truncated Censored Normal Likelihood Example.

Note in many cases it may be easier and more appropriate to use the ‘M3’ method and the ~rectnorm() distribution
shown in Rectified Normal Likelihood Example.

Multivariate Normal Distribution

Multivariate-Normal distribution is used for vectors of continuous variables and written like this:-

output_vector ~ mnorm(mean_vector, covariance_matrix)

The Multivariate Normal is a generalisation of the Normal Distribution with two parameters ‘mean_vector’ and
‘covariance_matrix’, as follows:-

• mean_vector - the mean of the ‘output_vector’

• covariance_matrix - the covariance of the ‘output_vector’ elements

The ‘output_vector’ must have the same number of dimensions as the ‘mean_vector’. Also the ‘covariance_matrix’
needs to be symmetric positive definite with a matching dimensionality. See Matrices for examples of how to
define the covariance matrix.

For more information see Multivariate Normal Distribution on Wikipedia.

Multivariate Normal Random Effect Example

You can use the Multivariate Normal Distribution in the EFFECTS section of a PoPy script, to define a vector
of r[X] random effects variables as follows:-
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EFFECTS:
ID: |

r[KA,CL,V] ~ mnorm([0, 0, 0], f[KA_isv,CL_isv,V_isv])

Here the r[KA,CL,V] variable is defined as a 3 element vector with mean zero. [0,0,0] is
a 3 element ‘mean_vector’ and f[KA_isv,CL_isv,V_isv] is a 3x3 ‘covariance_matrix’. The
f[KA_isv,CL_isv,V_isv] matrix can be a diagonal or square symmetric matrix, see Matrices.

The r[KA,CL,V] is defined at the ‘ID’ level, so each individual in the population has an independent sample
of this multivariate normal distribution.

Bernoulli Distribution

The Bernoulli is univariate discrete distribution used to model binary variables, and written in PoPy as:-

y ~ bernoulli(prob_success)

The Bernoulli models the distribution of a single Bernoulli trial.

The input parameters are:-

• prob_success - probability of success of the bernouilli trial

The output ‘y’ is a binary value, i.e. either 1 for success or 0 for failure. ‘prob_success’ is a real valued number
in the range [0,1].

For more information see Bernoulli Distribution on Wikipedia.

Bernoulli Likelihood Example

You can use the Bernoulli Distribution in the PREDICTIONS section of a PoPy Fit Script as follows:-

PREDICTIONS:
conc = s[X]/m[V]
p[DV_BERN] = 1.0 / (1.0+ exp(-conc))
c[DV_BERN] ~ bernoulli(p[DV_BERN])

The above syntax in a Fit Script specifies the likelihood of the observed c[DV_BERN] binary observation from
the data file, when modelled as a Bernoulli variable, with success rate dependent on ‘conc’ via a logistic transform.

Poisson Distribution

The Poisson is a discrete univariate distribution, to model discrete count variables, written in PoPy as:-

y ~ poisson(lambda)

The Poisson models the distribution of the number of events occurring within a fixed time interval, if each
individual event occurs independently and at constant rate ‘lambda’.

The input parameters are:-

• lambda - the expected number of occurrences within the time interval

The output ‘y’ is the observed count, i.e. a non-negative integer value. ‘lambda’ is a positive real valued number,
which represents the mean rate of event occurrence.

For more information see Poisson Distribution on Wikipedia.
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Poisson Likelihood Example

You can use the Poisson Distribution in the PREDICTIONS section of a PoPy Fit Script as follows:-

PREDICTIONS:
c[COUNT] ~ poisson(m[LAMBDA])

The above syntax in a Fit Script specifies the likelihood of the observed c[COUNT] count observations from
the data file, when modelled as a Poisson process with estimated rate parameter m[LAMBDA].

Binomial Distribution

The binomial is a univarite discrete distribution, written in PoPy as:-

num_successes ~ binomial(prob_success, num_trials)

The binomial models the distribution of the number of successes given a fixed number of independent Bernoulli
trials.

The input parameters are:-

• prob_success - probability of success of each bernouilli trial

• num_trials - number of bernouilli trials

Here the output ‘num_successes’ is an integer. ‘num_trials’ is also an integer and ‘prob_success’ is a real valued
number in the range [0,1].

For more information see Binomial Distribution on Wikipedia.

Binomial Likelihood Example

You can use the Binomial Distribution in PREDICTIONS section of a PoPy Fit Script as follows:-

PREDICTIONS:
conc = s[X]/m[V]
p[DV_B] = 1.0 / (1.0 + exp(-conc))
c[DV_B] ~ binomial(p[DV_B], c[N_OBS])

The above syntax in a Fit Script specifies the likelihood of the observed c[DV_B] count data from the data
file when modelled as the number of successes of c[N_OBS] trials performed. Here success rate is dependent
on ‘conc’ via a logistic transform.

Negative Binomial Distribution

The negative binomial is a univarite discrete distribution, written in PoPy as:-

num_fails ~ negbinomial(prob_success, num_of_successes)

The negative binomial models the distribution of the number of failures for a series of independent Bernoulli
trials until the success count reaches ‘num_of_successes’.

The input parameters are:-

• prob_success - probability of success of each bernouilli trial
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• num_of_successes - number of successful bernouilli trials before num_fails output

Here the output ‘num_fails’ is an integer. ‘num_of_successes’ is also an integer and ‘prob_success’ is a real
valued number in the range [0,1].

For more information see Negative Binomial Distribution on Wikipedia. However, at the time of writing, the
wikipedia page inverts the definition of success/failure. In practice there are many ways of parameterising the
negative binomial parameterisation, PoPy uses the SciPy parameterisation described here:-

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.nbinom.html

Negative Binomial Likelihood Example

You can use the Negative Binomial Distribution in PREDICTIONS section of a PoPy Fit Script as follows:-

PREDICTIONS:
conc = s[X]/m[V]
p[DV_NB] = 1.0 / (1.0 + exp(-conc))
c[DV_NB] ~ negbinomial(p[DV_NB], 1)

The above syntax in a Fit Script specifies the likelihood of the observed c[DV_NB] count data from the data
file when modelled as the number of failures of a Bernoulli variable (with success rate dependent on ‘conc’ via
a logistic transform) until the occurrence of the first success.

6.9.3 Matrices

The matrices available for use in PoPy models are shown in Table 6.9:-

Table 6.9: Matrices
Name Syntax
Constant Diagonal Matrix y_mat = [[x(1,1), x(2,2)]]
Constant Square Matrix y_mat = [[x(1,1)], [x(2,1), x(2,2)]]
SPD Diagonal Matrix y_mat ~ diag_matrix() [[x(1,1), x(2,2)]]
SPD Square Matrix y_mat ~ spd_matrix() [[x(1,1)], [x(1,2), x(2,2)]]

Constant Diagonal Matrix

A constant nxn diagonal matrix is specified using the following syntax:-

y_mat = [[x(1,1), x(2,2), ... , x(n,n)]]

Where:-

• y_mat is a multi-element f[X] matrix label

• x(1,1) is the first element of the diagonal

• x(n,n) is the last element of the diagonal

Note: A diagonal matrix definition in PoPy starts with double opening square brackets ‘[[‘ and ends with
matching double closing square brackets ‘]]’.

This is to distinguish from a list which uses single square brackets.
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An example diagonal matrix is shown below:-

f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
[ 0.1, 0.03, 0.09, 0.07, 0.05]

]

Here a 5x5 matrix called f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv] is created with the
following values:- ⎛⎜⎜⎜⎜⎝

0.1 0.0 0.0 0.0 0.0
0.0 0.03 0.0 0.0 0.0
0.0 0.0 0.09 0.0 0.0
0.0 0.0 0.0 0.07 0.0
0.0 0.0 0.0 0.0 0.05

⎞⎟⎟⎟⎟⎠
In the definition above the number of f[X] labels on the left hand side must correspond to the number of
list elements along the diagonal on the right hand side. i.e. in this case they both contain 5 elements.

Constant Square Symmetric Matrix

A constant nxn square symmetric matrix is specified using the following syntax:-

y_mat = [
[x(1,1)],
[x(2,1), x(2,2)],
...
[x(n,1), x(n,2) ... , x(n,n)]

]

Where:-

• y_mat is a multi-element f[X] matrix label

• x(1,1) is the first element of the diagonal

• x(i,j) defines the element of the ith row and jth column

• x(n,n) is the last element of the diagonal

The definition above just requires the lower triangular elements to be defined, because the matrix is assumed
to be square and symmetric.

An example of defining a square symmetric matrix is shown below:-

f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
[0.1],
[0.01, 0.03],
[0.01, -0.01, 0.09],
[0.01, 0.02, 0.01, 0.07],
[0.01, 0.02, 0.01, 0.01, 0.05],

]

The number of elements in each row of the matrix definition need to be [1,2,3,4,5], because the f[X] variable
contains 5 elements.

Therefore a 5x5 matrix called f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv] is created with
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the following values:- ⎛⎜⎜⎜⎜⎝
0.1 0.01 0.01 0.01 0.01
0.01 0.03 −0.01 0.02 0.02
0.01 −0.01 0.09 0.01 0.01
0.01 0.02 0.01 0.07 0.01
0.01 0.02 0.01 0.01 0.05

⎞⎟⎟⎟⎟⎠
Note you can also define the same matrix as follows:-

f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
[0.1 , 0.01, 0.01, 0.01, 0.01],
[0.01, 0.03, -0.01, 0.02, 0.02],
[0.01, -0.01, 0.09, 0.01, 0.01],
[0.01, 0.02, 0.01, 0.07, 0.01],
[0.01, 0.02, 0.01, 0.01, 0.05],

]

However this format risks accidentally creating a non-symmetric matrix.

In PoPy, you can only specify square symmetric matrices. If the input matrix is non-square PoPy will report
an error. If the input matrix is square, but non-symmetric then PoPy will average the upper and lower triangles
and output a warning.

Positive Definite Diagonal Matrix

A positive definite nxn diagonal matrix for estimation is specified using the following syntax:-

y_mat ~ diag_matrix() [[x(1,1), x(2,2), ... , x(n,n)]]

Where:-

• y_mat is a multi-element f[X] matrix label

• x(1,1) is the first element of the diagonal

• x(n,n) is the last element of the diagonal

Note: The ‘~’ notation means that ‘y_mat’ is a diagonal matrix to be estimated, and only initialised with the
diagonal matrix specified in square brackets.

An example diagonal matrix for estimation in a Fit Script is shown below:-

f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] ~ diag_matrix() [
[ 0.1, 0.03, 0.09, 0.07, 0.05]

]

Here a 5x5 matrix variable f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv] is initialised with
the following values:- ⎛⎜⎜⎜⎜⎝

0.1 0.0 0.0 0.0 0.0
0.0 0.03 0.0 0.0 0.0
0.0 0.0 0.09 0.0 0.0
0.0 0.0 0.0 0.07 0.0
0.0 0.0 0.0 0.0 0.05

⎞⎟⎟⎟⎟⎠
In the fitting process the diagonal elements are constrained to be positive and the off diagonal terms are fixed to zero.
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Note: This matrix is defined using the ‘~’ notation, however it is not a true distribution in the sense that if you
sample from the matrix distribution, only the current value is returned. This fact is only relevant for a Gen Script
or MGen Script.

Symmetric Positive Definite Matrix

A symmetric positive definite nxn square symmetric matrix for estimation is specified using the following syntax:-

y_mat ~ spd_matrix() [
[x(1,1)],
[x(2,1), x(2,2)],
...
[x(n,1), x(n,2) ... , x(n,n)]

]

Where:-

• y_mat is a multi-element f[X] matrix label

• x(1,1) is the first element of the diagonal

• x(i,j) defines the element of the ith row and jth column

• x(n,n) is the last element of the diagonal

An example of defining a square symmetric matrix to be estimated is shown below:-

f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] ~ spd_matrix() [
[0.1],
[0.01, 0.03],
[0.01, -0.01, 0.09],
[0.01, 0.02, 0.01, 0.07],
[0.01, 0.02, 0.01, 0.01, 0.05],

]

Here we are only defining the lower triangle elements, as the upper triangle elements are the same in a symmetric
matrix. The number of elements in each row of the initial matrix definition needs to be [1,2,3,4,5], because
the f[X] variable contains 5 elements.

