Diagonal matrix generation diagonal matrix fit using separate univariate normals¶
[Generated automatically as a Tutorial summary]
Model Description¶
Name: | gen_indep_fit_indep |
---|---|
Title: | Diagonal matrix generation diagonal matrix fit using separate univariate normals |
Author: | PoPy for PK/PD |
Abstract: |
One compartment model with absorption compartment and CL/V parametrisation.
This script uses a diagonal covariance matrix to generate the data and a diagonal covariance matrix to fit.
Note here the ‘diagonal matrix’ is implemented as two separate univariate normal distributions, which is equivalent.
Keywords: | dep_one_cmp_cl; one compartment model; diagonal matrix |
---|---|
Input Script: | gen_indep_fit_indep_tut.pyml |
Diagram: |
Comparison¶
True objective value¶
-2183.0504
Final fitted objective value¶
-2183.6334
Compare Main f[X]¶
No Main f[X] values to compare.
Compare Noise f[X]¶
No Noise f[X] values to compare.
Compare Variance f[X]¶
Name | Initial | Fitted | True | Abs. Error | Prop. Error |
---|---|---|---|---|---|
f[CL_isv] | 0.01 | 0.209 | 0.2 | 8.98e-03 | 4.49% |
f[V_isv] | 0.01 | 0.0915 | 0.1 | 8.47e-03 | 8.47% |
Outputs¶
Fitted f[X] values (after fitting)¶
f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv] = 0.2090
f[V_isv] = 0.0915
Generated data .csv file¶
Synthetic Data: | synthetic_data.csv |
---|
Gen and Fit Summaries¶
Inputs¶
True f[X] values (for simulation)¶
f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv] = 0.2000
f[V_isv] = 0.1000
Starting f[X] values (before fitting)¶
f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv] = 0.0100
f[V_isv] = 0.0100