- Language: en
Model containing proportional error only, with proportional only data¶
[Generated automatically as a Fitting summary]
Model Description¶
| Name: | po_gen_po_fit |
|---|---|
| Title: | Model containing proportional error only, with proportional only data |
| Author: | PoPy for PK/PD |
| Abstract: |
One compartment model with a depot leading to a central compartment.
This model contains proportional error and no additive error. The synthetic input data contains only proportional error too.
| Keywords: | one compartment model; dep_one_cmp_cl; proportional error |
|---|---|
| Input Script: | po_gen_po_fit_fit.pyml |
| Diagram: |
Comparison¶
Compare Main f[X]¶
Compare Noise f[X]¶
| Variable Name | Starting Value | Fitted Value | Abs Change | Prop Change |
|---|---|---|---|---|
| f[PNOISE_STD] | 0.5000 | 0.0928 | 0.4072 | 0.8145 |
Compare Variance f[X]¶
Population simulated (sim) plots¶
| allOBS_vs_TIME | |
| CWRES(DV_CENTRAL)_vs_IPRED(DV_CENTRAL) | |
| indOBS_vs_TIME | |
| IRES(DV_CENTRAL)_vs_IPRED(DV_CENTRAL) | |
| WRES(DV_CENTRAL)_vs_PPRED(DV_CENTRAL) |
Outputs¶
Fitted f[X] values (after fitting)¶
f[PNOISE_STD] = 0.0928
Fitted parameter .csv files¶
| Fixed Effects: | fx_params.csv (fit) |
|---|---|
| Random Effects: | rx_params.csv (fit) |
| Model params: | mx_params.csv (fit) |
| State values: | sx_params.csv (fit) |
| Predictions: | px_params.csv (fit) |
| Likelihoods: | lx_params.csv (fit) |