We are declaring a 5x5 matrix called f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv], that will
be estimated by a Fit Script and is constrained to be symmetric positive definite. The matrix is initialised with
the following values:- ⎛⎜⎜⎜⎜⎝

0.1 0.01 0.01 0.01 0.01
0.01 0.03 −0.01 0.02 0.02
0.01 −0.01 0.09 0.01 0.01
0.01 0.02 0.01 0.07 0.01
0.01 0.02 0.01 0.01 0.05

⎞⎟⎟⎟⎟⎠
Note that the symmetric ~spd_matrix() distribution is initialised here by defining just the lower triangular elements
(without loss of generality), but it can also be initialised by carefully defining all 5*5 elements.

Covariance Matrix Usage

The most common use for matrices as defined above is to define a covariance matrix for a Multivariate Normal
Distribution. For example in a EFFECTS section:-
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EFFECTS:
ID: |

r[KA,CL,V1,Q,V2] ~ mnorm(
[0, 0, 0, 0, 0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] )

Here the matrix f[KA_isv, CL_isv, V1_isv, Q_isv, V2_isv], can be defined in any of the
ways specified above, i.e. constant/variable or square/diagonal.

In the definition of r[KA, CL, V1, Q, V2], the size of the variance matrix must agree with the size of
the random vector and the mean vector of the ~mnorm() distribution. See Multivariate Normal Random Effect
Example for more information.

6.9.4 Dosing Functions

Table 6.10 shows the dosing functions that are available in the DERIVATIVES section and their parameters:-

Table 6.10: Dosing Functions
Name Parameters
@bolus amt/lag
@inf_rate amt/lag/rate
@inf_dur amt/lag/dur
@gamma amt/lag/alpha/beta
@weibull amt/lag/lambda/kappa

@bolus

Example of Bolus dosing:-

DERIVATIVES: |
d[DEPOT] = @bolus{amt: c[AMT], lag: m[LAG]} - m[KE] * s[DEPOT]

This bolus dose will be activated by the ‘dose’ entry in the TYPE field of the PoPy data file. Note it is also
possible to specify a named bolus dose as follows:-

DERIVATIVES: |
dose[my_bolus] = @bolus{amt: c[AMT], lag: m[LAG]}
d[DEPOT] = dose[my_bolus] * s[DEPOT]

This bolus dose will be activated by the ‘dose:my_bolus’ entry in the TYPE field of the PoPy data file.

@inf_rate

Example of infusion rate dosing:-

DERIVATIVES: |
d[DEPOT] = (

@inf_rate{amt: c[AMT], lag: m[LAG], rate: c[RATE]}
- m[KE] * s[DEPOT])

This infusion rate dose will be activated by the ‘dose’ entry in the TYPE field of the PoPy data file. Note it
is also possible to specify a named infusion rate dose as follows:-
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DERIVATIVES: |
dose[my_inf_rate] = @inf_rate{amt: c[AMT], lag: m[LAG], rate: c[RATE]}
d[DEPOT] = dose[my_inf_rate] * s[DEPOT]

This infusion rate dose will be activated by the ‘dose:my_inf_rate’ entry in the TYPE field of the PoPy data file.

@inf_dur

Example of infusion duration dosing:-

DERIVATIVES: |
d[DEPOT] = (

@inf_dur{amt: c[AMT], lag: m[LAG], dur: c[DUR]}
- m[KE] * s[DEPOT])

This infusion duration dose will be activated by the ‘dose’ entry in the TYPE field of the PoPy data file. Note
it is also possible to specify a named infusion duration dose as follows:-

DERIVATIVES: |
dose[my_inf_dur] = @inf_dur{

amt: c[AMT], lag: m[LAG], dur: c[DUR]}
d[DEPOT] = dose[my_inf_dur] * s[DEPOT]

This infusion duration dose will be activated by the ‘dose:my_inf_dur’ entry in the TYPE field of the PoPy data file.

@gamma

Example of gamma dosing:-

DERIVATIVES: |
d[DEPOT] = (

@gamma{amt: c[AMT], lag: m[LAG],
alpha: m[ALPHA], beta: m[BETA]}

- m[KE] * s[DEPOT]
)

This gamma dose will be activated by the ‘dose’ entry in the TYPE field of the PoPy data file. Note it is also
possible to specify a named gamma dose as follows:-

DERIVATIVES: |
dose[my_gamma] = @gamma{

amt: c[AMT], lag: m[LAG],
alpha: m[ALPHA], beta: m[BETA]}

d[DEPOT] = dose[my_gamma] * s[DEPOT]

This gamma dose will be activated by the ‘dose:my_gamma’ entry in the TYPE field of the PoPy data file.

@weibull

Example of weibull dosing:-

DERIVATIVES: |
d[DEPOT] = (

@weibull{
amt: c[AMT], lag: m[LAG],
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lambda: m[LAMBDA], kappa: m[KAPPA]}
- m[KE] * s[DEPOT]

)

This weibull dose will be activated by the ‘dose’ entry in the TYPE field of the PoPy data file. Note it is also
possible to specify a named weibull dose as follows:-

DERIVATIVES: |
dose[my_weibull] = @weibull{

amt: c[AMT], lag: m[LAG],
lambda: m[LAMBDA], kappa: m[KAPPA]}

d[DEPOT] = dose[my_weibull] * s[DEPOT]

This weibull dose will be activated by the ‘dose:my_weibull’ entry in the TYPE field of the PoPy data file.

6.9.5 Analytic Compartment Functions

Table 6.11 shows the inbuilt compartment functions that are available in the DERIVATIVES section using the
‘_cl’ suffix:-

Table 6.11: Compartment Model Functions using ‘_cl’
Name Parameters
@iv_one_cmp_cl dose/CL/V
@dep_one_cmp_cl dose/KA/CL/V
@iv_two_cmp_cl dose/CL/V1/Q/V2
@dep_two_cmp_cl dose/KA/CL/V1/Q/V2
@iv_three_cmp_cl dose/CL/V1/Q2/V2/Q3/V3
@dep_three_cmp_cl dose/KA/CL/V1/Q2/V2/Q3/V3

The ‘_cl’ suffix means that elimination rates between compartments (K) are generally parameterised as follows:-
𝐾=𝐶𝐿/𝑉

i.e. the ratio of the clearance and volume of distribution.

@iv_one_cmp_cl

Intra-venous one compartment model:-

DERIVATIVES: |
s[CEN] = @iv_one_cmp_cl{

dose: @bolus{amt:c[AMT]},
CL: m[CL], V: m[V]}

This analytic model is equivalent to solving numerically:-

DERIVATIVES: |
d[CEN] = @bolus{amt:c[AMT]} - s[CEN]*m[CL]/m[V]

See One Compartment Model with Intravenous Dosing for full example.

@dep_one_cmp_cl

Depot and one compartment model:-
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DERIVATIVES: |
s[DEP,CEN] = @dep_one_cmp_cl{

dose: @bolus{amt:c[AMT]},
KA: m[KA], CL: m[CL], V: m[V]}

Numerical ordinary differential equation equivalent is:-

DERIVATIVES: |
d[DEP] = @bolus{amt:c[AMT]} - s[DEP]*m[KA]
d[CEN] = s[DEP]*m[KA] - s[CEN]*m[CL]/m[V]

See One Compartment Model with Absorption for full example.

@iv_two_cmp_cl

Intra-venous two compartment model:-

DERIVATIVES: |
s[CEN,PERI] = @iv_two_cmp_cl{

dose: @bolus{amt:c[AMT]},
CL: m[CL], V1: m[V1],
Q: m[Q], V2: m[V2]}

Numerical ordinary differential equation equivalent is:-

DERIVATIVES: |
d[CEN] = (

@bolus{amt:c[AMT]} - s[CEN]*m[CL]/m[V1]
- s[CEN]*m[Q]/m[V1] + s[PERI]*m[Q]/m[V2]

)
d[PERI] = s[CEN]*m[Q]/m[V1] - s[PERI]*m[Q]/m[V2]

See Two Compartment Model with Intravenous Dosing for full example.

@dep_two_cmp_cl

Depot and two compartment model:-

DERIVATIVES: |
s[DEP,CEN,PERI] = @dep_two_cmp_cl{

dose: @bolus{amt:c[AMT]},
KA: m[KA],
CL: m[CL], V1: m[V1],
Q: m[Q], V2: m[V2]}

Numerical ordinary differential equation equivalent is:-

DERIVATIVES: |
d[DEP] = @bolus{amt:c[AMT]} - s[DEP]*m[KA]
d[CEN] = (

s[DEP]*m[KA] - s[CEN]*m[CL]/m[V1]
- s[CEN]*m[Q]/m[V1] + s[PERI]*m[Q]/m[V2]

)
d[PERI] = s[CEN]*m[Q]/m[V1] - s[PERI]*m[Q]/m[V2]

See Two Compartment Model with Absorption for full example.
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@iv_three_cmp_cl

Intra-venous three compartment model:-

DERIVATIVES: |
s[CEN,PERI1,PERI2] = @iv_three_cmp_cl{

dose: @bolus{amt:c[AMT]},
CL: m[CL], V1: m[V1],
Q2: m[Q2], V2: m[V2],
Q3: m[Q3], V3: m[V3]

}

Numerical ordinary differential equation equivalent is:-

DERIVATIVES: |
d[CEN] = (

@bolus{amt:c[AMT]} - s[CEN]*m[CL]/m[V1]
- s[CEN]*m[Q2]/m[V1] + s[PERI1]*m[Q2]/m[V2]
- s[CEN]*m[Q3]/m[V1] + s[PERI2]*m[Q3]/m[V3]

)
d[PERI1] = s[CEN]*m[Q2]/m[V1] - s[PERI1]*m[Q2]/m[V2]
d[PERI2] = s[CEN]*m[Q3]/m[V1] - s[PERI2]*m[Q3]/m[V3]

See Three Compartment Model with Intravenous Dosing for full example.

@dep_three_cmp_cl

Depot and three compartment model:-

DERIVATIVES: |
s[DEP,CEN,PERI1,PERI2] = @dep_three_cmp_cl{

dose: @bolus{amt:c[AMT]},
KA: m[KA],
CL: m[CL], V1: m[V1],
Q2: m[Q2], V2: m[V2],
Q3: m[Q3], V3: m[V3]

}

Numerical ordinary differential equation equivalent is:-

DERIVATIVES: |
d[DEP] = @bolus{amt:c[AMT]} - s[DEP]*m[KA]
d[CEN] = (

s[DEP]*m[KA] - s[CEN]*m[CL]/m[V1]
- s[CEN]*m[Q2]/m[V1] + s[PERI1]*m[Q2]/m[V2]
- s[CEN]*m[Q3]/m[V1] + s[PERI2]*m[Q3]/m[V3]

)
d[PERI1] = s[CEN]*m[Q2]/m[V1] - s[PERI1]*m[Q2]/m[V2]
d[PERI2] = s[CEN]*m[Q3]/m[V1] - s[PERI2]*m[Q3]/m[V3]

See Three Compartment Model with Absorption for full example.

