• Language: en

Nonmem to PoPy Data conversions using P2NDAT and N2PDAT Scripts

See Nonmem Data to PoPy Data File for an overview of how the Nonmem data format maps to PoPy format. It is very possible to use this format information to write your own data conversion script in a general purpose programming language, e.g. R or Python.

However, we provide a convenient N2PDat Script, to automatically convert from Nonmem to PoPy without doing any programming. We actually provide two scripts that are mirror images of each other as follows:-

The two types of conversion scripts are illustrated in this section using the following files from the PoPy examples folder:-

c:\PoPy\examples\p2ndat_script.pyml
                 n2pdat_script.pyml
                 fit_example1_data.csv

Here ‘fit_example1_data.csv’ is in PoPy Data Format and is the simple PK data file discussed in Fitting a Simple PopPK Model using PoPy. ‘p2ndat_script.pyml’ is a PoPy script that will convert the original PoPy ‘fit_example1_data.csv’ to Nonmem format, see P2NDAT Example. The ‘n2pdat_script.pyml’ will convert the newly created Nonmem data file back to PoPy format, see N2PDAT Example.

The data files in this section form a loop:-

fit_example1_data.csv -p2ndat-> fit_example1_nm_data.csv -n2pdat-> fit_example1_data_v2.csv

Where ‘fit_example1_data.csv’ and ‘fit_example1_data_v2.csv’ are both compatible PoPy data files and ‘fit_example1_nm_data.csv’ is in Nonmem format.

P2NDAT Example

The first few rows of the original ‘fit_example1_data.csv’ file are shown in Table 53.

Table 53 Original data in PoPy format (first ten rows)
TYPE ID TIME AMT DV_CENTRAL DV_CENTRAL_FLAG
reset 1 0 100 0 0
dose 1 1 100 0 0
obs 1 7.22152181887 100 55.3986503177 1
obs 1 13.7633242874 100 43.5423043551 1
obs 1 19.4607360933 100 24.3960137842 1
obs 1 44.9645896939 100 3.06161955063 1
obs 1 48.3691740856 100 2.84311907493 1
reset 2 0 100 0 0
dose 2 1 100 0 0
obs 2 7.03200507014 100 48.1712193857 1

You can view the example P2NDat Script, Open a PoPy Command Prompt in this folder:-

c:\PoPy\examples\

And type:-

$ popy_edit p2ndat_script.pyml

Then run using:-

$ popy_run p2ndat_script.pyml

This will create a new Nonmem data file ‘fit_example1_nm_data.csv’. The first ten rows are shown in Table 54.

Table 54 Output data in Nonmem format (first ten rows)
TIME ID AMT DV MDV EVID CMT
0 1 0 0 1 3 1
1 1 100 0 1 1 1
7.22152181887 1 0 55.3986503177 0 0 1
13.7633242874 1 0 43.5423043551 0 0 1
19.4607360933 1 0 24.3960137842 0 0 1
44.9645896939 1 0 3.06161955063 0 0 1
48.3691740856 1 0 2.84311907493 0 0 1
0 2 0 0 1 3 1
1 2 100 0 1 1 1
7.03200507014 2 0 48.1712193857 0 0 1

The differences between the input PoPy data Table 53 and the output Nonmem data Table 54. Are summarised in the Table 55

Table 55 Comparing PoPy ‘fit_example1_data.csv’ and Nonmem ‘fit_example1_nm_data.csv’
Input PoPy column Output Nonmem column Comments
TYPE EVID reset->3, dose->1, obs->0
ID ID no change
TIME TIME no change
AMT AMT dose rows no change, obs/reset rows -> 0
DV_CENTRAL DV no change
DV_CENTRAL_FLAG MDV 1-DV_CENTRAL_FLAG

Note the corresponding columns are not in the same order between ‘fit_example1_data.csv’ and ‘fit_example1_nm_data.csv’. The P2NDat Script has removed the ‘TYPE’, ‘DV_CENTRAL’ and ‘DV_CENTRAL_FLAG’ PoPy fields, to leave ‘TIME’, ‘ID’ and ‘AMT’, then added the newly created Nonmem specific ‘DV’, ‘MDV’, ‘EVID’ and ‘CMT’ columns.

