• Language: en

Depot One Comp PK with BLQ observations set to 0.5*LLQ

[Generated automatically as a Fitting summary]

Model Description

Name:blq_pk_norm_fit_half
Title:Depot One Comp PK with BLQ observations set to 0.5*LLQ
Author:PoPy for PK/PD
Abstract:
Depot One Comp PK model, with BLQ (below level of quantification)
observations set to 0.5*LLQ (lower limit of quantification).
Keywords:tutorial; pk; advan4; dep_two_cmp; blq
Input Script:blq_pk_norm_fit_half.pyml
Diagram:

Comparison

Compare Main f[X]

Variable Name Starting Value Fitted Value Abs Change Prop Change
f[KA] 1.0000 0.8242 0.1758 0.1758
f[CL] 1.0000 1.6865 0.6865 0.6865
f[V1] 20.0000 81.8435 61.8435 3.0922

Compare Noise f[X]

Variable Name Starting Value Fitted Value Abs Change Prop Change
f[PNOISE] 0.1000 0.3395 0.2395 2.3951

Compare Variance f[X]

Variable Name Starting Value Fitted Value Abs Change Prop Change
f[KA_isv] 0.0500 0.0000 0.0500 0.9999
f[KA_isv;CL_isv] 0.0100 0.0002 0.0098 0.9793
f[KA_isv;V1_isv] 0.0100 0.0005 0.0095 0.9518
f[CL_isv;KA_isv] 0.0100 0.0002 0.0098 0.9793
f[CL_isv] 0.0500 0.0084 0.0416 0.8315
f[CL_isv;V1_isv] 0.0100 0.0196 0.0096 0.9598
f[V1_isv;KA_isv] 0.0100 0.0005 0.0095 0.9518
f[V1_isv;CL_isv] 0.0100 0.0196 0.0096 0.9598
f[V1_isv] 0.0500 0.0456 0.0044 0.0877

Individual simulated (sim) plots

Alternatively see All simulated_sim graph plots

Population simulated (sim) plots

(No population graphs were requested.)

Outputs

Final objective value

28181.0140

which required 1.30 iterations and took 428.24 seconds

Fitted f[X] values (after fitting)

f[KA] = 0.8242
f[CL] = 1.6865
f[V1] = 81.8435
f[KA_isv,CL_isv,V1_isv] = [
    [ 0.0000, 0.0002, 0.0005 ],
    [ 0.0002, 0.0084, 0.0196 ],
    [ 0.0005, 0.0196, 0.0456 ],
]
f[PNOISE] = 0.3395
f[ANOISE] = 0.0100

Fitted parameter .csv files

Fixed Effects:fx_params.csv (fit)
Random Effects:rx_params.csv (fit)
Model params:mx_params.csv (fit)
State values:sx_params.csv (fit)
Predictions:px_params.csv (fit)
Likelihoods:lx_params.csv (fit)

Inputs

Input Data:synthetic_data.csv

Starting f[X] values (before fitting)

f[KA] = 1.0000
f[CL] = 1.0000
f[V1] = 20.0000
f[KA_isv,CL_isv,V1_isv] = [
    [ 0.0500, 0.0100, 0.0100 ],
    [ 0.0100, 0.0500, 0.0100 ],
    [ 0.0100, 0.0100, 0.0500 ],
]
f[PNOISE] = 0.1000
f[ANOISE] = 0.0100
Back to Top