It is also possible to parametrise the rates directly using the ‘_k’ suffix, see Table 6.12:-
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Table 6.12: Compartment Model Functions using ‘_k’
Name Parameters
@iv_one_cmp_k dose/KE
@dep_one_cmp_k dose/KA/KE
@iv_two_cmp_k dose/KE/K12/K21
@dep_two_cmp_k dose/KA/KE/K12/K21
@iv_three_cmp_k dose/KE/K12/K21/K13/K31
@dep_three_cmp_cl dose/KA/KE/K12/K21/K13/K31

@iv_one_cmp_k

Intra-venous one compartment model:-

DERIVATIVES: |
s[CEN] = @iv_one_cmp_k{

dose: @bolus{amt:c[AMT]},
KE: m[KE]}

Numerical ordinary differential equation equivalent is:-

DERIVATIVES: |
d[CEN] = @bolus{amt:c[AMT]} - s[CEN]*m[KE]

@dep_one_cmp_k

Depot and one compartment model:-

DERIVATIVES: |
s[DEP,CEN] = @dep_one_cmp_k{

dose: @bolus{amt:c[AMT]},
KA: m[KA], KE: m[KE]}

Numerical ordinary differential equation equivalent is:-

DERIVATIVES: |
d[DEP] = @bolus{amt:c[AMT]} - s[DEP]*m[KA]
d[CEN] = s[DEP]*m[KA] - s[CEN]*m[KE]

@iv_two_cmp_k

Intra-venous two compartment model:-

DERIVATIVES: |
s[CEN,PERI] = @iv_two_cmp_k{

dose: @bolus{amt:c[AMT]},
KE: m[KE], K12: m[K12], K21: m[K21]}

Numerical ordinary differential equation equivalent is:-

DERIVATIVES: |
d[CEN] = (

@bolus{amt:c[AMT]} - s[CEN]*m[KE]
- s[CEN]*m[K12] + s[PERI]*m[K21]
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)
d[PERI] = s[CEN]*m[K12] - s[PERI]*m[K21]

@dep_two_cmp_k

Depot and two compartment model:-

DERIVATIVES: |
s[DEP,CEN,PERI] = @dep_two_cmp_k{

dose: @bolus{amt:c[AMT]},
KA: m[KA], KE: m[KE],
K12: m[K12], K21: m[K21]}

Numerical ordinary differential equation equivalent is:-

DERIVATIVES: |
d[DEP] = @bolus{amt:c[AMT]} - s[DEP]*m[KA]
d[CEN] = (

s[DEP]*m[KA] - s[CEN]*m[KE]
- s[CEN]*m[K12] + s[PERI]*m[K21]

)
d[PERI] = s[CEN]*m[K12] - s[PERI]*m[K21]

@iv_three_cmp_k

Intra-venous three compartment model:-

DERIVATIVES: |
s[CEN,PERI1,PERI2] = @iv_three_cmp_k{

dose: @bolus{amt:c[AMT]},
KE: m[KE],
K12: m[K12], K21: m[K21],
K13: m[K13], K31: m[K31]}

Numerical ordinary differential equation equivalent is:-

DERIVATIVES: |
d[CEN] = (

@bolus{amt:c[AMT]} - s[CEN]*m[KE]
- s[CEN]*m[K12] + s[PERI1]*m[K21]
- s[CEN]*m[K13] + s[PERI2]*m[K31]

)
d[PERI1] = s[CEN]*m[K12] - s[PERI1]*m[K21]
d[PERI2] = s[CEN]*m[K13] - s[PERI2]*m[K31]

@dep_three_cmp_k

Depot and three compartment model:-

DERIVATIVES: |
s[DEP,CEN,PERI1,PERI2] = @dep_three_cmp_k{

dose: @bolus{amt:c[AMT]},
KA: m[KA], KE: m[KE],
K12: m[K12], K21: m[K21],
K13: m[K13], K31: m[K31]}
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Numerical ordinary differential equation equivalent is:-

DERIVATIVES: |
d[DEP] = @bolus{amt:c[AMT]} - s[DEP]*m[KA]
d[CEN] = (

s[DEP]*m[KA] - s[CEN]*m[KE]
- s[CEN]*m[K12] + s[PERI1]*m[K21]
- s[CEN]*m[K13] + s[PERI2]*m[K31]

)
d[PERI1] = s[CEN]*m[K12] - s[PERI1]*m[K21]
d[PERI2] = s[CEN]*m[K13] - s[PERI2]*m[K31]

6.9.6 Script Nodes

A PoPy script file is in YAML format, which consists of nested dictionaries that form a tree structure.

Each node of the tree is either:-

• a dictionary (dict) with sub nodes

• or a leave node

A leave node has to be one of the script node types listed below.

auto The word “auto”, indicating a preference for default behaviour.

bool A boolean: “true”/”yes”/”y”/”1” or “False”/”no”/”n”/”0”

dict A dictionary of unspecified structure - the user chooses the keys.

Many of the elements of a script file are known as dictionaries (also known as mappings or associative
arrays). These are key:value pairs that can be written as follows using curly brackets:-

my_dictionary1: { key1: value1, key2: value2 }

or alternatively using spacing:-

my_dictionary2:
key1: value1
key2: value2

Whichever you use is a matter of convenience and space.

dict_record A dictionary with a pre-determined structure (i.e. key names and corresponding types)

float Any number

input_file The path to a file that already exists. (An error occurs if it does not.)

input_file_as_glob A pattern (e.g. *.csv) that has only a single match. (An error occurs if there are multiple
matching filenames.)

input_files_as_glob A pattern (e.g. "*.csv") that has at least one match. (An error occurs only if there
are no matching filenames.)

input_folder The path to a folder that already exists. (An error occurs if it does not.)

int An integer (whole number)

list A list of values of unspecified type.
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list_of A list of one or more strings taken from the list of options in brackets.

list_record A list

none The word “none”, indicating a file that does not exist.

one_of A string, limited to one of the options given in brackets.

one_of_record One from a selection of dict_records

output_file The path to a file that may not yet exist (in contrast to input_file).

output_folder The path to a folder that may not yet exist (in contrast to input_folder).

pseudocode verbatim sections of the script file accept Python code with extra PoPy syntax added. For example
special variable names such as f[X], r[X] etc. We refer to this code as ‘pseudocode’. Pseudocode
is automatically translated into runnable Python functions that are executed by PoPy to process your script.

repeat_dict_record One or more of a selection of dict_records

repeat_verb_record One or more of a selection of verbatim records

star The “*” character, shorthand for “all possibilities”.

str A string.

verbatim Several blocks in the script file (namely MODEL_PARAMS, STATES, DERIVATIVES and PREDIC-
TIONS) are reserved for pseudocode of a relatively unstructured kind. This is translated into executable code.

6.10 Script File Outputs

The files generated by PoPy scripts are described in Table 6.13:-

Table 6.13: Script Outputs
Script Name Outputs
fit Files Generated by Fit Script
gen Files Generated by Gen Script
sim Files Generated by Sim Script
tut Files Generated by Tut Script
comp Files Generated by Comp Script
mfit Files Generated by MFit Script
mgen Files Generated by MGen Script
msim Files Generated by MSim Script
mtut Files Generated by MTut Script
mcomp Files Generated by MComp Script
fitsum Files Generated by Fitsum Script
gensum Files Generated by Gensum Script
tutsum Files Generated by Tutsum Script

6.10.1 Files Generated by Fit Script

You can examine the fit_script log file and the html output. However it is useful to also understand the files
output to disk by a fitting script.

The files generated in the same folder as ‘fit_example1.pyml’ are:-
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fit_example1.pyml.html
fit_example1.pyml.run.main.log

Here ‘fit_example1.pyml.html’ is a shortcut to the web page output. ‘fit_example1.pyml.run.main.log’, contains
a copy of the text output to the console whilst running popy_run. This text file acts as an audit trail if you want
to review the output of running the fit script later, or text search the console output for example.

The main file outputs from ‘fit_example1.pyml’ are contained in the folder called:-

fit_example1.pyml_output

The default convention for most PoPy scripts is to generate an output folder for each individual script as follows:-

script_name + '_output'

This simple convention has the useful facility of guaranteeing a unique output folder for each PoPy script file,
so you can run multiple *.pyml files in the same folder without worrying about over-writing output from other
scripts (something other PopPK/PD systems struggle with).

Note if you attempt to run the same *.pyml file twice than PoPy will ask you if you want to over-write the
previous output folder. You can force PoPy to over-write existing folders using:-

$ popy_run -o fit_example1.pyml

See popy_run for more command line switch options.

The contents of the ‘fit_example1.pyml_output’ are determined by the OUTPUT_SCRIPTS section of the
‘fit_example1.pyml’ script file:-

OUTPUT_SCRIPTS:
SIM: {output_mode: run, sim_time_step: 1.0}
MSIM: {output_mode: create}
FITSUM: {output_mode: run}

This section requests that a Sim Script, MSim Script and FitSum Script child script are created after the main
Fit Script has finished. Note the Sim Script and FitSum Script will also be run automatically. So you end up
with output folders on disk with this structure:-

fit_example1.pyml_output/
fit/
msim/
sim/
sum/

in which

• fit contains the results of running the Fit Script

• msim is a MSim Script that can be run later to generate a visual predictive check

• sim is the results of running Sim Script to create smoother profile curves from the fitted results

• sum is a html summary of the fitted model

This system of PoPy automatically generating new child scripts to process the results of an original parent script
(which is called using popy_run) is key concept in how PoPy works, see Typical Workflows. It is hierarchical
scripting of hierarchical PopPK/PD modelling!

Note the OUTPUT_SCRIPTS section is entirely optional. If you remove the OUTPUT_SCRIPTS section from
the ‘fit_example1.pyml’, then you just end up with a single output folder as follows:-
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fit_example1.pyml_output/fit

We will now look at the outputs of the individual scripts in each subfolder.

Fit Script Outputs

The ‘fit’ subfolder has the following structure:-

fit_example1.pyml_output/
fit/

_temp
observed_data
sol0
sol00
sol1
solN
compartment_diagram.dot
compartment_diagram.svg
OBJV_vs_time.csv

In this folder, the files are as follows:-

• ‘compartment_diagram.dot’ - dot Graphviz file derived from DERIVATIVES

• ‘compartment_diagram.svg’ - scalable vector graphics file displaying the compartment structure, derived
from the .dot file

• ‘OBJV_vs_time.csv’ - table showing objective value vs time, see OBJV_vs_time

The subfolders are:-

• _temp - Temporary folder used by PoPy to create Python functions

• observed_data - Contains filtered copy of ‘fit_example1_data.csv’ input data

• solX - Where X is one of [0,00,1,N]

You can examine the ‘_temp’ folder when debugging, if one of the ‘.py’ python functions derived from the
‘fit_example1.pyml’ script has not compiled properly. Or just for the curious.

The ‘observed data’ folder is a copy of the input data, which contains the original data set but may have been
filtered using an optional PREPROCESS.

The solX folders each contain the current solution at each stage of processing. As follows:-

• sol00 - Solution using initial f[X] and all r[X] =0.0

• sol0 - Solution using initial f[X] and fitted r[X]

• sol1 - Solution for first fitting method

• sol2 - Solution for second fitting method (not present for ‘fit_example1.pyml’)

• solXXX - Solution for further fitting methods . . .

• solN - Final Solution (copy of sol1 folder for ‘fit_example1.pyml’)

Each solution folder contains multiple files the principle files being:-

• cur_fx_params.txt - f[X] parameters in human readable format

• cur_rx_params.txt - r[X] parameters in human readable format

• cur_obj_value.txt - current objective value
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There are also various .csv files which are more verbose, but easier to load in to software programs, e.g. PoPy
or R for example.

Note sol00, sol0 and solN each contain a single solution. However here the ‘sol1’ folder contains the results
of applying the JOE,|foce| or ND fitting method and has a slightly different structure:-

fit_example1.pyml_output/
fit/

solXXX/
itYYY/

Where XXX is the fitting method and YYY is the results of single iteration of the ‘JOE’ fitting algorithm.

The final solution for the Fit Script are at this location on disk:-

fit_example1.pyml_output/
fit/

solN/

Sim Script Outputs

The Fit Script creates the child Sim Script within the ‘sim’ subfolder:-

fit_example1.pyml_output/
sim/

fit_example1_sim.pyml

The ‘fit_example1_sim.pyml’ script, is run automatically after the ‘fit_example1.pyml’ script has finished. This
Sim Script creates dense profile plots of the fitted model predicted values at time steps of 1.0, which can then
be compared with the original simulated data for each individual.

The full set of dense data plots for all individuals are located in this folder on disk:-

fit_example1.pyml_output/
sim/

dense/
DV_CENTRAL,DV_CENTRAL,DV_CENTRAL_wrt_TIME_spag_graphs

For more information see Files Generated by Sim Script.

MSim Script Outputs

The Fit Script creates the child MSim Script within the ‘msim’ subfolder:-

fit_example1.pyml_output/
msim/

fit_example1_msim.pyml

This MSim Script is generated by the original fit_script but not run automatically due to this line:-

MSIM: {output_mode: create}

The purpose of the msim script is to generate a visual predictive check by simulating from the fitted model and
comparing the simulated curves to the original data set. Running the ‘msim’ script is described in Visual Predictive
Check for Simple PopPK Model.