The ‘fit_example1_nm_data.csv’ contains a ‘CMT’ field to specify that the Nonmem dosing occurs in compartment 1. PoPy specifies the dosing compartment entirely in the script file, see Dosing Fields, so the output ‘CMT’ column has no corresponding column in the PoPy data file. You have to specify the ‘CMT’ value in your P2NDat Script manually, see OUTPUT_NONMEM_FIELDS.

P2NDAT Script Syntax

You can view the example P2NDat Script here:-

c:\PoPy\examples\p2ndat_script.pyml

Each section is discussed below.

METHOD_OPTIONS

Just specifies the script type:-

METHOD_OPTIONS: {py_module: p2ndat}

See METHOD_OPTIONS for more info.

FILE_PATHS

Just specifies the input PoPy data file and output Nonmem data file:-

FILE_PATHS:
    input_popy_file: fit_example1_data.csv
    output_nonmem_file: fit_example1_nm_data.csv

INPUT_POPY_FIELDS

Describes the columns of the input PoPy file:-

INPUT_POPY_FIELDS:
    time_field: TIME
    id_field: ID
    type_field: TYPE
    dv_fields: ['DV_CENTRAL']
    amt_fields: ['AMT']
    rate_fields: []
    dur_fields: []
    dose_labels: ['']

Here ‘time_field’, ‘id_field’ and ‘type_field’ are the PoPy data file Required Fields. They default to the above values.

The ‘dv_fields’ is a list of PoPy Observation Fields that will be moved into the Nonmem DV field. Note you can specify multiple observed columns, each observed field will result in extra rows in the Nonmem data output, as Nonmem only ever has one DV observation column.

The ‘amt_fields’ is a list of PoPy Dosing Fields, i.e. columns that contain dose amounts. Similar to the ‘dv_fields’, if you specify multiple dosing amount columns, then the Nonmem data output will contain extra rows, as Nonmem only has one AMT field.

The ‘rate_fields’ and ‘dur_fields’ are blank because we only have bolus dosing here. If you have infusion dosing then add the @inf_rate and @inf_dur rate and duration parameters here.

The ‘dose_labels’ field contains the dosing names used in the PoPy data file. In this case dose_labels= [‘’] means PoPy dose names are not used. i.e. the TYPE column just uses ‘dose’ values. If you use ‘dose:my_dose_name’, ‘dose:my_other_dose_name’ in your PoPy data file, to describe Multiple Dose Types, then you need to list the names here, e.g. [‘my_dose_name’, ‘my_other_dose_name’].

OUTPUT_NONMEM_FIELDS

Describes the columns of the output Nonmem file:-

OUTPUT_NONMEM_FIELDS:
    comment_prefix: '#'
    column_names: auto
    time_field: TIME
    id_field: ID
    evid_field: EVID
    dv_field: DV
    mdv_field: MDV
    amt_field: AMT
    rate_field: none
    dur_field: none
    cmt_field: CMT
    obs_cmt_numbers: [1]
    dose_cmt_numbers: [1]

Here ‘comment_prefix’ allows loading of Nonmem data files with comment lines. Lines starting with the ‘comment_prefix’ symbol are ignored.

‘column_names: auto’, uses the columns names in the ‘.csv’ data file. You could rename them using a list here, a bit like the Nonmem $INPUT section.

The ‘time_field’, ‘id_field’, ‘evid_field’, ‘dv_field’, ‘mdv_field’, ‘rate_field’, ‘dur_field’ and ‘cmt_field’ allows you to specify the Nonmem key fields ‘ID’, ‘EVID’, ‘DV’, ‘MDV’, ‘AMT’, ‘RATE’, ‘DUR’ and ‘CMT’. These fields default to the Nonmem key names.

Note that if you do not require some of the Nonmem fields, e.g. in this case ‘rate_field’ and ‘dur_field’, because these only relate to infusion dosing and there is only bolus dosing in this example. Then you can assign null values using ‘none’.

The ‘obs_cmt_numbers’ is a list of compartment indices to appear in the CMT column to be created by the P2NDat Script. The ‘OUTPUT_NONMEM_FIELDS->obs_cmt_numbers’ list must be the same length as the ‘INPUT_POPY_FIELDS->dv_fields’ list. The elements of both lists must correspond to the same type of observation. e.g. in this case all PoPy observations ‘DV_CENTRAL’ occur in Nonmem compartment one. The P2NDat Script will copy the PoPy ‘DV_CENTRAL’ value into the Nonmem DV column for all rows with TYPE =’obs’ and set MDV =0 for these rows.

