First order absorption model with peripheral compartment¶
[Generated automatically as a Fitting summary]
Model Description¶
Name: | builtin_tut_example |
---|---|
Title: | First order absorption model with peripheral compartment |
Author: | PoPy for PK/PD |
Abstract: |
A two compartment PK model with bolus dose and
first order absorption, similar to a Nonmem advan4trans4 model.
Keywords: | tutorial; pk; advan4; dep_two_cmp; first order |
---|---|
Input Script: | builtin_tut_example_fit.pyml |
Diagram: |
Comparison¶
Compare Main f[X]¶
Variable Name | Starting Value | Fitted Value | Abs Change | Prop Change |
---|---|---|---|---|
f[KA] | 1.0000 | 0.1199 | 0.8801 | 0.8801 |
f[CL] | 1.0000 | 1.5601 | 0.5601 | 0.5601 |
f[V1] | 20.0000 | 33.6375 | 13.6375 | 0.6819 |
f[Q] | 0.5000 | 2.2214 | 1.7214 | 3.4428 |
f[V2] | 100.0000 | 116.6198 | 16.6198 | 0.1662 |
Compare Noise f[X]¶
Variable Name | Starting Value | Fitted Value | Abs Change | Prop Change |
---|---|---|---|---|
f[PNOISE] | 0.1000 | 0.1481 | 0.0481 | 0.4807 |
Compare Variance f[X]¶
Variable Name | Starting Value | Fitted Value | Abs Change | Prop Change |
---|---|---|---|---|
f[KA_isv] | 0.0500 | 0.0586 | 0.0086 | 0.1726 |
f[KA_isv;CL_isv] | 0.0100 | 0.0210 | 0.0110 | 1.0993 |
f[KA_isv;V1_isv] | 0.0100 | 0.0668 | 0.0568 | 5.6796 |
f[KA_isv;Q_isv] | 0.0100 | -0.0018 | 0.0118 | 1.1761 |
f[KA_isv;V2_isv] | 0.0100 | 0.0072 | 0.0028 | 0.2789 |
f[CL_isv;KA_isv] | 0.0100 | 0.0210 | 0.0110 | 1.0993 |
f[CL_isv] | 0.0500 | 0.1218 | 0.0718 | 1.4351 |
f[CL_isv;V1_isv] | 0.0100 | 0.1168 | 0.1068 | 10.6751 |
f[CL_isv;Q_isv] | 0.0100 | -0.0631 | 0.0731 | 7.3065 |
f[CL_isv;V2_isv] | 0.0100 | -0.2471 | 0.2571 | 25.7125 |
f[V1_isv;KA_isv] | 0.0100 | 0.0668 | 0.0568 | 5.6796 |
f[V1_isv;CL_isv] | 0.0100 | 0.1168 | 0.1068 | 10.6751 |
f[V1_isv] | 0.0500 | 0.1978 | 0.1478 | 2.9556 |
f[V1_isv;Q_isv] | 0.0100 | -0.0291 | 0.0391 | 3.9078 |
f[V1_isv;V2_isv] | 0.0100 | -0.1546 | 0.1646 | 16.4598 |
f[Q_isv;KA_isv] | 0.0100 | -0.0018 | 0.0118 | 1.1761 |
f[Q_isv;CL_isv] | 0.0100 | -0.0631 | 0.0731 | 7.3065 |
f[Q_isv;V1_isv] | 0.0100 | -0.0291 | 0.0391 | 3.9078 |
f[Q_isv] | 0.0500 | 0.0584 | 0.0084 | 0.1684 |
f[Q_isv;V2_isv] | 0.0100 | 0.2039 | 0.1939 | 19.3899 |
f[V2_isv;KA_isv] | 0.0100 | 0.0072 | 0.0028 | 0.2789 |
f[V2_isv;CL_isv] | 0.0100 | -0.2471 | 0.2571 | 25.7125 |
f[V2_isv;V1_isv] | 0.0100 | -0.1546 | 0.1646 | 16.4598 |
f[V2_isv;Q_isv] | 0.0100 | 0.2039 | 0.1939 | 19.3899 |
f[V2_isv] | 0.0500 | 0.7792 | 0.7292 | 14.5841 |
Population simulated (sim) plots¶
(No population graphs were requested.)
Outputs¶
Fitted f[X] values (after fitting)¶
f[KA] = 0.1199
f[CL] = 1.5601
f[V1] = 33.6375
f[Q] = 2.2214
f[V2] = 116.6198
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
[ 0.0586, 0.0210, 0.0668, -0.0018, 0.0072 ],
[ 0.0210, 0.1218, 0.1168, -0.0631, -0.2471 ],
[ 0.0668, 0.1168, 0.1978, -0.0291, -0.1546 ],
[ -0.0018, -0.0631, -0.0291, 0.0584, 0.2039 ],
[ 0.0072, -0.2471, -0.1546, 0.2039, 0.7792 ],
]
f[PNOISE] = 0.1481
Fitted parameter .csv files¶
Fixed Effects: | fx_params.csv (fit) |
---|---|
Random Effects: | rx_params.csv (fit) |
Model params: | mx_params.csv (fit) |
State values: | sx_params.csv (fit) |
Predictions: | px_params.csv (fit) |
Likelihoods: | lx_params.csv (fit) |
Inputs¶
Input Data: | cx_obs_params.csv |
---|
Starting f[X] values (before fitting)¶
f[KA] = 1.0000
f[CL] = 1.0000
f[V1] = 20.0000
f[Q] = 0.5000
f[V2] = 100.0000
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
[ 0.0500, 0.0100, 0.0100, 0.0100, 0.0100 ],
[ 0.0100, 0.0500, 0.0100, 0.0100, 0.0100 ],
[ 0.0100, 0.0100, 0.0500, 0.0100, 0.0100 ],
[ 0.0100, 0.0100, 0.0100, 0.0500, 0.0100 ],
[ 0.0100, 0.0100, 0.0100, 0.0100, 0.0500 ],
]
f[PNOISE] = 0.1000