For more information on files output once the MSim Script is run see Files Generated by MSim Script.
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FitSum Outputs

The Fit Script creates the child FitSum Script within the ‘sum’ subfolder:-

fit_example1.pyml_output/
sum/

fit_example1_fitsum.pyml

The purpose of this script is to summarise the fit/sim output using automatically generated web pages.

This sum tool displays the output from running a Fit Script and the child Sim Script on disk in a convenient
format. For more information see Files Generated by Fitsum Script.

The output from sum tools is also used to automate large parts of this documentation.

6.10.2 Files Generated by Gen Script

This section discusses how the Gen Script saves files to disk, you can see an example in Generate a Two
Compartment PopPK Data Set. After running a gen script, named ‘my_gen_script.pyml’, using the command:-

$ popy_run my_gen_script.pyml

the output folder ‘my_gen_script.pyml_output’ will be created as follows:-

my_gen_script.pyml_output/
gen/
sim/
sum/

where

• gen contains the results of running the Gen Script

• sim contains the results of running Sim Script to create smoother profile curves and

• sum is a html summary of the generated data.

The Gen Script also creates a log file my_gen_script.pyml.run.main.log that stores the output to the command
prompt.

Gen Folder Output

The gen folder has the following contents:-

builtin_gen_example_gen.pyml_output/
gen/

_temp/
clean_sol/
noisy_sol/
compartment_diagram.dot
compartment_diagram.svg
dupe_covars_data.csv
synthetic_data.csv

Here ‘_temp’ is a temporary folder used by PoPy. The file ‘dupe_covars_data.csv’ is an intermediate file.

A compartment diagram is created in .svg format. The .dot file is the Graphviz file, used to create the .svg file.
You can see an example compartment diagram in Fig. 4.3.
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The ‘clean_sol’ folder contains a solution with no noise added. The ‘noisy_sol’ contains as solution with
measurement noise added. For example the ‘noisy_sol’ folder contains these files:-

builtin_gen_example_gen.pyml_output/
gen/

noisy_sol/
fx_params.csv
mx_params.csv
rx_params.csv
solution.pyml
sx_params.csv
synthetic_data.csv

Here the key file is ‘synthetic_data.csv’, which is the full synthetic data file generated for this population. The other
files represent intermediate variables for each time point, see Files Generated by Sim Script for more information.

Note the ‘synthetic_data.csv’ file is also output to this location, for easier access:-

builtin_gen_example_gen.pyml_output/
gen/

synthetic_data.csv

It is the main data file created by the Gen Script.

Naming of child scripts

Each child script file name is based on the following entry, in the parent Gen Script:-

DESCRIPTION: {name: <gen_name>}

This naming convention for output folders and generated scripts is followed by all Script File Formats in PoPy.

Gen Sim Folder Output

The Gen Script creates the following Sim Script:-

my_gen_script.pyml_output/
sim/

<gen_name>_sim.pyml

This Sim Script plots smooth PK curves to visualise the f[X] parameters sampled by the Gen Script. See
Files Generated by Sim Script for more details.

Gen Sum Folder Output

The Gen Script creates the following GenSum Script:-

my_gen_script.pyml_output/
sum/

<gen_name>_gensum.pyml

The GenSum Script creates html output that summaries the gen and sim folders. See Files Generated by Gensum
Script for more details.
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6.10.3 Files Generated by Sim Script

This section discusses how the Sim Script saves files to disk. Typically a Sim Script is created in a sub folder
as a child script of a Fit Script or Gen Script.

Here we assume that the Sim Script was created by a Fit Script parent. Similar to the Fit Script described in
Files Generated by Fit Script.

When a Sim Script is run, folders will be created on disk (within the same folder as the script) as follows:-

_temp
dense
observed_data

Here ‘_temp’ is a folder used by PoPy to write temporary python functions and ‘dense’ contains the final plots.

‘observed_data’ is a solution folder that only contains original input data from the Sim Script, for example, as
specified in the ‘input_data_file’ field:-

FILE_PATHS:
input_data_file: ..\gen\synthetic_data.csv

Here, the ‘observed_data’ folder contains a copy of the ‘synthetic_data.csv’ generated by the Gen Script. The
other folders generated by the Sim Script are named after the solutions loaded in by the ‘solutions’ section of
the Sim Script section, for example:-

FILE_PATHS:
solutions:

initial: ..\fit\sol00\solution.pyml
final: ..\fit\solN\solution.pyml

Therefore solution folders ‘initial’ and ‘final’ will be created and will contain simulated PK data using the original
solution folders from the fit output above.

The Sim Script generates s[X] state values and noiseless p[X] predictions at regular, dense time intervals
(1.0 hours). These files are also saved as comma separated value .csv files (one per individual) in:-

initial/
pred_1.csv
...
pred_50.csv
sx_1.csv
...
sx_50.csv

And similarly in the ‘final’ solution folder. Here the Sim Script is effectively re-creating the original initial f[X]
solution and final f[X] solution, but sampling more time points, to generate smoother PK curves.

The sim script also outputs a Grph Script that plots the ‘initial’, ‘final’ and ‘observed_data’ solutions on one
graph, with one plot per individual in the ‘dense’ folder:-

dense/
DV_CENTRAL,DV_CENTRAL,DV_CENTRAL_wrt_TIME_spag_graphs/

000000.svg
...
000049.svg
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6.10.4 Files Generated by Tut Script

This section describes the output files from the Tut Script, you can see examples in Generate data and Fit using
Simple PopPK Model and Generate data and Fit using a Two Compartment Model.

After running a tutorial script, named ‘my_tut_script.pyml’, as follows:-

$ popy_run my_tut_script.pyml

the output folder will contain four new scripts:-

my_tut_script.pyml_output/
<tut_name>_gen.pyml
<tut_name>_fit.pyml
<tut_name>_comp.pyml
<tut_name>_tutsum.pyml

Note the tutorial output folder name my_tut_script.pyml_output is derived from the tutorial script filename.
However the generated script file names are based on the following entry:-

DESCRIPTION: {name: <tut_name>}

This naming convention for output folders and generated scripts is followed by all Script File Formats in PoPy.

Scripts and description names should be chosen with this in mind, i.e. short names without spaces are recommended.

For a Tut Script the four subscripts are run automatically, see Table 6.10.4 for links to the files generated by
the tut subscripts, each in their own sub directories.

Script Outputs
<tut_name>_gen.pyml Files Generated by Gen Script
<tut_name>_fit.pyml Files Generated by Fit Script
<tut_name>_comp.pyml Files Generated by Comp Script
<tut_name>_tutsum.pyml Files Generated by Tutsum Script

If all four scripts execute then you will see a file structure like:-

my_tut_script.pyml_output/
<tut_name>_gen.pyml_output/
<tut_name>_fit.pyml_output/
<tut_name>_comp.pyml_output/
<tut_name>_tutsum.pyml_output/

6.10.5 Files Generated by Comp Script

This section discusses how the comp script saves files to disk, if you want to see a full Comp Script example
using a Tut Script try Generate data and Fit using a Two Compartment Model.

Output from an Comp Script called ‘builtin_tut_example_comp.pyml’ are as follows:-

builtin_tut_example_comp.pyml_output/
_temp
dense
re_fit
re_gen
builtin_tut_example_dense_grph.pyml
builtin_tut_example_dense_grph.pyml.run.main.log
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The ‘_temp’ folder contains the temporary functions generated by PoPy.

The ‘dense’ folder contains the PK curve plots of fitted vs true f[X] and the synthetic data. These plots are
generated by the ‘builtin_tut_example_dense_grph.pyml’ Grph Script.

The ‘re_fit’ folder contains the output from optimising the r[X] when computing the fitted f[X] objective
function.

The ‘re_gen’ folder contains the output from optimising the r[X] when computing the true f[X] objective
function.

6.10.6 Files Generated by MFit Script

This section discusses how the mfit script saves files to disk, if you want to see a full MFit Script example using
a MTut Script try Generate multiple data sets and Fit using a Two Compartment Model.

Outputs from an MFit Script called ‘builtin_mtut_example_mfit.pyml’ are as follows:-

builtin_mtut_example_mfit.pyml_output/
_temp
fitpop_*
compartment_diagram.dot
compartment_diagram.svg

The ‘_temp’ folder contains the temporary functions generated by PoPy. The ‘compartment_diagram.dot’ file
is a Graphviz file used to generate the ‘compartment_diagram.svg’ image file.

The main output of MFit Script are the multiple ‘fitpop_*’ folders. Each of these folders contains the results
of fitting the model to a separate synthetic data set.

The input data files are determined by the FILE_PATHS section of the MFit Script. For example the entry:-

FILE_PATHS:
input_data_files_glob:

→˓builtin_mtut_example_mgen.pyml_output/genpop_*/noisy_sol/synthetic_data.csv

Notice the ‘*’ in the ‘input_data_files_glob’ field, which uses a glob pattern to load multiple data files. Essentially
any files matching this pattern, usually generated by a MGen Script, see Files Generated by MGen Script.

The structure of each ‘fitpop_*’ folder is as follows:-

builtin_mtut_example_mfit.pyml_output/
fitpop_*/

sol00/
sol0/
sol1/
solN/
OBJV_vs_time.csv

This folder structure is very similar to the output of a Fit Script. See Fit Script Outputs for a detailed explanation.
The main result of each fit are the final f[X] parameter estimates which are store here:-

builtin_mtut_example_mfit.pyml_output/
fitpop_*/

solN/
fx_params.csv

The ‘fx_params.csv’ contains the fitted f[X] which can be compared with the equivalent true f[X] values
generated by MGen Script, usually located here (see Files Generated by MGen Script):-
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builtin_mtut_example_mgen.pyml_output/
genpop_*/

noisy_sol/
fx_params.csv

The fitted vs true f[X] comparison is performed using the MComp Script, see (see Files Generated by MComp
Script):

Note the MFit Script has no OUTPUT_SCRIPTS section, so does not generate any child scripts unlike a Fit
Script see Files Generated by Fit Script.

6.10.7 Files Generated by MGen Script

This section discusses how the mgen script saves files to disk, if you want to see a full MGen Script example
using a MTut Script try Generate multiple data sets and Fit using a Two Compartment Model.

Outputs from an MGen Script called ‘builtin_mtut_example_mgen.pyml’ are as follows:-

builtin_mtut_example_mgen.pyml_output/
_temp
genpop_*
compartment_diagram.dot
compartment_diagram.svg

The ‘_temp’ folder contains the temporary functions generated by PoPy. The ‘compartment_diagram.dot’ file
is a Graphviz file used to generate the ‘compartment_diagram.svg’ image file.

The main output of MGen Script are the multiple ‘genpop_*’ folders. Each of these folders contains the current
sampled f[X] values and the synthetic data generated from the f[X] and the model.

Note the number of ‘genpop_*’ folders created by the MGen Script is determined by the ‘n_pop_samples’ in
the mgen-output_options_spec section:-

OUTPUT_OPTIONS: {n_pop_samples: 30}

The structure of each ‘genpop_*’ folder is as follows:-

builtin_mtut_example_mgen.pyml_output/
genpop_*/

clean_sol/
noisy_sol/
dupe_covars_data.csv
gen_fx_params.txt

Here the ‘gen_fx_params.txt’ is a human readable text file containing the f[X] values for this population.
The ‘dupe_covars_data.csv’ is an intermediate file used by PoPy when constructing a new data set. The ‘clean_sol’
folder contains a solution with no noise added. The ‘noisy_sol’ contains as solution with measurement noise
added. For example the ‘noisy_sol’ folder contains these files:-

builtin_mtut_example_mgen.pyml_output/
genpop_*/

noisy_sol/
fx_params.csv
mx_params.csv
rx_params.csv
solution.pyml
sx_params.csv
synthetic_data.csv
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Here the key file is ‘synthetic_data.csv’, which is the full synthetic data file generated for this population.

The other files represent intermediate variables for each time point, see Files Generated by Sim Script for more
information.