The ‘dose_cmt_numbers’ is a list of compartment indices to appear in the CMT column to be created by the P2NDat Script. The ‘OUTPUT_POPY_FIELDS->dose_cmt_numbers’ list must be the same length as the ‘INPUT_POPY_FIELDS->amt_fields’ list. The elements of both lists must correspond to the same type of dose. e.g. in this case all PoPy dose amounts ‘AMT’ occur in Nonmem compartment one. The P2NDat Script will copy the PoPy ‘AMT’ value into the Nonmem AMT column for all rows with TYPE =’dose’ and set AMT =0.0 for other rows.

If you have multiple doses and multiple observation fields in your input PoPy data, then you have to specify the dv_fields/obs_cmt_numbers and amt_fields/dose_cmt_numbers list pairs carefully.

OUTPUT_OPTIONS

Describes the output options. Currently, the only option is to remove fields from the final data file:-

OUTPUT_OPTIONS:
    drop_fields: ['TYPE', 'DV_CENTRAL', 'DV_CENTRAL_FLAG']

Here we are removing the old PoPy fields from the Nonmem data output. This is useful in this case, as we wish to demonstrate regenerating the orig PoPy fields, when we use a N2PDat Script in the next section.

N2PDAT Example

The P2NDat Script converts data from PoPy to Nonmem format. Here we discuss the N2PDat Script that computes the inverse conversion from Nonmem to PoPy format.

Assuming you have run the N2PDAT Example, view the example N2PDat Script in your text editor, by typing:-

$ popy_edit n2pdat_script.pyml

Then run the N2PDat Script using:-

$ popy_run n2pdat_script.pyml

This will create a new PoPy data file ‘fit_example1_data_v2.csv’. The first ten rows are shown in Table 56.

Table 56 Output data in Nonmem format (first ten rows)
TIME ID AMT DV_CENTRAL DV_CENTRAL_FLAG TYPE
0 1 0 0 0 reset
1 1 100 0 0 dose:_bolus
7.22152181887 1 0 55.3986503177 1 obs
13.7633242874 1 0 43.5423043551 1 obs
19.4607360933 1 0 24.3960137842 1 obs
44.9645896939 1 0 3.06161955063 1 obs
48.3691740856 1 0 2.84311907493 1 obs
0 2 0 0 0 reset
1 2 100 0 0 dose:_bolus
7.03200507014 2 0 48.1712193857 1 obs

The differences between the input Nonmem data Table 54 and the output PoPy data Table 56. Are summarised in the Table 57

Table 57 Comparing Nonmem ‘fit_example1_nm_data.csv’ and PoPy ‘fit_example1_data_v2.csv’
Input Nonmem column Output PoPy column Comments
TIME TIME no change
ID ID no change
AMT AMT no change
DV DV_CENTRAL no change
MDV DV_CENTRAL_FLAG 1-MDV
EVID TYPE 3->reset,1->dose:_bolus,0->obs
CMT N/A PoPy has no ‘CMT’ equivalent

The N2PDat Script has removed ‘DV’, ‘MDV’, ‘EVID’ and ‘CMT’ Nonmem fields from ‘fit_example1_nm_data.csv’ and replaced them with ‘TYPE’, ‘DV_CENTRAL’ and ‘DV_CENTRAL_FLAG’ PoPy fields in ‘fit_example1_data_v2.csv’.

The ‘fit_example1_data_v2.csv’ contains no ‘CMT’ field because PoPy specifies the dosing compartment entirely in the script file, see Dosing Fields.

N2PDAT Script Syntax

You can view the example N2PDat Script here:-

c:\PoPy\examples\n2pdat_script.pyml

Each section is discussed below.

METHOD_OPTIONS

Specifies the script type:-

METHOD_OPTIONS: {py_module: n2pdat}

See METHOD_OPTIONS for more information.

