Sine circadian model¶
[Generated automatically as a Fitting summary]
Model Description¶
Name: | circ_sin |
---|---|
Title: | Sine circadian model |
Author: | PoPy for PK/PD |
Abstract: |
A PD Model based on the amount of drug in the body.
The PD model uses a sine function which simulates a circadian rhythm for the generation of a biomarker.
The amount in the central compartment is determined by CL and V, PK patameters , which have been previosly estimated for each individual.
The amount in the central compartment influences the rate of production of a biomarker.
Keywords: | PD; Pharmacodynamics; sine function; Circadian rhythm |
---|---|
Input Script: | circ_sin_fit.pyml |
Diagram: |
Comparison¶
Compare Main f[X]¶
Variable Name | Starting Value | Fitted Value | Abs Change | Prop Change |
---|---|---|---|---|
f[AMP] | 3.0000 | 2.0021 | 0.9979 | 0.3326 |
f[INT] | 16.0000 | 7.8694 | 8.1306 | 0.5082 |
f[KOUT] | 0.1000 | 0.0500 | 0.0500 | 0.5001 |
Compare Noise f[X]¶
Variable Name | Starting Value | Fitted Value | Abs Change | Prop Change |
---|---|---|---|---|
f[ANOISE] | 5.0000 | 3.0706 | 1.9294 | 0.3859 |
Compare Variance f[X]¶
Population simulated (sim) plots¶
indOBS_vs_TIME |
Outputs¶
Fitted f[X] values (after fitting)¶
f[AMP] = 2.0021
f[INT] = 7.8694
f[KOUT] = 0.0500
f[ANOISE] = 3.0706
Fitted parameter .csv files¶
Fixed Effects: | fx_params.csv (fit) |
---|---|
Random Effects: | rx_params.csv (fit) |
Model params: | mx_params.csv (fit) |
State values: | sx_params.csv (fit) |
Predictions: | px_params.csv (fit) |
Likelihoods: | lx_params.csv (fit) |
Inputs¶
Input Data: | cx_obs_params.csv |
---|
Starting f[X] values (before fitting)¶
f[AMP] = 3.0000
f[INT] = 16.0000
f[KOUT] = 0.1000
f[ANOISE] = 5.0000