Note the MGen Script has no OUTPUT_SCRIPTS section, so does not generate any child scripts unlike a Gen
Script see Files Generated by Gen Script.

6.10.8 Files Generated by MSim Script

This section discusses how the MSim Script saves files to disk, if you want to see an example of a MSim Script
generated by a Fit Script then see Fitting a Two Compartment PopPK Model.

Outputs from an msim script called ‘fit_example1_msim.pyml’ are:-

fit_example1_msim.pyml_output/
_temp
msol
fit_example1_vpc.pyml

The ‘_temp’ folder contains the temporary functions generated by PoPy and the ‘msol’ folder contains the new
simulated populations. There is one .csv file per simulated population, that all have the same number of rows
as the original ‘fit_example1_data.csv’.

The MSim Script also outputs the ‘fit_example1_vpc.pyml’ Vpc Script and runs it automatically after finishing
the multi population simulation. The vpc_script is responsible for loading in the data from the ‘msol’ folder
and creating a vpc graph.

The output of the ‘fit_example1_vpc.pyml’ script is here:-

fit_example1_msim.pyml_output/
DV_CENTRAL_sim,DV_CENTRAL_wrt_TIME_SINCE_LAST_DOSE_comb_quant_sim_vpc/

000000.svg

The parameters of the vpc graph are used in the folder name, so it ends up being quite long.

6.10.9 Files Generated by MTut Script

This section discusses how the MTut Script saves files to disk. After running a multi-tutorial script, named
‘my_mtut_script.pyml’, as follows:-

$ popy_run my_mtut_script.pyml

the output folder will contain three new scripts:-

my_mtut_script.pyml_output/
<mtut_name>_mgen.pyml
<mtut_name>_mfit.pyml
<mtut_name>_mcomp.pyml

Note the multi-tutorial output folder name my_mtut_script.pyml_output is derived from the multi-tutorial
script filename. However the generated script file names are based on the following entry:-

DESCRIPTION: {name: <mtut_name>}

This naming convention for output folders and generated scripts is followed by all Script File Formats in PoPy.
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It is worth naming your scripts and description names with this in mind, i.e., short names without spaces are
recommended.

For a MTut Script the three subscripts are usually run automatically, see Table 6.10.9 for links to the files generated
by each of the subscripts, in their own sub folders.

Script Outputs
<mtut_name>_mgen.pyml mgen outputs
<mtut_name>_mfit.pyml mfit outputs
<mtut_name>_mcomp.pyml mcomp outputs

These three scripts are run in order. When all three scripts are run then you end up with a file structure like:-

my_mtut_script.pyml_output/
<mtut_name>_mgen.pyml_output/
<mtut_name>_mfit.pyml_output/
<mtut_name>_mcomp.pyml_output/

6.10.10 Files Generated by MComp Script

This section discusses how the mcomp script saves files to disk, if you want to see a full MComp Script example
using a MTut Script try Generate multiple data sets and Fit using a Two Compartment Model.

Output from an MComp Script called ‘builtin_mtut_example_mcomp.pyml’ are as follows:-

builtin_mtut_example_mcomp.pyml_output/
_temp
fx_scatter
mcomp_sections
mfit_sections
mgen_sections
final_fx.csv
gt_fx.csv
init_fx.csv
type_fx.csv

The ‘_temp’ folder contains the temporary functions generated by PoPy. The ‘fx_scatter’ folder contains the
scatter plots of fitted vs true f[X]. For example files like:-

builtin_mtut_example_mcomp.pyml_output/
fx_scatter/

fitted_vs_true_for_f[cl].svg
fitted_vs_true_for_f[ka].svg
fitted_vs_true_for_f[pnoise].svg
..

The folders named ‘*_sections’, just contain the original .pyml scripts in sections for use in the PoPy documentation.

The .csv files are as follows:-

Table 6.14: .csv file output by MComp Script
Filename Contents
final_fx.csv Each row contains f[X] estimates for one population
gt_fx.csv Each row contains true f[X] values for one population
init_fx.csv Each row contains starting f[X] values for one population
type_fx.csv Each row contains f[X] type (e.g. main or var f[X])
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Note each of the *_fx.csv files has the same number of rows and columns, so you could easily load this data
into R for further analysis if you like.

6.10.11 Files Generated by Fitsum Script

This section discusses how the FitSum Script saves files to disk, if you want to see an example of a FitSum Script
created by a Fit Script, see Fitting a Two Compartment PopPK Model.

If you run a FitSum Script using the following command:-

$ popy_run my_fitsum_script.pyml

files and folders will be created on disk (within the same folder as the script) as follows:-

build
src
my_fitsum_script.pyml.html
my_fitsum_script.pyml.run.main.log
sphinx.log

Here ‘src’ contains files copied from the output of the parent Fit Script and some automatically generated .rst files.

The ‘build’ folder is the output of running Sphinx on the ‘src’ files. Sphinx is a utility for processing .rst files
into HTML and optionally other formats. The main output of running sphinx is here:-

build/
html/

index.html

Here ‘sphinx.log’ is the log file for Sphinx and ‘my_fitsum_script.pyml.run.main.log’ is the log file for the FitSum
Script.

You can view the summary of the fit/sim output to HTML files by typing:-

$ popy_view my_fitsum_script.pyml.html

Which should look something like First order absorption model with peripheral compartment.

6.10.12 Files Generated by Gensum Script

This section discusses how the GenSum Script saves files to disk, if you want to see an example of a GenSum
Script created by a Gen Script, see Generate a Two Compartment PopPK Data Set.

If you run a GenSum Script using the following command:-

$ popy_run my_gensum_script.pyml

folders will be created on disk (within the same folder as the script) as follows:-

build
src
my_gensum_script.pyml.html
my_gensum_script.pyml.run.main.log
sphinx.log

Here ‘src’ contains files copied from the output of the parent Gen Script and some automatically generated .rst files.
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The ‘build’ folder is the output of running Sphinx on the ‘src’ files. Sphinx is a utility for processing .rst files
into HTML and optionally other formats. The main output of running sphinx is here:-

build/
html/

index.html

Here ‘sphinx.log’ is the log file for Sphinx and ‘my_gensum_script.pyml.run.main.log’ is the log file for the
GenSum Script.

You can view the summary of the gen/sim output to HTML files by typing:-

$ popy_view my_gensum_script.pyml.html

Which should look something like First order absorption model with peripheral compartment.

6.10.13 Files Generated by Tutsum Script

This section describes the output of the TutSum Script. If you want to see an example of a TutSum Script created
by a Tut Script, see Generate data and Fit using Simple PopPK Model.

If you run a TutSum Script using the following command:-

$ popy_run my_tutsum_script.pyml

folders will be created on disk (within the same folder as the script) as follows:-

build
src
my_tutsum_script.pyml.html
my_tutsum_script.pyml.run.main.log
sphinx.log

Here ‘src’ contains files copied from the output of the parent Tut Script and some automatically generated .rst files.

The ‘build’ folder is the output of running Sphinx on the ‘src’ files. Sphinx is a utility for processing .rst files
into HTML and optionally other formats. The main output of running Sphinx is here:-

build/
html/

index.html

Here ‘sphinx.log’ is the log file for Sphinx and ‘my_tutsum_script.pyml.run.main.log’ is the log file for the TutSum
Script.

You can view the summary of the gen/fit/comp/sim output to HTML files by typing:-

$ popy_view my_tutsum_script.pyml.html

Which should look something like First order absorption model with peripheral compartment.

6.11 PoPy Quick Reference Guide

See Table 6.15:-
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Table 6.15: PoPy Quick Reference
Commands Scripts Sections

• popy_env
• popy_run
• popy_check
• popy_create
• popy_format
• popy_edit
• popy_doc
• popy_view
• popy_info
• popy_validate
• popy_activate
• popy_deactivate
• popy_imconv

• fit
• gen
• sim
• tut
• comp
• mfit
• mgen
• msim
• mtut
• mcomp
• grph
• vpc
• fitsum
• gensum
• tutsum
• n2pdat
• p2ndat

• METHOD_OPTIONS
• DESCRIPTION
• FILE_PATHS
• DATA_FIELDS
• PREPROCESS
• EFFECTS
• MODEL_PARAMS
• STATES
• DERIVATIVES
• PREDICTIONS
• ODE_SOLVER
• FIT_METHODS
• COVARIANCE
• OUTPUT_SCRIPTS
• OUTPUT_OPTIONS

Probability Distributions Dosing Functions Analytic Solutions

• ~unif(min,max)init
• ~norm(m,v)
• ~mnorm(m_vec,v_mat)
• ~bernoulli(p)
• ~poisson(p)
• ~negbinomial(p,r)

• @bolus
• @inf_rate
• @inf_dur
• @gamma
• @weibull

• @iv_one_cmp_cl
• @dep_one_cmp_cl
• @iv_two_cmp_cl
• @dep_two_cmp_cl
• @iv_three_cmp_cl
• @dep_three_cmp_cl

Variables • c[X], f[X], r[X], m[X], w[X], x[NEWIND]
• d[X], s[X], x[TIME], p[X]

TYPE values • obs, dose, pred, reset, reset+dose
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CHAPTER

SEVEN

APPENDICES

7.1 Glossary

Akaike information criterion A method of comparing two similar models by penalising models with a larger
number of parameters. See Akaike information criterion on Wikipedia

basin of convergence A set of initial points that lead to the same local minimum under a given iterative algorithm.

bobyqa optimisation BOBYQA= Bounded Optimisation by Quadratic Approximation, a none derivative based
optimisation method [Powell2009] used by ND method.

C++ C++ is a low level programming language which is automatically used by PoPy for some time critical
operations C++ on Wikipedia

categorical covariates Covariates that indicates membership in one of a set of unordered categories, such as race.

clearance The volume of the fluid presented to the eliminating organ (extractor) that is effectively completely
cleared of drug per unit time. (Definition from [RowlandTozer2012]), also see Clearance on Wikipedia

Compartment Diagram A graphical visualisation of the compartment model, using nodes for compartments
and edges for flows between compartments

confidence intervals Ranges in which we can be X% confident that a parameter lies.

covariance matrix A measure of spread for multiple random variables that may be correlated. See Covariance
on Wikipedia

covariates Measured or observed quantities that are read in from the input data file. Signified by a c[X]
in the model specification file (which could also be thought of as an abbreviation of “column”). They
include information such as ID, time, weight, and also measurements such as drug concentration.

Cython Cython is an superset of Python that compiles to C++. PoPy uses Cython extensively to process the
user config file. See Cython on Wikipedia

DDMoRe An online repository of PK/PD models see DDMoRe Website

dos prompt The dos prompt command line in Microsoft Windows. This is the older Windows shell, by default
with a black background.

elimination The removal of a drug from the body.

excretion The removal of waste substances from the body including unchanged drugs and metabolic products.
Most drug products are eliminated through the kidneys.

first order conditional estimation FOCE is a fitting method in Nonmem that uses a first order approximation
of the objective function conditioned on optimised random effects for each individual in the population.
For a description of PoPy’s implementation of FOCE see FOCE Fitting Method.
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first pass effect A reduction in the amount of drug entering circulation due to it being metabolised by the liver
or gut on its way to the blood system. First pass effect on Wikipedia

fixed effects A population-level parameters (usually means) that describe an average from which individuals
deviate in a random way, though where the nature of the randomness is known. Signified by f[X] in
the model specifications file.

Graphviz Graphviz is open source software used to create Compartment Diagram in PoPy. See Graphviz
on Wikipedia

hessian The 𝑛×𝑛 matrix of second derivatives of a function of 𝑛 variables. Contains information that describes
the shape of the surface at a given point (the minimum, for example).

HTML Hyper Text Markup Language used on the web and by PoPy to generate summary output. See HTML
on Wikipedia

importance sampling A method of sampling from a complex distribution by first sampling from
a simpler distribution and re-weighting with the ratio of the complex and simpler Wikipedia:
<Probability_density_function>. See Importance Sampling on Wikipedia.

initial value problem The ordinary differential equations typically solve a dynamic system which has a defined
input state and then the system evolves over time according to the ordinary differential equation system.
This type of integration problem, typical in PK/PD, is known as a Initial Value Problem.

iterative two stage ITS is a fitting method in Nonmem that optimises the objective function by switching
between optimising the fixed effects and random effects.

joint optimisation and estimation JOE is PoPy’s original fitting method see JOE Fitting Method, it optimises
the same objective function as FOCE and ITS and is most similar to ITS in terms of fitting performance.

