- Language: en
Simple Tut Example¶
[Generated automatically as a Fitting summary]
Inputs¶
Description¶
| Name: | tut_example1 |
|---|---|
| Title: | Simple Tut Example |
| Author: | J.R. Hartley |
| Abstract: |
One compartment model with elimination rate constant KE.
| Keywords: | one compartment model; iv_one_cmp_k |
|---|---|
| Input Script: | tut_example1_fit.pyml |
| Input Data: | synthetic_data.csv |
| Diagram: |
Initial fixed effect estimates¶
f[KE] = 0.05
f[PNOISE] = 0.1
f[KE_isv] = 0.1
Outputs¶
Final fitted fixed effects¶
f[KE] = 0.10617
f[PNOISE] = 0.044936
f[KE_isv] = 0.02739
Fitted parameter .csv files¶
| Fixed Effects: | fx_params.csv (fit) |
|---|---|
| Random Effects: | rx_params.csv (fit) |
| Model params: | mx_params.csv (fit) |
| State values: | sx_params.csv (fit) |
| Predictions: | px_params.csv (fit) |
Plots¶
Comparison¶
Compare Main f[X]¶
| Variable Name | Fitted Value | Starting Value | Prop Change | Abs Change |
|---|---|---|---|---|
| f[KE] | 0.106171 | 0.05 | 1.12343 | 0.0561713 |
Compare Noise f[X]¶
| Variable Name | Fitted Value | Starting Value | Prop Change | Abs Change |
|---|---|---|---|---|
| f[PNOISE] | 0.0449363 | 0.1 | 0.550637 | 0.0550637 |
Compare Variance f[X]¶
| Variable Name | Fitted Value | Starting Value | Prop Change | Abs Change |
|---|---|---|---|---|
| f[KE_isv] | 0.0273899 | 0.1 | 0.726101 | 0.0726101 |