• Language: en

Depot One Comp PK with BLQ observations set to 0.5*LLQ

[Generated automatically as a Fitting summary]

Model Description

Name:blq_pk_norm_fit_half
Title:Depot One Comp PK with BLQ observations set to 0.5*LLQ
Author:PoPy for PK/PD
Abstract:
Depot One Comp PK model, with BLQ (below level of quantification)
observations set to 0.5*LLQ (lower limit of quantification).
Keywords:tutorial; pk; advan4; dep_two_cmp; blq
Input Script:blq_pk_norm_fit_half.pyml
Diagram:

Comparison

Compare Main f[X]

Variable Name Starting Value Fitted Value Abs Change Prop Change
f[KA] 1.0000 1.2625 0.2625 0.2625
f[CL] 1.0000 1.6570 0.6570 0.6570
f[V1] 20.0000 80.1152 60.1152 3.0058

Compare Noise f[X]

Variable Name Starting Value Fitted Value Abs Change Prop Change
f[PNOISE] 0.1000 0.3301 0.2301 2.3010

Compare Variance f[X]

Variable Name Starting Value Fitted Value Abs Change Prop Change
f[KA_isv] 0.0500 0.7148 0.6648 13.2962
f[KA_isv;CL_isv] 0.0100 0.0848 0.0748 7.4800
f[KA_isv;V1_isv] 0.0100 0.2052 0.1952 19.5219
f[CL_isv;KA_isv] 0.0100 0.0848 0.0748 7.4800
f[CL_isv] 0.0500 0.0101 0.0399 0.7983
f[CL_isv;V1_isv] 0.0100 0.0244 0.0144 1.4390
f[V1_isv;KA_isv] 0.0100 0.2052 0.1952 19.5219
f[V1_isv;CL_isv] 0.0100 0.0244 0.0144 1.4390
f[V1_isv] 0.0500 0.0591 0.0091 0.1824

Individual simulated (sim) plots

Alternatively see All simulated_sim graph plots

Population simulated (sim) plots

(No population graphs were requested.)

Outputs

Final objective value

28169.0504

which required 1.30 iterations and took 651.71 seconds

Fitted f[X] values (after fitting)

f[KA] = 1.2625
f[CL] = 1.6570
f[V1] = 80.1152
f[KA_isv,CL_isv,V1_isv] = [
    [ 0.7148, 0.0848, 0.2052 ],
    [ 0.0848, 0.0101, 0.0244 ],
    [ 0.2052, 0.0244, 0.0591 ],
]
f[PNOISE] = 0.3301
f[ANOISE] = 0.0100

Fitted parameter .csv files

Fixed Effects:fx_params.csv (fit)
Random Effects:rx_params.csv (fit)
Model params:mx_params.csv (fit)
State values:sx_params.csv (fit)
Predictions:px_params.csv (fit)
Likelihoods:lx_params.csv (fit)

Inputs

Input Data:synthetic_data.csv

Starting f[X] values (before fitting)

f[KA] = 1.0000
f[CL] = 1.0000
f[V1] = 20.0000
f[KA_isv,CL_isv,V1_isv] = [
    [ 0.0500, 0.0100, 0.0100 ],
    [ 0.0100, 0.0500, 0.0100 ],
    [ 0.0100, 0.0100, 0.0500 ],
]
f[PNOISE] = 0.1000
f[ANOISE] = 0.0100
Back to Top