- Language: en
METHOD_OPTIONS¶
Type: dict_record
method options for msim_script
Example:-
METHOD_OPTIONS:
    py_module: msim
    rand_seed: 12345
    float_format: default
py_module¶
Type: one_of(msim)
Python module required to process this script file
Example:-
py_module: msim
rand_seed¶
Option to set seed to make run result reproducible -e.g. when debugging.
Example:-
rand_seed: 12345
PARALLEL¶
Type: one_of_record
one of many possible servers
Example:-
PARALLEL:
    SINGLE: {}
DESCRIPTION¶
Type: dict_record
Description fields for script.
Example:-
DESCRIPTION:
    name: example
    title: A PKPD model
    author: A.N. Other
    abstract: |
    keywords: []
FILE_PATHS¶
Type: dict_record
file paths for pop_msim
Example:-
FILE_PATHS:
    input_data_file: input.csv
    output_folder: auto
    temp_folder: auto
    log_folder: auto
    output_file_ext: ['svg']
    input_solution_file: solution.pyml
input_data_file¶
Type: input_file
path to input comma separated value file in popy data format
Example:-
input_data_file: input.csv
output_folder¶
Type: output_folder / auto
Output folder - results of computation stored here
Example:-
output_folder: auto
temp_folder¶
Type: output_folder / auto
Temp folder - temporary files stored here
Example:-
temp_folder: auto
log_folder¶
Type: output_folder / auto
Log folder - log files stored here
Example:-
log_folder: auto
output_file_ext¶
Type: list_of(pdf,png,svg)
Output file extension - determines graphical output file format.
Example:-
output_file_ext: ['svg']
input_solution_file¶
Type: input_file / none
Solution containing f[X] values from a previous run.
Example:-
input_solution_file: solution.pyml
DATA_FIELDS¶
Type: dict_record
data fields for popy.dat.fields object
Example:-
DATA_FIELDS:
    type_field: TYPE
    id_field: ID
    time_field: TIME
type_field¶
Type: str
Field name in data file that contains row type info, e.g. obs/dose etc
Example:-
type_field: TYPE
PREPROCESS¶
Type: verbatim
Code that preprocesses the input data. Use this to filter rows and create derived covariates.
Example:-
PREPROCESS: |
EFFECTS¶
Type: repeat_verb_record
EFFECT params to define hierarchical population model
Example:-
EFFECTS:
    POP: |
        f[KA] ~ P1.0
        f[CL] ~ P1.0
        f[V1] ~ P20
        f[Q] ~ P0.5
        f[V2] ~ P100
        f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] ~ spd_matrix() [
            [0.05],
            [0.01, 0.05],
            [0.01, 0.01, 0.05],
            [0.01, 0.01, 0.01, 0.05],
            [0.01, 0.01, 0.01, 0.01, 0.05],
        ]
        f[PNOISE] ~ P0.1
    ID: |
        r[KA, CL, V1, Q, V2] ~ mnorm([0,0,0,0,0], f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv])
MODEL_PARAMS¶
Type: verbatim
Defines the mapping from c[X], f[X] and r[X] variables to individual model m[X] parameters.
Example:-
MODEL_PARAMS: |
    m[KA] = f[KA] * exp(r[KA])
    m[CL] = f[CL] * exp(r[CL])
    m[V1] = f[V1] * exp(r[V1])
    m[Q] = f[Q] * exp(r[Q])
    m[V2] = f[V2] * exp(r[V2])
    m[ANOISE] = 0.001
    m[PNOISE] = f[PNOISE]
STATES¶
Type: verbatim
Optional section for setting initial values of s[X] variables can also set slabel[X] text labels.
Example:-
STATES: |
DERIVATIVES¶
Type: verbatim
Define how the covariates and effects determine flows between compartments.
Example:-
DERIVATIVES: |
    # s[DEPOT,CENTRAL,PERI] = @dep_two_cmp_cl{dose:@bolus{amt:c[AMT]}}
    d[DEPOT] = @bolus{amt:c[AMT]} - m[KA]*s[DEPOT]
    d[CENTRAL] = m[KA]*s[DEPOT] - s[CENTRAL]*m[CL]/m[V1] - s[CENTRAL]*m[Q]/m[V1]  + s[PERI]*m[Q]/m[V2]
    d[PERI] = s[CENTRAL]*m[Q]/m[V1] - s[PERI]*m[Q]/m[V2]
PREDICTIONS¶
Type: verbatim
Define the likelihoods computed by comparing p[X] vs c[X].