Laplace approximation A method of approximating integrals. See Laplace method on Wikipedia. This objec-
tive function is used by LAPLACE and an approximation is used by JOE, FOCE and ITS fitting methods.

laplace fitting method A fitting method that uses the Laplace approximation as an objective function. Note
JOE, FOCE and ITS use a related, but less computationally expensive objective function.

Likelihood The conditional probability, p(D|M), of observing data D given a hypothesized model M. This
expresses the plausibility of model M given data D, but is a probability distribution over D rather than
M. As a result, it cannot be used to compare different models, only different parameter values for the
same model. Likelihood on Wikipedia

LSODA Numerical ordinary differential equation solver [Radhakrishnan1994] available in PoPy, see Example
ODE_SOLVER using CPPLSODA.

mass balance The principal that matter cannot be created or destroyed within a compartment model, apart
from deliberate inputs (e.g doses) and sink compartments that model excretion from the body. See Mass
Balance on Wikipedia.

metabolism Process by which drug is chemically transformed into another substance. Takes place primarily
in the liver.

Microsoft Windows A popular operating system for personal computers.

mixed effect model A structural model that uses both fixed effects and random effects to model population
parameters. In practise, all models contain at least one fixed effect, so the key feature is the use of random
effects to allow parameters to vary between subjects in the population.

model parameters Person-specific PK/PD parameters, usually defined as a function of the fixed effects,
random effects and measured covariates. Signified by m[X] in the model specification file.

Monolix Matlab based PK/PD modelling software. See http://lixoft.com/products/monolix/
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MPI Message Passing Interface. A protocol for parallelising software by passing information between processors.
See Message Passing Interface on Wikipedia

noise Random displacements added to a signal. See Signal Processing Noise on Wikipedia

none derivative estimation ND is PoPy’s newest fitting method see ND Fitting Method, it optimises the same
objective function as FOCE and uses the derivative based FOCE fitting method, but also utilises the none
derivative BOBYQA algorithm.

Nonmem Nonmem (NONlinear Mixed Effect Modelling) is a Fortran based system for PK/PD modelling.
[Bauer2009]

objective function The fixed effects and random effects of a model are estimated by minimising the objective
function, which is equivalent to maximising the likelihood of the model given the observations.

observations The observed values to be modelled, also known as the dependent variable. These measurements
(either synthetic or real) are signified by c[X] in the PREDICTIONS section of a PoPy script file.

ordinal covariates Covariates derived from a discretisation of a continuum such that values have a definite
order, such as the East Coast Oncology Group status that ranges from 0 (normal) to 4 (most severe).

ordinary differential equations Multiple differential equations, each with one independent variable. See
Ordinary differential equation on Wikipedia

powershell prompt The powershell prompt command line in Microsoft Windows. This is the newer Windows
shell, by default with a blue background.

practically identifiable A parameter of a model is practically identifiable or estimable, if the true value can
be estimated from a finite amount of data. See Identifiability Analysis on Wikipedia

practically unidentifiable A parameter that is not practically identifiable

predictions The value the model calculates for a given observations, usually a conversion to concentrations
via division by the volumes of the compartments. Signified by p[X] in the model specification file.

product key The PoPy product key is the unique key that identifies the the current licence. It has a form like
‘XXXX-XXXX-XXXX-XXXX-XXXX-XXXX-XXXX’. See PoPy Activation.

Python Python is a general purpose programming language used in PoPy scripts and to implement PoPy itself.
See Python on Wikipedia

R R is open source statistical software used extensively in the PK/PD community. See R on Wikipedia

random effects Deviation from the population-level fixed parameters, with defined distribution parameters.
Signified by r[X] in the model specification file.

shrinkage The tendency to for random effects to shrink towards the mean value when data are sparse.

solutions Solutions are defined by a .pyml file containing links to .csv files that determine a set of f[X], r[X],
m[X], s[X], p[X] variables that represent a candidate solution to a PK/PD model fitting problem.

Sphinx Documentation system used by PoPy and many other Python projects to generate .html and .pdf files.
See Sphinx on Wikipedia

state parameters The amount - not concentration - of drug in each compartment of the compartment model.
Signified by s[X] in the model specification file.

stochastic approximation expectation maximisation SAEM is a probabilistic fitting method originally
implemented in Monolix and also available in Nonmem.

structurally identifiable A parameter of a model is structurally identifiable, if given an infinite amount of
data the true underlying parameter value is recoverable. See Identifiability Analysis on Wikipedia

structurally unidentifiable A parameter that is not structurally identifiable
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symmetric positive definite A symmetric positive definite matrix is a matrix whose eigenvalues are all positive.
It is the matrix equivalent of having a real valued square root. In PK/PD models a population covariance
matrix is required to be symmetric positive definite. See Matrix Definiteness on Wikipedia

variance A measure of spread for a random variable. See Variance on Wikipedia

visual predictive check Given a set of f[X] values and a model, new p[X] values are simulated which
can then be compared with original c[X] data on a graph.

volume of distribution The volume (or volume of distribution) is the theoretical volume that a compartment
would need to have to give the concentration of drug found in the blood plasma. See Volume of Distribution
on Wikipedia

YAML A simple markup language used by PoPy Script File Formats. See YAML on Wikipedia

7.2 HTML Summary Links

PoPy outputs HTML summaries of fit_scripts, gen_scripts and tut_scripts.

This page lists the summary outputs for all example scripts used in this documentation. Browse this list to see
the variety of PK/PD modelling available in PoPy.

Note, each summary contains a link to the original script. e.g. A tut summary contains a link to the original
Tut Script, so you can download each script and re-run all of the examples on this page using your own installation
of PoPy. You can also adapt each example script to your own PK/PD modelling requirements.

7.2.1 Example Summaries

Simple Fit Example

Used in Fitting a Simple PopPK Model using PoPy to demonstrate running a Fit Script.

Note: Online Example (v1.1.2): quick_start/fit_example1

Simple Tut Example

Used in Generate data and Fit using Simple PopPK Model to demonstrate running a Tut Script.

Note: Online Example (v1.1.2): quick_start/tut_example1

First order absorption model with peripheral compartment

Used in Fitting a Two Compartment PopPK Model to demonstrate running a Fit Script.

Note: Online Example (v1.1.2): quick_start/builtin_fit_example
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First order absorption model with peripheral compartment

Used in Generate a Two Compartment PopPK Data Set to demonstrate running a Gen Script.

Note: Online Example (v1.1.2): quick_start/builtin_gen_example

Note: Example Data: https://product.popypkpd.com/docs/en/1.1.2/_autogen/quick_start/builtin_gen_example/
builtin_gen_example.pyml_output/gen/synthetic_data.csv

First order absorption model with peripheral compartment

Used in Generate data and Fit using a Two Compartment Model to demonstrate running a Tut Script.

Note: Online Example (v1.1.2): quick_start/builtin_tut_example

7.2.2 Individual Model Summaries

Elimination Example with KE parameter

Used in Elimination, Clearance and Volume of Distribution to demonstrate elimination with the elimination
rate constant, KE.

Note: Online Example (v1.1.2): indiv_examples/elimination/elim_ke_example

Elimination Example with Volume of Distribution

Used in Volume of Distribution to demonstrate elimination with the apparent volume of distribution, V.

Note: Online Example (v1.1.2): indiv_examples/elimination/elim_v_example

Elimination Example with Clearance

Used in Clearance to demonstrate elimination with clearance, CL.

Note: Online Example (v1.1.2): indiv_examples/elimination/elim_cl_example

One Compartment Model with Intravenous Dosing

Used in One Compartment Model with Intravenous Dosing to demonstrate a one compartment model with
intravenous dosing.
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Note: Online Example (v1.1.2): indiv_examples/compartment_models/odes/iv_one_cmp_cl

One Compartment Model with Absorption

Used in One Compartment Model with Absorption to demonstrate a one compartment model with absorption.

Note: Online Example (v1.1.2): indiv_examples/compartment_models/odes/dep_one_cmp_cl

Two Compartment Model with Intravenous Dosing

Used in Two Compartment Model with Intravenous Dosing to demonstrate a two compartment model with
intravenous dosing.

Note: Online Example (v1.1.2): indiv_examples/compartment_models/odes/iv_two_cmp_cl

Two Compartment Model with Absorption

Used in Two Compartment Model with Absorption to demonstrate a two compartment model with absorption.

Note: Online Example (v1.1.2): indiv_examples/compartment_models/odes/dep_two_cmp_cl

Three Compartment Model with Intravenous Dosing

Used in Three Compartment Model with Intravenous Dosing to demonstrate a three compartment model with
intravenous dosing.

Note: Online Example (v1.1.2): indiv_examples/compartment_models/odes/iv_three_cmp_cl

Three Compartment Model with Absorption

Used in Three Compartment Model with Absorption to demonstrate a three compartment model with absorption.

Note: Online Example (v1.1.2): indiv_examples/compartment_models/odes/dep_three_cmp_cl

Bolus Dose with no elimination.

Used in Bolus Dose to demonstrate a single bolus dose with no elimination.
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Note: Online Example (v1.1.2): indiv_examples/dosing/bolus_tut

Infusion Duration Dose with no elimination.

Used in Infusion Duration to demonstrate a single infusion dose parametrised by duration, with no elimination.

Note: Online Example (v1.1.2): indiv_examples/dosing/inf_dur_tut

Infusion Rate Dose with no elimination.

Used in Infusion Rate to demonstrate a single infusion dose parametrised by rate, with no elimination.

Note: Online Example (v1.1.2): indiv_examples/dosing/inf_rate_tut

Gamma Dose with no elimination.

Used in Gamma Dose to demonstrate a single gamma dose with no elimination.

Note: Online Example (v1.1.2): indiv_examples/dosing/gamma_tut

Weibull Dose with no elimination.

Used in Weibull Dose to demonstrate a single weibull dose with no elimination.

Note: Online Example (v1.1.2): indiv_examples/dosing/weibull_tut

Repeated Bolus Dose with first order elimination.

Used in Repeated Dosing to demonstrate a repeated bolus dose with first order elimination.

Note: Online Example (v1.1.2): indiv_examples/dosing/bolus_repeated_tut

Repeated Infusion Duration Dose with first order elimination.

Used in Repeated Dosing to demonstrate a repeated infusion duration dose with first order elimination.

Note: Online Example (v1.1.2): indiv_examples/dosing/inf_dur_repeated_tut
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Repeated Infusion Rate Dose with first order elimination.

Used in Repeated Dosing to demonstrate a repeated infusion rate dose with first order elimination.

Note: Online Example (v1.1.2): indiv_examples/dosing/inf_rate_repeated_tut

Repeated Gamma Dose with first order elimination.

Used in Repeated Dosing to demonstrate a repeated gamma dose with first order elimination.

Note: Online Example (v1.1.2): indiv_examples/dosing/gamma_repeated_tut

Repeated Weibull Dose with first order elimination.

Used in Repeated Dosing to demonstrate a repeated weibull dose with first order elimination.

Note: Online Example (v1.1.2): indiv_examples/dosing/weibull_repeated_tut

Model containing additive error only and additive error only input data

Tut script used in Residual Error Model to demonstrate additive noise only model.

Note: Online Example (v1.1.2): indiv_examples/error_models/ao_tut

Model containing proportional error only, with proportional only data

Tut script used in Residual Error Model to demonstrate proportional noise only model.

Note: Online Example (v1.1.2): indiv_examples/error_models/po_tut

Model containing both proportional and additive error

Tut script used in Residual Error Model to demonstrate proportional and additive noise model.

Note: Online Example (v1.1.2): indiv_examples/error_models/pa_tut
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Mixed error model fitted to mixed error data, but with incorrect variance definition

Fit script used in Residual Error Model to demonstrate fitting mis-specified proportional and additive noise
model to proportional and additive noise synthetic data.

