Full matrix generation full matrix fit¶
[Generated automatically as a Tutorial summary]
Model Description¶
Name: | gen_full_fit_full |
---|---|
Title: | Full matrix generation full matrix fit |
Author: | PoPy for PK/PD |
Abstract: |
One compartment model with absorption compartment and CL/V parametrisation.
This script uses a full covariance matrix to generate the data and a full covariance matrix to fit.
Keywords: | dep_one_cmp_cl; one compartment model; full matrix |
---|---|
Input Script: | gen_full_fit_full_tut.pyml |
Diagram: |
Comparison¶
True objective value¶
-2118.1859
Final fitted objective value¶
-2120.5340
Compare Main f[X]¶
No Main f[X] values to compare.
Compare Noise f[X]¶
No Noise f[X] values to compare.
Compare Variance f[X]¶
Name | Initial | Fitted | True | Abs. Error | Prop. Error |
---|---|---|---|---|---|
f[CL_isv] | 0.01 | 0.131 | 0.15 | 1.91e-02 | 12.72% |
f[CL_isv;V_isv] | 0.001 | 0.0525 | 0.05 | 2.46e-03 | 4.93% |
f[V_isv;CL_isv] | 0.001 | 0.0525 | 0.05 | 2.46e-03 | 4.93% |
f[V_isv] | 0.01 | 0.166 | 0.15 | 1.57e-02 | 10.49% |
Outputs¶
Fitted f[X] values (after fitting)¶
f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv,V_isv] = [
[ 0.1309, 0.0525 ],
[ 0.0525, 0.1657 ],
]
Generated data .csv file¶
Synthetic Data: | synthetic_data.csv |
---|
Gen and Fit Summaries¶
- Gen: Full matrix generation full matrix fit (gen)
- Fit: Full matrix generation full matrix fit (fit)
Inputs¶
True f[X] values (for simulation)¶
f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv,V_isv] = [
[ 0.1500, 0.0500 ],
[ 0.0500, 0.1500 ],
]
Starting f[X] values (before fitting)¶
f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv,V_isv] = [
[ 0.0100, 0.0010 ],
[ 0.0010, 0.0100 ],
]