Example:-
PREDICTIONS: |
    p[DV_CENTRAL_pred] = s[CENTRAL]/m[V1]
    var = m[ANOISE]**2 + m[PNOISE]**2 * p[DV_CENTRAL_pred]**2
    c[DV_CENTRAL_sim] ~ norm(p[DV_CENTRAL_pred], var)
ODE_SOLVER¶
Type: one_of_record
one of many possible solvers
Example:-
ODE_SOLVER:
    SCIPY_ODEINT:
        atol: 1e-06
        rtol: 1e-06
        max_nsteps: 10000000
        use_supersections: True
        use_jacobian: False
        use_sens: False
        use_tcrit: False
ANALYTIC¶
Type: dict_record
Analytic method for solving ODE
Example:-
ANALYTIC:
    use_supersections: auto
    use_sens: True
use_supersections¶
Option to combine sections into supersections, which can make PoPy run faster, however with discontinuous ODE params you may need to turn this off (closer to nonmem approach).
Example:-
use_supersections: auto
SCIPY_ODEINT¶
Type: dict_record
odeint solver record
Example:-
SCIPY_ODEINT:
    atol: 1e-06
    rtol: 1e-06
    max_nsteps: 10000000
    use_supersections: auto
    use_jacobian: False
    use_sens: True
    use_tcrit: False
use_supersections¶
Option to combine sections into supersections, which can make PoPy run faster, however with discontinuous ODE params you may need to turn this off (closer to nonmem approach).
Example:-
use_supersections: auto
CPPODE¶
Type: dict_record
C++ version of original cvode c library.
Example:-
CPPODE:
    atol: 1e-06
    rtol: 1e-06
    max_nsteps: 10000000
    use_supersections: auto
    use_sens: True
use_supersections¶
Option to combine sections into supersections, which can make PoPy run faster, however with discontinuous ODE params you may need to turn this off (closer to nonmem approach).
Example:-
use_supersections: auto
CPPLSODA¶
Type: dict_record
C++ version of original cvode c library.
Example:-
CPPLSODA:
    atol: 1e-06
    rtol: 1e-06
    max_nsteps: 10000000
    use_supersections: auto
    use_sens: True
    hmin: 1e-12
use_supersections¶
Option to combine sections into supersections, which can make PoPy run faster, however with discontinuous ODE params you may need to turn this off (closer to nonmem approach).
Example:-
use_supersections: auto
OUTPUT_OPTIONS¶
Type: dict_record
Output options for msim_script
Example:-
OUTPUT_OPTIONS:
    sim_time_step: -1.0
    n_pop_samples: 100
OUTPUT_SCRIPTS¶
Type: dict_record
scripts to output for further processing
Example:-
OUTPUT_SCRIPTS:
    VPC:
        output_mode: none
        vpc_list: ['COMB_QUANT_SIM_VPC']
        y_var_src_list: ['sim', 'orig']
        y_var_list: ['DV_CENTRAL_sim', 'DV_CENTRAL']
        y_var_norm_list: ['DV_CENTRAL_pred', 'DV_CENTRAL_pred']
        y_var_label_list: ['Drug conc. (units)', 'Drug conc. (units)']
        x_var: TIME
        split_field: none
        share_axes: False
        y_scale: linear
VPC¶
Type: dict_record
Options to pass to vpc_script.
Example:-
VPC:
    output_mode: none
    vpc_list: ['COMB_QUANT_SIM_VPC']
    y_var_src_list: ['sim', 'orig']
    y_var_list: ['DV_CENTRAL_sim', 'DV_CENTRAL']
    y_var_norm_list: ['DV_CENTRAL_pred', 'DV_CENTRAL_pred']
    y_var_label_list: ['Drug conc. (units)', 'Drug conc. (units)']
    x_var: TIME
    split_field: none
    share_axes: False
    y_scale: linear
vpc_list¶
Type: list(str)
List of vpc types to generate in popy_vpc script.
Example:-
vpc_list: ['COMB_QUANT_SIM_VPC']
y_var_src_list¶
Type: list(str)
Source of data has to be either sim or orig
Example:-
y_var_src_list: ['sim', 'orig']
y_var_list¶
Type: list(str)
List of y variable names to be plotted on graph.
Example:-
y_var_list: ['DV_CENTRAL_sim', 'DV_CENTRAL']
y_var_norm_list¶
Type: list(str)
List of y variable names to normalise y_var_list.
Example:-
y_var_norm_list: ['DV_CENTRAL_pred', 'DV_CENTRAL_pred']
y_var_label_list¶
Type: list(str)
List of y variable labels to be plotted on graph.
Example:-
y_var_label_list: ['Drug conc. (units)', 'Drug conc. (units)']
y_scale¶
Type: one_of(linear,log)
y axis scale - can be either ‘linear’ or ‘log’.
Example:-
y_scale: linear