Model containing both proportional and additive error¶
[Generated automatically as a Fitting summary]
Model Description¶
Name: | pa_gen_pa_fit |
---|---|
Title: | Model containing both proportional and additive error |
Author: | PoPy for PK/PD |
Abstract: |
One compartment model with a depot leading to a central compartment.
This model contains both proportional and additive error.
Keywords: | one compartment model; one_two_cmp_cl; proportional and additive error |
---|---|
Input Script: | pa_gen_pa_fit_fit.pyml |
Diagram: |
Comparison¶
Compare Main f[X]¶
Compare Noise f[X]¶
Variable Name | Starting Value | Fitted Value | Abs Change | Prop Change |
---|---|---|---|---|
f[PNOISE_STD] | 0.5000 | 0.0951 | 0.4049 | 0.8098 |
f[ANOISE_STD] | 0.2500 | 0.0453 | 0.2047 | 0.8187 |
Compare Variance f[X]¶
Population simulated (sim) plots¶
allOBS_vs_TIME | |
CWRES(DV_CENTRAL)_vs_IPRED(DV_CENTRAL) | |
indOBS_vs_TIME | |
IRES(DV_CENTRAL)_vs_IPRED(DV_CENTRAL) | |
WRES(DV_CENTRAL)_vs_PPRED(DV_CENTRAL) |
Outputs¶
Fitted f[X] values (after fitting)¶
f[PNOISE_STD] = 0.0951
f[ANOISE_STD] = 0.0453
Fitted parameter .csv files¶
Fixed Effects: | fx_params.csv (fit) |
---|---|
Random Effects: | rx_params.csv (fit) |
Model params: | mx_params.csv (fit) |
State values: | sx_params.csv (fit) |
Predictions: | px_params.csv (fit) |
Likelihoods: | lx_params.csv (fit) |
Inputs¶
Input Data: | cx_obs_params.csv |
---|
Starting f[X] values (before fitting)¶
f[PNOISE_STD] = 0.5000
f[ANOISE_STD] = 0.2500