FILE_PATHS

Specifies the input Nonmem data file and output PoPy data file:-

FILE_PATHS:
    input_nonmem_file: fit_example1_nm_data.csv
    output_popy_file: fit_example1_data_v2.csv

INPUT_NONMEM_FIELDS

Describes the columns of the input Nonmem file:-

INPUT_NONMEM_FIELDS:
    comment_prefix: '#'
    column_names: auto
    date_field: none
    date_format: none
    time_field: TIME
    id_field: ID
    evid_field: EVID
    dv_field: DV
    mdv_field: MDV
    amt_field: AMT
    rate_field: none
    dur_field: none
    cmt_field: CMT
    obs_cmt_numbers: [1]
    dose_cmt_numbers: [1]

This is the same as the OUTPUT_NONMEM_FIELDS section. The only difference is that this section is now describing an input Nonmem data file instead of an output Nonmem data file.

The ‘obs_cmt_numbers’ and ‘dose_cmt_numbers’ list have to correspond to the ‘dv_fields’ and ‘amt_fields’ in the OUTPUT_POPY_FIELDS section to get sensible PoPy data output. See below for more explanation.

OUTPUT_POPY_FIELDS

Describes the columns of the output PoPy file:-

OUTPUT_POPY_FIELDS:
    time_field: TIME
    id_field: ID
    type_field: TYPE
    dv_fields: ['DV_CENTRAL']
    amt_fields: ['AMT']
    rate_fields: []
    dur_fields: []
    dose_labels: ['']

This is the same as the INPUT_POPY_FIELDS section. The only difference is that this section is now describing an output PoPy data file instead of an input PoPy data file.

Here the ‘dv_fields’ is a list of PoPy observation columns to be created by the N2PDat Script, based on the input Nonmem DV field. The ‘OUTPUT_POPY_FIELDS->dv_fields’ list must be the same length as the ‘INPUT_NONMEM_FIELDS->obs_cmt_numbers’ list. The elements of both lists must correspond to the same type of observation. e.g. in this case all Nonmem observations occur in compartment one, so for Nonmem data rows with EVID =0 and CMT =1 the Nonmem DV value is copied into the PoPy DV_CENTRAL column with DV_CENTRAL_FLAG=1.

The ‘amt_fields’ is a list of PoPy dose amount columns to be created by the N2PDat Script, based on the input Nonmem AMT field. The ‘OUTPUT_POPY_FIELDS->amt_fields’ list must be the same length as the ‘INPUT_NONMEM_FIELDS->dose_cmt_numbers’ list. The elements of both list must correspond to the same type of dose. e.g. in this case all Nonmem doses occur in compartment one, so for Nonmem data rows with EVID =1 and CMT =1 the Nonmem AMT value is copied into the PoPy AMT column, with all other rows set to zero.

If you have multiple doses and multiple observation fields in your input Nonmem data, then you have to specify the obs_cmt_numbers/dv_fields and dose_cmt_numbers/amt_fields list pairs carefully.

OUTPUT_OPTIONS

Describes the output options, currently, just which fields to remove:-

OUTPUT_OPTIONS:
    drop_fields: ['DV', 'MDV', 'EVID', 'CMT']

Here we are removing the Nonmem specific fields. In a real life conversion it may be sensible to keep the Nonmem fields, so that you can perform a side by side sanity check from within the PoPy output file. Note the fields above will be of little use to a PoPy Fit Script, compared to the ‘DV_CENTRAL’, ‘DV_CENTRAL_FLAG’ and ‘TYPE’ fields, created by the N2PDat Script.

Compare original PoPy data with P2NDAT/N2PDAT version

In this walk through we have taken a PoPy data file ‘fit_example1_data.csv’, run P2NDat Script to create a Nonmem data version. Then we ran N2PDat Script to re-create the original PoPy data file ‘fit_example1_data_v2.csv’ from the Nonmem data.

You can compare the first 10 rows of both the input PoPy data set in Table 53 and the output PoPy data in Table 56.

Both files contain the same column headers i.e. ‘TYPE’, ‘ID’, ‘TIME’, ‘AMT’, ‘DV_CENTRAL’, ‘DV_CENTRAL_FLAG’. The values in each column are the same apart from ‘AMT’ column has zero values in non-dose rows. Also the ‘dose’ value in the TYPE field is now ‘dose:_bolus’. Both the input and output .csv files are valid PoPy data formats for the PK/PD problem described in Fitting a Simple PopPK Model using PoPy.

Back to Top