Note: Online Example (v1.1.2): indiv_examples/error_models/pa_gen_pa_fit_badvar

Sine circadian model

Used in Example DERIVATIVES using x[TIME] to demonstrate a PK/PD model with a circadian input function
for a single individual.

Note: Online Example (v1.1.2): indiv_examples/pd_models/circ_sin

Direct PD Model

Used in Example DERIVATIVES for PD Model to demonstrate an individual PK/PD model with a bolus dose,
one compartment PK and single PD compartment.

Note: Online Example (v1.1.2): indiv_examples/pd_models/direct_pd

Direct PD Model Simultaneous PK/PD Parameter fit

Used in Example PREDICTIONS for PD Model to demonstrate an individual PK/PD model with a bolus dose,
one compartment PK and single PD compartment.

Note: Online Example (v1.1.2): indiv_examples/pd_models/direct_pd_simul

One Compartment Model with Absorption estimating KA

Used in Uncertainty and Standard Errors to show how we estimate confidence in a single parameter problem.

Note: Online Example (v1.1.2): indiv_examples/uncertainty/d1cmp_ka_stderr

One Compartment Model with Absorption estimating KA and V

Used in Uncertainty and Standard Errors to show how we estimate confidence in a two parameter problem.

Note: Online Example (v1.1.2): indiv_examples/uncertainty/d1cmp_ka_v_stderr
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One Compartment Model with Absorption estimating KA and CL

Used in Uncertainty and Standard Errors to show how we estimate confidence in a two parameter problem.

Note: Online Example (v1.1.2): indiv_examples/uncertainty/d1cmp_ka_cl_stderr

One Compartment Model with Absorption estimating V and CL

Used in Uncertainty and Standard Errors to show how we estimate confidence in a two parameter problem.

Note: Online Example (v1.1.2): indiv_examples/uncertainty/d1cmp_v_cl_stderr

One Compartment Model with Absorption estimating KA, V and CL

Used in Uncertainty and Standard Errors to show how we estimate confidence in a three parameter problem.

Note: Online Example (v1.1.2): indiv_examples/uncertainty/d1cmp_ka_v_cl_stderr

7.2.3 Population Model Summaries

One Compartment Model with Absorption and Inter-subject Variance f[CL_isv]=0.2

Used in Inter-Subject Variation (ISV) to demonstrate inter-subject (or between-subject) variability.

Note: Online Example (v1.1.2): pop_examples/compartment_models/d1cmp_cl_isv

One Compartment Model with Absorption and Inter-subject Variance f[CL_isv]=0.01

Used in Inter-Subject Variation (ISV) to demonstrate inter-subject (or between-subject) variability.

Note: Online Example (v1.1.2): pop_examples/compartment_models/d1cmp_cl_isv_01

One Compartment Model with Absorption and Inter-subject Variance f[CL_isv]=0.5

Used in Inter-Subject Variation (ISV) to demonstrate inter-subject (or between-subject) variability.

Note: Online Example (v1.1.2): pop_examples/compartment_models/d1cmp_cl_isv_05
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One Compartment Model with Absorption and no inter-subject Variance f[CL_isv]=0

Used in Inter-Subject Variation (ISV) to demonstrate inter-subject (or between-subject) variability.

Note: Online Example (v1.1.2): pop_examples/compartment_models/d1cmp_cl_isv_naive

One Compartment Model with Absorption and Inter-occasion Variance f[CL_isv]=0.2

Used in Inter-Occasion Variation (IOV) to demonstrate inter-occasion (or between-occasion) variability.

Note: Online Example (v1.1.2): pop_examples/compartment_models/d1cmp_cl_iov

One Compartment Model with Absorption and Inter-occasion Variance f[CL_isv]=0.5

Used in Inter-Occasion Variation (IOV) to demonstrate inter-occasion (or between-occasion) variability.

Note: Online Example (v1.1.2): pop_examples/compartment_models/d1cmp_cl_iov_05

One Compartment Model with Absorption and no inter-occasion Variance f[CL_iov]=0

Used in Inter-Occasion Variation (IOV) to demonstrate inter-occasion (or between-occasion) variability.

Note: Online Example (v1.1.2): pop_examples/compartment_models/d1cmp_cl_iov_naive

Diagonal matrix generation diagonal matrix fit using separate univariate normals

Used in Modelling Correlation in Random Effects to demonstrate correlation between random effects.

Note: Online Example (v1.1.2): pop_examples/re_covariance/gen_indep_fit_indep

Diagonal matrix generation diagonal matrix fit

Used in Modelling Correlation in Random Effects to demonstrate correlation between random effects.

Note: Online Example (v1.1.2): pop_examples/re_covariance/gen_diag_fit_diag
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Diagonal matrix generation full matrix fit

Used in Modelling Correlation in Random Effects to demonstrate correlation between random effects.

Note: Online Example (v1.1.2): pop_examples/re_covariance/gen_diag_fit_full

Full matrix generation diagonal matrix fit

Used in Modelling Correlation in Random Effects to demonstrate correlation between random effects.

Note: Online Example (v1.1.2): pop_examples/re_covariance/gen_full_fit_diag

Full matrix generation full matrix fit

Used in Modelling Correlation in Random Effects to demonstrate correlation between random effects.

Note: Online Example (v1.1.2): pop_examples/re_covariance/gen_full_fit_full

Body Weight Covariate

Used in Covariates to demonstrate using weight as a covariate.

Note: Online Example (v1.1.2): pop_examples/covariates/weight_covariate

Depot + One compartment PK with BLQ

Used in Generate BLQ observations and fit different error models to demonstrate using ~rectnorm() distribution
to model observations below LLQ.

Note: Online Example (v1.1.2): pop_examples/blq/blq_pk_tut

Depot One Comp PK with BLQ observations set to LLQ

Used in Generate BLQ observations and fit different error models to demonstrate replacing BLQ observations
with LLQ.

Note: Online Example (v1.1.2): pop_examples/blq/blq_pk_norm_fit
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Depot One Comp PK with BLQ observations set to 0.5*LLQ

Used in Generate BLQ observations and fit different error models to demonstrate replacing BLQ observations
with 0.5*|llq|.

Note: Online Example (v1.1.2): pop_examples/blq/blq_pk_norm_fit_half

Depot One Comp PK ignoring BLQ observations.

Used in Generate BLQ observations and fit different error models to demonstrate removing BLQ observations
from data set.

Note: Online Example (v1.1.2): pop_examples/blq/blq_pk_norm_fit_ignore

7.3 Troubleshooting

Links to common errors when running PoPy models are shown in Table 7.1:-

Table 7.1: Solutions to common PoPy issues
Problem Solution

‘popy_run’ is not recognized run popy_env before popy_run
The term ‘popy_run’ is not recognized as the name of a cmdlet run popy_env before popy_run
‘popy_env’ is not recognized put ‘popy_env.bat’ on system path
The term ‘popy_env’ is not recognized as the name of a cmdlet put ‘popy_env.bat’ on system path
‘popy_env’ permission error use dos prompt to call popy_env

7.3.1 ‘popy_run’ is not recognized

Scenario

You get this error if you open a dos prompt and attempt to run the popy_run program as follows:-

$ popy_run

Then get the response:-

'popy_run' is not recognized as an internal or external command,
operable program or batch file.

Cause

The problem is that the PoPy environment has not been enabled, so Microsoft Windows does not know where
to look for the command ‘popy_run’.
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Solution

The solution is to run popy_env before you do popy_run, as follows:-

$ popy_env
$ popy_run

popy_run should now work as expected.

7.3.2 The term ‘popy_run’ is not recognized as the name of a cmdlet

Scenario

You get this error if you open a powershell prompt and attempt to run the popy_run program as follows:-

$ popy_run

Then get the response:-

popy_run : The term 'popy_run' is not recognized
→˓as the name of a cmdlet, function, script file, or operable program.
Check the spelling of the name,
→˓ or if a path was included, verify that the path is correct and try again.
At line:1 char:1
+ popy_run
+ ~~~~~~~~

+ CategoryInfo
→˓ : ObjectNotFound: (popy_run:String) [], CommandNotFoundException

+ FullyQualifiedErrorId : CommandNotFoundException

Usually in difficult to read red on blue writing.

Cause

The problem is that the PoPy environment has not been enabled, so Microsoft Windows does not know where
to look for the command ‘popy_run’.

Solution

The solution is to run popy_env before you do popy_run, as follows:-

$ popy_env
$ popy_run

popy_run should now work as expected.

7.3.3 ‘popy_env’ is not recognized

Scenario

You start a dos prompt and type the following command:-
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$ popy_env

Then you see the message:-

'popy_env' is not recognized as an internal or external command,
operable program or batch file.

Cause

PoPy is either not installed or your system path is not configured correctly.

Solution

In a dos prompt type:-

$ echo %PATH%

In order for PoPy to work the directory containing ‘popy_env.bat’ on your machine, needs to be listed in the
Microsoft Windows system path. If the ‘popy_env.bat’ directory is not present, then you need to manually add
it. In a dos prompt you can do this:-

$ set PATH=%PATH%;c:\PoPy

Where ‘c:\PoPy’ is the recommended install directory for PoPy.

To save the path permanently do:-

$ setx PATH %PATH%

Note you probably need admin rights to use the ‘setx’ command. Once your Microsoft Windows path is sorted
out you should be able to run and test the PoPy environment as follows:-

$ popy_env
$ popy_info

7.3.4 The term ‘popy_env’ is not recognized as the name of a cmdlet

Scenario

You start a powershell prompt and type the following command:-

$ popy_env

Then you see the message:-

popy_env : The term 'popy_env' is not recognized
→˓as the name of a cmdlet, function, script file, or operable program.
Check the spelling of the name,
→˓ or if a path was included, verify that the path is correct and try again.
At line:1 char:1
+ popy_run
+ ~~~~~~~~
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+ CategoryInfo
→˓ : ObjectNotFound: (popy_run:String) [], CommandNotFoundException

+ FullyQualifiedErrorId : CommandNotFoundException

Cause

PoPy is either not installed or your system path is not configured correctly.

Solution

In a powershell prompt type:-

$ $env:Path

In order for PoPy to work the directory containing ‘popy_env.bat’ on your machine, needs to be listed in the
Microsoft Windows system path. If the ‘popy_env.bat’ directory is not present, then you need to manually add
it. In a powershell prompt prompt you can do this:-

$ $env:Path = "$env:Path;c:\PoPy"

Where ‘c:\PoPy’ is the recommended install directory for PoPy.

