• Language: en



[Ahn2008]Ahn J.E., Karlsson M.O., Dunne A., Ludden T.M. Likelihood based approaches to handling data below the quantification limit using NONMEM VI. Journal of Pharmacokinetics and Pharmacodynamics. 2008 Aug;35(4):401-21.
[Bauer2009]Beal, S.L. , Sheiner, L.B., Boeckmann, A., & Bauer, R.J. NONMEM User’s Guides. (1989-2009), Icon Development Solutions, Ellicott City, MD, USA, 2009.
[Beal2001]Beal, S.L Ways to Fit a PK Model with Some Data Below the Quantification Limit Journal of Pharmacokinetics and Pharmacodynamics volume 28, pages481–504(2001)
[Cheung2015]Amy Cheung, Predictive QT project, DDMODEL 0000093, 2015, (repository.ddmore.eu/model/DDMODEL00000093).
[Christensen1980]Finn Norring Christensen, Flemming Yssing Hansen and Helle Bechgaard Physical interpretation of parameters in the Rosin-Rammler-Sperling-Weibull distribution for drug release from controlled release dosage forms Journal of Pharmacy and Pharmacology, Volume 32, Issue 1, September 1980, pp 580-582
[DennisSchnabel1987]J. E. Dennis, Jnr. and R. B. Schnabel Numerical Methods for Unconstrained Optimization and Nonlinear Equations Society for Industrial and Applied Mathematics ISBN-10: 0898713641
[Germovsek2017]Eva Germovsek, Population PK model for gentamicin, DDMODEL 0000238, 2017, (repository.ddmore.eu/model/DDMODEL00000238).
[Girard2012]P. Girard, Simultaneous ocular adverse event and dropout model of pimasertib, DDMODEL 0000215, 2012, (repository.ddmore.eu/model/DDMODEL00000215).
[Harling2015]Kajsa Harling Population PK of gentamicin in cancer patients with time-varying covariates, DDMODEL 0000061, 2015, (repository.ddmore.eu/model/DDMODEL00000061).
[Holford1996]N. H. Holford, A size standard for pharmacokinetics. Clin Pharmacokinet. 1996 May; 30(5):329-32.
[KarlssonSheiner1993]Karlsson MO and Sheiner LB The importance of modeling interoccasion variability in population pharmacokinetic analyses. J Pharmacokinet Biopharm. 1993 Dec; 21(6):735-50.
[Lindstrom1990]L Lindstrom, M & Bates, Mark. (1990). Nonlinear Mixed Effects Models for Repeated Measures Data. Biometrics. 46. 673-87. 10.2307/2532087.
[Millar2011]Russell B. Millar Maximum Likelihood Estimation and Inference - With Examples in R, SAS, and ADMB John Wiley & Sons, 2011
[MouldUpton2012]D. R. Mould and R. N. Upton Basic Concepts in population Modeling, Simulation, and Model-Based drug development CPT Pharmacometrics Syst Pharmacol. 2012 Sep; 1(9): e6.
[MouldUpton2013]D. R. Mould and R. N. Upton Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. CPT Pharmacometrics Syst Pharmacol. 2013 Apr 17; 2: e38.
[NocedalWright2006]J. Nocedal and S. Wright Numerical Optimization Springer ISBN-10: 0387303030
[Piotrovskii1987]Vladimir K. Piotrovskii The use of Weibull distribution to describe thein vivo absorption kinetics Journal of Pharmacokinetics and Biopharmaceutics, Volume 15, Issue 6, December 1987, pp 681–686
[Powell2009]M. J. D. Powell The BOBYQA algorithm for bound constrained optimization without derivatives Report No. DAMTP 2009/NA06, Centre for Mathematical Sciences, Cambridge, UK.
[Radhakrishnan1994]Radhakrishnan, Krishnan & C. Hindmarsh, Alan. (1994). Description and Use of LSODE, the Livermore Solver for Ordinary Differential Equations.
[RowlandTozer2012]M. Rowland and T. N. Tozer Clinical Pharmacokinetics and Pharmacodynamics: Concepts and Applications Lippincott Williams & Wilkins, 2012
[Sheiner1980]Sheiner L.B., Beal S.L. Evaluation of methods for estimating population pharmacokinetics parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data. J. Pharmacokinet. Biopharm 86553–571.1980
[UptonMould2013]R. N. Upton and D. R. Mould Basic Concepts in Population Modeling, Simulation, and Model-Based Drug Development: Part 3—Introduction to Pharmacodynamic Modeling Methods CPT Pharmacometrics Syst Pharmacol. 2014 Jan; 3(1): e88.
[Wang2007]Wang, Yaning. (2007). Derivation of various NONMEM estimation methods. Journal of pharmacokinetics and pharmacodynamics. 35. 249. 10.1007/s10928-008-9083-7.
Back to Top