Simple Tut Example¶
[Generated automatically as a Fitting summary]
Model Description¶
Name: | tut_example1 |
---|---|
Title: | Simple Tut Example |
Author: | PoPy for PK/PD |
Abstract: |
One compartment model with elimination rate constant KE.
Keywords: | one compartment model; iv_one_cmp_k |
---|---|
Input Script: | tut_example1_fit.pyml |
Diagram: |
Comparison¶
Compare Main f[X]¶
Variable Name | Starting Value | Fitted Value | Abs Change | Prop Change |
---|---|---|---|---|
f[KE] | 0.0500 | 0.0999 | 0.0499 | 0.9974 |
Compare Noise f[X]¶
Variable Name | Starting Value | Fitted Value | Abs Change | Prop Change |
---|---|---|---|---|
f[PNOISE] | 0.1000 | 0.0503 | 0.0497 | 0.4966 |
Compare Variance f[X]¶
Variable Name | Starting Value | Fitted Value | Abs Change | Prop Change |
---|---|---|---|---|
f[KE_isv] | 0.1000 | 0.0183 | 0.0817 | 0.8170 |
Population simulated (sim) plots¶
Outputs¶
Fitted f[X] values (after fitting)¶
f[KE] = 0.0999
f[PNOISE] = 0.0503
f[KE_isv] = 0.0183
Fitted parameter .csv files¶
Fixed Effects: | fx_params.csv (fit) |
---|---|
Random Effects: | rx_params.csv (fit) |
Model params: | mx_params.csv (fit) |
State values: | sx_params.csv (fit) |
Predictions: | px_params.csv (fit) |
Likelihoods: | lx_params.csv (fit) |
Inputs¶
Input Data: | cx_obs_params.csv |
---|
Starting f[X] values (before fitting)¶
f[KE] = 0.0500
f[PNOISE] = 0.1000
f[KE_isv] = 0.1000