First order absorption model with peripheral compartment¶
[Generated automatically as a Fitting summary]
Model Description¶
Name: | builtin_fit_example |
---|---|
Title: | First order absorption model with peripheral compartment |
Author: | PoPy for PK/PD |
Abstract: |
A two compartment PK model with bolus dose and
first order absorption, similar to a Nonmem advan4trans4 model.
Keywords: | fitting; pk; advan4; dep_two_cmp; first order |
---|---|
Input Script: | builtin_fit_example.pyml |
Diagram: |
Comparison¶
Compare Main f[X]¶
Variable Name | Starting Value | Fitted Value | Abs Change | Prop Change |
---|---|---|---|---|
f[KA] | 1.0000 | 0.1032 | 0.8968 | 0.8968 |
f[CL] | 1.0000 | 2.1793 | 1.1793 | 1.1793 |
f[V1] | 20.0000 | 25.0475 | 5.0475 | 0.2524 |
f[Q] | 0.5000 | 1.8821 | 1.3821 | 2.7643 |
f[V2] | 100.0000 | 60.2802 | 39.7198 | 0.3972 |
Compare Noise f[X]¶
Variable Name | Starting Value | Fitted Value | Abs Change | Prop Change |
---|---|---|---|---|
f[PNOISE] | 0.1000 | 0.1390 | 0.0390 | 0.3904 |
Compare Variance f[X]¶
Variable Name | Starting Value | Fitted Value | Abs Change | Prop Change |
---|---|---|---|---|
f[KA_isv] | 0.0500 | 0.0476 | 0.0024 | 0.0473 |
f[KA_isv;CL_isv] | 0.0100 | 0.0265 | 0.0165 | 1.6469 |
f[KA_isv;V1_isv] | 0.0100 | 0.0354 | 0.0254 | 2.5391 |
f[KA_isv;Q_isv] | 0.0100 | 0.0016 | 0.0084 | 0.8389 |
f[KA_isv;V2_isv] | 0.0100 | -0.0896 | 0.0996 | 9.9573 |
f[CL_isv;KA_isv] | 0.0100 | 0.0265 | 0.0165 | 1.6469 |
f[CL_isv] | 0.0500 | 0.0253 | 0.0247 | 0.4946 |
f[CL_isv;V1_isv] | 0.0100 | 0.0438 | 0.0338 | 3.3823 |
f[CL_isv;Q_isv] | 0.0100 | 0.0015 | 0.0085 | 0.8484 |
f[CL_isv;V2_isv] | 0.0100 | -0.0546 | 0.0646 | 6.4625 |
f[V1_isv;KA_isv] | 0.0100 | 0.0354 | 0.0254 | 2.5391 |
f[V1_isv;CL_isv] | 0.0100 | 0.0438 | 0.0338 | 3.3823 |
f[V1_isv] | 0.0500 | 0.2507 | 0.2007 | 4.0143 |
f[V1_isv;Q_isv] | 0.0100 | 0.0071 | 0.0029 | 0.2898 |
f[V1_isv;V2_isv] | 0.0100 | -0.2664 | 0.2764 | 27.6369 |
f[Q_isv;KA_isv] | 0.0100 | 0.0016 | 0.0084 | 0.8389 |
f[Q_isv;CL_isv] | 0.0100 | 0.0015 | 0.0085 | 0.8484 |
f[Q_isv;V1_isv] | 0.0100 | 0.0071 | 0.0029 | 0.2898 |
f[Q_isv] | 0.0500 | 0.0028 | 0.0472 | 0.9438 |
f[Q_isv;V2_isv] | 0.0100 | 0.0116 | 0.0016 | 0.1611 |
f[V2_isv;KA_isv] | 0.0100 | -0.0896 | 0.0996 | 9.9573 |
f[V2_isv;CL_isv] | 0.0100 | -0.0546 | 0.0646 | 6.4625 |
f[V2_isv;V1_isv] | 0.0100 | -0.2664 | 0.2764 | 27.6369 |
f[V2_isv;Q_isv] | 0.0100 | 0.0116 | 0.0016 | 0.1611 |
f[V2_isv] | 0.0500 | 0.6682 | 0.6182 | 12.3631 |
Population simulated (sim) plots¶
(No population graphs were requested.)
Outputs¶
Fitted f[X] values (after fitting)¶
f[KA] = 0.1032
f[CL] = 2.1793
f[V1] = 25.0475
f[Q] = 1.8821
f[V2] = 60.2802
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
[ 0.0476, 0.0265, 0.0354, 0.0016, -0.0896 ],
[ 0.0265, 0.0253, 0.0438, 0.0015, -0.0546 ],
[ 0.0354, 0.0438, 0.2507, 0.0071, -0.2664 ],
[ 0.0016, 0.0015, 0.0071, 0.0028, 0.0116 ],
[ -0.0896, -0.0546, -0.2664, 0.0116, 0.6682 ],
]
f[PNOISE] = 0.1390
Fitted parameter .csv files¶
Fixed Effects: | fx_params.csv (fit) |
---|---|
Random Effects: | rx_params.csv (fit) |
Model params: | mx_params.csv (fit) |
State values: | sx_params.csv (fit) |
Predictions: | px_params.csv (fit) |
Likelihoods: | lx_params.csv (fit) |
Inputs¶
Input Data: | builtin_fit_example_data.csv |
---|
Starting f[X] values (before fitting)¶
f[KA] = 1.0000
f[CL] = 1.0000
f[V1] = 20.0000
f[Q] = 0.5000
f[V2] = 100.0000
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
[ 0.0500, 0.0100, 0.0100, 0.0100, 0.0100 ],
[ 0.0100, 0.0500, 0.0100, 0.0100, 0.0100 ],
[ 0.0100, 0.0100, 0.0500, 0.0100, 0.0100 ],
[ 0.0100, 0.0100, 0.0100, 0.0500, 0.0100 ],
[ 0.0100, 0.0100, 0.0100, 0.0100, 0.0500 ],
]
f[PNOISE] = 0.1000