Diagonal matrix generation diagonal matrix fit¶
[Generated automatically as a Tutorial summary]
Model Description¶
Name: | gen_diag_fit_diag |
---|---|
Title: | Diagonal matrix generation diagonal matrix fit |
Author: | PoPy for PK/PD |
Abstract: |
One compartment model with absorption compartment and CL/V parametrisation.
This script uses a diagonal covariance matrix to generate the data and a diagonal covariance matrix to fit.
Keywords: | one compartment model; dep_one_cmp_cl; diagonal matrix |
---|---|
Input Script: | gen_diag_fit_diag_tut.pyml |
Diagram: |
Comparison¶
True objective value¶
-2183.0504
Final fitted objective value¶
-2183.6185
Compare Main f[X]¶
No Main f[X] values to compare.
Compare Noise f[X]¶
No Noise f[X] values to compare.
Compare Variance f[X]¶
Name | Initial | Fitted | True | Abs. Error | Prop. Error |
---|---|---|---|---|---|
f[CL_isv] | 0.01 | 0.209 | 0.2 | 9.23e-03 | 4.62% |
f[CL_isv;V_isv] | 0 | 0 | 0 | 0.00e+00 | inf |
f[V_isv;CL_isv] | 0 | 0 | 0 | 0.00e+00 | inf |
f[V_isv] | 0.01 | 0.0909 | 0.1 | 9.08e-03 | 9.08% |
Outputs¶
Fitted f[X] values (after fitting)¶
f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv,V_isv] = [
[ 0.2092, 0.0000 ],
[ 0.0000, 0.0909 ],
]
Generated data .csv file¶
Synthetic Data: | synthetic_data.csv |
---|
Gen and Fit Summaries¶
- Gen: Diagonal matrix generation diagonal matrix fit (gen)
- Fit: Diagonal matrix generation diagonal matrix fit (fit)
Inputs¶
True f[X] values (for simulation)¶
f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv,V_isv] = [
[ 0.2000, 0.0000 ],
[ 0.0000, 0.1000 ],
]
Starting f[X] values (before fitting)¶
f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv,V_isv] = [
[ 0.0100, 0.0000 ],
[ 0.0000, 0.0100 ],
]