First order absorption model with peripheral compartment¶
[Generated automatically as a Tutorial summary]
Model Description¶
Name: | builtin_tut_example |
---|---|
Title: | First order absorption model with peripheral compartment |
Author: | PoPy for PK/PD |
Abstract: |
A two compartment PK model with bolus dose and
first order absorption, similar to a Nonmem advan4trans4 model.
Keywords: | tutorial; pk; advan4; dep_two_cmp; first order |
---|---|
Input Script: | builtin_tut_example.pyml |
Diagram: |
Comparison¶
True objective value¶
-873.4691
Final fitted objective value¶
-887.7873
Compare Main f[X]¶
Name | Initial | Fitted | True | Abs. Error | Prop. Error |
---|---|---|---|---|---|
f[KA] | 1 | 0.12 | 0.2 | 8.01e-02 | 40.06% |
f[CL] | 1 | 1.56 | 2 | 4.40e-01 | 21.99% |
f[V1] | 20 | 33.6 | 50 | 1.64e+01 | 32.72% |
f[Q] | 0.5 | 2.22 | 1 | 1.22e+00 | 122.14% |
f[V2] | 100 | 117 | 80 | 3.66e+01 | 45.77% |
Compare Noise f[X]¶
Name | Initial | Fitted | True | Abs. Error | Prop. Error |
---|---|---|---|---|---|
f[PNOISE] | 0.1 | 0.148 | 0.15 | 1.93e-03 | 1.29% |
Compare Variance f[X]¶
Name | Initial | Fitted | True | Abs. Error | Prop. Error |
---|---|---|---|---|---|
f[KA_isv] | 0.05 | 0.0586 | 0.1 | 4.14e-02 | 41.37% |
f[KA_isv;CL_isv] | 0.01 | 0.021 | 0.01 | 1.10e-02 | 109.93% |
f[KA_isv;V1_isv] | 0.01 | 0.0668 | 0.01 | 5.68e-02 | 567.96% |
f[KA_isv;Q_isv] | 0.01 | -0.00176 | 0.01 | 1.18e-02 | 117.61% |
f[KA_isv;V2_isv] | 0.01 | 0.00721 | 0.01 | 2.79e-03 | 27.89% |
f[CL_isv;KA_isv] | 0.01 | 0.021 | 0.01 | 1.10e-02 | 109.93% |
f[CL_isv] | 0.05 | 0.122 | 0.03 | 9.18e-02 | 305.85% |
f[CL_isv;V1_isv] | 0.01 | 0.117 | -0.01 | 1.27e-01 | 1267.51% |
f[CL_isv;Q_isv] | 0.01 | -0.0631 | 0.02 | 8.31e-02 | 415.33% |
f[CL_isv;V2_isv] | 0.01 | -0.247 | 0.02 | 2.67e-01 | 1335.63% |
f[V1_isv;KA_isv] | 0.01 | 0.0668 | 0.01 | 5.68e-02 | 567.96% |
f[V1_isv;CL_isv] | 0.01 | 0.117 | -0.01 | 1.27e-01 | 1267.51% |
f[V1_isv] | 0.05 | 0.198 | 0.09 | 1.08e-01 | 119.76% |
f[V1_isv;Q_isv] | 0.01 | -0.0291 | 0.01 | 3.91e-02 | 390.78% |
f[V1_isv;V2_isv] | 0.01 | -0.155 | 0.01 | 1.65e-01 | 1645.98% |
f[Q_isv;KA_isv] | 0.01 | -0.00176 | 0.01 | 1.18e-02 | 117.61% |
f[Q_isv;CL_isv] | 0.01 | -0.0631 | 0.02 | 8.31e-02 | 415.33% |
f[Q_isv;V1_isv] | 0.01 | -0.0291 | 0.01 | 3.91e-02 | 390.78% |
f[Q_isv] | 0.05 | 0.0584 | 0.07 | 1.16e-02 | 16.55% |
f[Q_isv;V2_isv] | 0.01 | 0.204 | 0.01 | 1.94e-01 | 1938.99% |
f[V2_isv;KA_isv] | 0.01 | 0.00721 | 0.01 | 2.79e-03 | 27.89% |
f[V2_isv;CL_isv] | 0.01 | -0.247 | 0.02 | 2.67e-01 | 1335.63% |
f[V2_isv;V1_isv] | 0.01 | -0.155 | 0.01 | 1.65e-01 | 1645.98% |
f[V2_isv;Q_isv] | 0.01 | 0.204 | 0.01 | 1.94e-01 | 1938.99% |
f[V2_isv] | 0.05 | 0.779 | 0.05 | 7.29e-01 | 1458.41% |
Outputs¶
Fitted f[X] values (after fitting)¶
f[KA] = 0.1199
f[CL] = 1.5601
f[V1] = 33.6375
f[Q] = 2.2214
f[V2] = 116.6198
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
[ 0.0586, 0.0210, 0.0668, -0.0018, 0.0072 ],
[ 0.0210, 0.1218, 0.1168, -0.0631, -0.2471 ],
[ 0.0668, 0.1168, 0.1978, -0.0291, -0.1546 ],
[ -0.0018, -0.0631, -0.0291, 0.0584, 0.2039 ],
[ 0.0072, -0.2471, -0.1546, 0.2039, 0.7792 ],
]
f[PNOISE] = 0.1481
Generated data .csv file¶
Synthetic Data: | synthetic_data.csv |
---|
Gen and Fit Summaries¶
Inputs¶
True f[X] values (for simulation)¶
f[KA] = 0.2000
f[CL] = 2.0000
f[V1] = 50.0000
f[Q] = 1.0000
f[V2] = 80.0000
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
[ 0.1000, 0.0100, 0.0100, 0.0100, 0.0100 ],
[ 0.0100, 0.0300, -0.0100, 0.0200, 0.0200 ],
[ 0.0100, -0.0100, 0.0900, 0.0100, 0.0100 ],
[ 0.0100, 0.0200, 0.0100, 0.0700, 0.0100 ],
[ 0.0100, 0.0200, 0.0100, 0.0100, 0.0500 ],
]
f[PNOISE] = 0.1500
Starting f[X] values (before fitting)¶
f[KA] = 1.0000
f[CL] = 1.0000
f[V1] = 20.0000
f[Q] = 0.5000
f[V2] = 100.0000
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
[ 0.0500, 0.0100, 0.0100, 0.0100, 0.0100 ],
[ 0.0100, 0.0500, 0.0100, 0.0100, 0.0100 ],
[ 0.0100, 0.0100, 0.0500, 0.0100, 0.0100 ],
[ 0.0100, 0.0100, 0.0100, 0.0500, 0.0100 ],
[ 0.0100, 0.0100, 0.0100, 0.0100, 0.0500 ],
]
f[PNOISE] = 0.1000