To save the new path permanently do:-

$ setx PATH $env:Path

Note you probably need admin rights to use the ‘setx’ command. Once your Microsoft Windows path is sorted
out you should be able to run and test the PoPy environment as follows:-

$ popy_env
$ popy_info

7.3.5 ‘popy_env’ permission error

Scenario

You start a powershell prompt and type the following command:-

$ popy_env

Then you see the message:-

popy_env : File
→˓C:\PoPy\popy_env.ps1 cannot be loaded because running scripts is disabled on
this system. For more information, see
→˓about_Execution_Policies at https:/go.microsoft.com/fwlink/?LinkID=135170.
At line:1 char:1
+ popy_env
+ ~~~~~~~~

+ CategoryInfo : SecurityError: (:) [], PSSecurityException
+ FullyQualifiedErrorId : UnauthorizedAccess
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Cause

You do not have sufficient Powershell script execution rights to run the popy_env setup script.

Solution1

If you are an Administrator on your Microsoft Windows system, you may grant execution rights to all powershell
scripts, by opening a Administrator powershell prompt and running this command:-

$ set-ExecutionPolicy unrestricted

Or possibly just set the execution policy for the popy_env script alone:-

$ set-ExecutionPolicy ByPass -File c:\PoPy\popy_env.ps1

This should then allow you to run:-

$ popy_env

From a normal non-admin powershell prompt.

For more information on the Powershell script permission system see this page:-

https://docs.microsoft.com/en-gb/powershell/module/microsoft.powershell.core/about/about_execution_
policies

Solution2

An alternative solution maybe to Uninstall PoPy and reinstall PoPy in a location where your Microsoft Windows
user has more permissions. It’s a good idea to avoid folders like:-

c:\Program Files\PoPy

We recommend this directory, if you want non-admin users to run PoPy:-

c:\PoPy

For more information see Install PoPy

Solution3

You could invoke popy_env from a dos prompt instead and just not use Powershell. For example start PoPy
using Desktop Shortcut Method.

7.4 Bug Reporting

7.4.1 Check you have a bug!

Are you using the latest version of PoPy? It is possible that the bug you are encountering has already been fixed.
Examine the Release Notes.

It might be worth upgrading PoPy anyway, to see if the bug gets fixed. All PoPy end user Licensing allow free
upgrades to the latest version.
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Have you managed to reproduce the bug reliably? Preferably on more than one machine. Sometimes the process
of reproduction reveals an easy solution.

Note that often PoPy throws an error due to a user error in the input script file. This is not classed as a bug.
However if the error message is unclear and confusing, that is a bug!

7.4.2 Bug Report Advice

Three elements that help produce a good bug report, are as follows:-

Steps to reproduce

It is important that the developers can reproduce the bug, otherwise the bug cannot be fixed! It is useful to include
all details, e.g. Operating system and current version of PoPy. The output of popy_info is very helpful. Also
any input script files and data sets. If you can reproduce the problem on a small example that fails quickly, that
is also very helpful.

Note, confidentiality may prevent you from sharing your original data with us. In this case you may consider:-

• Renaming the data header file to remove context

• Add random noise to your data (check the bug still occurs)

• Removing unused columns and rows (check the bug still occurs)

• Creating a new data set using a Gen Script, that exhibits the same bug.

It is helpful to use a zip utility, so we can easily set up your files and reproduce the bug from an email.

Expected result

State what you expected to happen!

Sometimes this is obvious. For example if PoPy crashes mid run. However sometimes it is more subtle, for example,
you expected PoPy to give an answer much closer to a ground truth value for a particular model and data set.

Actual result

Clearly state what actually happened. Reporting any error messages is particularly vital. Note, that a PoPy
program typically produces a log file like this:-

my_script.pyml.run.main.log

However if a runtime error occurs an additional log file is created as follows:-

my_script.pyml.run.error.log

7.4.3 Reporting the bug

Currently PoPy does not have a formal bug tracking system (it may do in the near future), so for now email
your bug to:-

info@popypkpd.com
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We will endeavour to respond quickly with a time estimate of how long it will take to fix the bug.

If the bug is serious enough, we will create a new PoPy binary as quickly as possible, otherwise the bug will
be fixed in the next planned release for PoPy.

7.5 Credits

PoPy could not have been developed without the efforts of many people.

7.5.1 Authors

Main contributors are:-

• Phil Tresadern

• David Cristinacce

• Andrew Cristinacce

• James Wright

7.5.2 Sponsor

Wright Dose Ltd.

7.5.3 Python Libraries

Many thanks to the people responsible for the following Python gems:-

• NumPy - fast c style arrays + matrices

• SciPy - ODE solver + stats functions

• matplotlib - Plotting graphs

• SymPy - Symbolic Python - thanks for all those Jacobians

• sphinx - for generating this documentation

• pylint - for diligently pointing out all our errors

• jenkins - continuous integration server - for helping pylint shout louder

7.6 Release Notes

This page lists the various PoPy releases to date:-

7.6.1 PoPy v1.1.2

Release date = 11 Mar 2022
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Improvements

• Faster processing for models with lots (tens of thousands) of observation rows that have a normally
distributed error model.

• Parameterized compartment definitions so that many compartments can be defined in a single line.

• Better feedback when calculations result in a not-a-number (NaN) that derails the fitting process.

• Assumes that any uninitialized d[X] are initialized to zero, so you can add to flows without having to
explicitly initialize them first.

• Faster evaluation of normally-distributed likelihoods.

• Extended sequential() distribution now allows arbitrary splitting of tree levels, e.g., c[AMT] = sequential([0,
100, 200]).

• Better code parsing flags up errors in the script earlier in the process.

Bug Fixes

• Covariance matrix (OMEGA) values that were defined as being constant were being modified by the
JOE fitter.

• Models containing fixed effects that are constant would sometimes crash due to an indexing bug in the
subset of all fixed effects.

• Incorrect calculation in ds/dm when using mixed models (with both a closed-form compartmental model
and ODEs).

• IMP under parallel processing tried to recompute proposal distributions on every process rather than just
on the master process.

• IMP used an approximate Lambda when it should have been using an exact one (and vice versa).

• Parsing the PREPROCESS block would sometimes alter its contents, causing faults downstream.

• Failure due to long filenames avoided by using symbolic links and raising warnings rather than errors
under recoverable conditions.

• Covariances (OMEGAs) were being updated when they were defined as constants in some methods (e.g.
JOE).

• Constant fixed effects were causing indexing problems in some fitting algorithms.

• Output folders created whenever they are needed (which wasn’t always the case).

• Sim failed when a solution file had a different DATA_FIELDS content from the corresponding Gen file.

• Fixed effects “associated” with an r[X] that is effectively constant (e.g., mean=0 and variance=0) were
not being updated at all, rather than being updated using alternative (e.g., gradient-based) methods.

• Incorrect covariance matrix when the model included no random effects.

• Tabulated f[X] values were all the same.

• Tutsum failed to copy the compartment diagram from Gensum.

7.6.2 PoPy v1.1.1

Release date = 22 Oct 2021
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Improvements

• More stable estimation when using forward sensitivity equations.

• Improvements to VPC generation

• Some improvements in speed during fitting, especially for situations where there are lots of bolus doses
per subject.

• Better memory management when fitting in parallel.

• Quotes in column headers of the data file are now permitted.

Bug Fixes

• Fixed various bugs with fitting in parallel

7.6.3 PoPy v1.1.0

Release date = 22 Sep 2021

Improvements

• Reduced RAM usage when running PoPy in parallel using MPI. Previous version shared all subject data
on all processors. New parallel code spreads subject data across all processors and avoids unnecessary
duplication. Improves performance on large multi-core machines.

• Increased number of parameters that the ND fitting method and BOBYQA optimiser can process, previously
restricted to 35, now increased to 200.

• Change the colour of the dosing lines in individual subject plots to yellow (formerly black), this enables
more informative graphs for subjects who have a lot of separate doses.

• Improved the speed and accuracy of the r[X] optimisation using more analytic gradient results.

• Added ability to create prediction corrected (pred_corr) and prediction variance corrected (predvar_corr)
VPC output via the “norm_method” parameter of a Vpc Script.

• Added ability to create stratified VPC output via the “split_field” parameter of a Vpc Script. A separate
vpc is output for each unique value in a specified c[X] data variable.

• Made the MSim Script and Vpc Script code more RAM efficient.

• Made models with a large number of dosing events per subject run more efficiently.

Bug Fixes

• Fixed bug when passing string data into Cython functions.

7.6.4 PoPy v1.0.5

Release date = 13 May 2021
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Improvements

• Added new ND fitting method, the latest and most robust PoPy estimation approach.

• Improved fitting and lower ObjV using ND method.

• Upgraded base Python distribution of PoPy from version 3.5 to version 3.8. This allows us access to
more up-to-date Python packages and functionality.

• Improved automatic compartment diagram generation with “in” and “out” nodes.

• Improved automatic checking of input scripts.

Bug Fixes

• Improvements in error catching and reporting when running PoPy in parallel using MPI.

• Fixed bug when using backslashes in DERIVATIVES section.

7.6.5 PoPy v1.0.4

Release date = 23 Dec 2020

Improvements

• Added CPPLSODA C++ based implementation of LSODA ODE_SOLVER, which runs faster than
SCIPY_ODEINT within PoPy and returns similar results.

• Improved PARALLEL performance of FOCE algorithm.

• Improved fitting of FOCE method to achieve lower ObjV in many models.

• Revised documentation.

Bug Fixes

• Bugs in gradient computation due to variable c[X] within individual data fixed.

• Fixed bugs in standard error computation, now more reliable.

7.6.6 PoPy v1.0.3

Release date = 05 Sep 2020

Improvements

• Added implementation of an FOCE Fitting Method to complement the previous JOE Fitting Method.
Note we now recommend running the JOE fitter, then the FOCE fitter in serial to get the best parameter
fitting results in PoPy.

• New ~rectnorm() distribution for fitting to BLQ data, using JOE or FOCE methods without using the
more computationally expensive LAPLACE objective value. See Generate BLQ observations and fit
different error models.
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• Also new BLQ related ~cennorm() distribution and ~truncnorm() distribution.

• New ~binomial() distribution likelihood.

• Improved the speed and quality of the noise f[X] parameter estimates for JOE fitting.

• New plots show the final f[X] population fit (same for all individuals, with r[X] zero) and the
individual fit (i.e. empirical bayes estimates for r[X] optimised for each individual). Previously we
plotted only the initial unoptimised f[X] fit and the final f[X] individual fits.

• The temporary functions generated by PoPy (based on the config file) are now written into a single module
on disk. This single module compiles quicker using Cython, compared to having each temporary function
in it’s own module.

Format Changes

• Added PREPROCESS section to multiple scripts, for example a Fit Script. This allows the user to easily filter
and alter the data set, using simple Python code, before fitting a model, without changing the data file on disk.

• Added POSTPROCESS section for multiple scripts, for example a Gen Script. This allows the user to
easily alter or filter a synthetically generated data set, before saving to disk.

Bug Fixes

• Fixed bug in PREDICTIONS section that did not handle multiple observations correctly in some instances,
when some rows should be ignored due to Python ‘if’ statements.

• Fixed interpretation of ‘+inf’ and ‘-inf’ labels in EFFECTS.

7.6.7 PoPy v1.0.2

Release date = 18 Sep 2019

Improvements

• Added ability to process scripts in PARALLEL. This speeds up computation time for models with a large
number of individuals and takes advantage of multi-core computers.

• Created POSTPROCESS section to allow filtering of data create by a PoPy model. For example with
a Gen Script

• Added ability to process multiple files in a directory with one command using ‘*’ syntax, see Running multi-
ple scripts, Checking multiple scripts, Format multiple scripts, Edit multiple scripts, Open multiple html files

• Speed improvements to core JOE algorithm, Standard Errors computation and plotting using Grph Script.

• MFit Script now outputs a summary of the fitting results for all populations to a single .csv file.

• Displaying the diagonal elements of f[X] variance matrices at each iteration. The off diagonal f[X]
elements are only displayed at the end of fitting, due to space considerations.
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Format Changes

• Simplified the structure of old ‘LEVEL_PARAMS’, replaced with EFFECTS which removes the redundant
‘split_field’ and ‘split_dict’ attributes.

• Renamed the ‘output_mode’ values in OUTPUT_SCRIPTS, using shorter names ‘gen_script_and_run’
-> ‘run’, ‘gen_script_only’ -> ‘create’, ‘no_output’ -> ‘none’.

• Renamed the ‘FINITE_DIFF’ method in COVARIANCE to ‘SANDWICH’.

Note scripts in v1.0.1 and v1.0.0 format can be automatically updated to v1.0.2 using the popy_format tool.

Bug Fixes

• Made float_format change format of all float values in output scripts and summary html outputs. Only
applied to subset before.

• Fixed bug in iteration number when displaying ObjV over time Objective function at each iteration for
simple PopPK example

7.6.8 PoPy v1.0.1

Release date = 28 Jun 2019

This is mainly a bug fix release of PoPy

Improvements

• The Standard Errors are now output in an easy to read format, instead of the whole hessian matrix.

• Changed the configuration file entry required to compute standard errors see COVARIANCE.

• Log files apart from the main log file are now stored in a ‘_log’ sub directory.

• The popy_run tool now asks the user if they want to proceed if the main log file already exist for a given
script. Previously only the existence of the output folder was checked. The can still skip this check using
the ‘-o’ option.

Bug Fixes

• Licence manager was giving a date error in North American time zones.

• Bug in configuration file parser for DERIVATIVES section when encountering round brackets (as opposed
to expected curly brackets) in Dosing Functions.

• Documentation contents page indexing in PDF was incorrect.

7.6.9 PoPy v1.0.0

Release date = 24 May 2019

This is the first version of PoPy, so there are no bug fixes or new features only the initial implementation.

Or in other words, all the features and bugs are new!
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