First order absorption model with peripheral compartment¶
[Generated automatically as a Tutorial summary]
Model Description¶
Name: | builtin_tut_example |
---|---|
Title: | First order absorption model with peripheral compartment |
Author: | PoPy for PK/PD |
Abstract: |
A two compartment PK model with bolus dose and
first order absorption, similar to a Nonmem advan4trans4 model.
Keywords: | tutorial; pk; advan4; dep_two_cmp; first order |
---|---|
Input Script: | builtin_tut_example.pyml |
Diagram: |
Comparison¶
True objective value¶
-885.4844
Final fitted objective value¶
-907.0764
Compare Main f[X]¶
Name | Initial | Fitted | True | Abs. Error | Prop. Error |
---|---|---|---|---|---|
f[KA] | 1 | 0.11 | 0.2 | 8.95e-02 | 44.77% |
f[CL] | 1 | 2.29 | 2 | 2.94e-01 | 14.71% |
f[V1] | 20 | 31 | 50 | 1.90e+01 | 37.98% |
f[Q] | 0.5 | 1.66 | 1 | 6.60e-01 | 65.99% |
f[V2] | 100 | 44.8 | 80 | 3.52e+01 | 43.99% |
Compare Noise f[X]¶
Name | Initial | Fitted | True | Abs. Error | Prop. Error |
---|---|---|---|---|---|
f[PNOISE] | 0.1 | 0.141 | 0.15 | 8.89e-03 | 5.93% |
Compare Variance f[X]¶
Name | Initial | Fitted | True | Abs. Error | Prop. Error |
---|---|---|---|---|---|
f[KA_isv] | 0.05 | 0.0847 | 0.1 | 1.53e-02 | 15.26% |
f[KA_isv;CL_isv] | 0.01 | 0.0348 | 0.01 | 2.48e-02 | 247.98% |
f[KA_isv;V1_isv] | 0.01 | -0.00295 | 0.01 | 1.29e-02 | 129.48% |
f[KA_isv;Q_isv] | 0.01 | -0.0471 | 0.01 | 5.71e-02 | 570.63% |
f[KA_isv;V2_isv] | 0.01 | -0.0914 | 0.01 | 1.01e-01 | 1013.60% |
f[CL_isv;KA_isv] | 0.01 | 0.0348 | 0.01 | 2.48e-02 | 247.98% |
f[CL_isv] | 0.05 | 0.016 | 0.03 | 1.40e-02 | 46.80% |
f[CL_isv;V1_isv] | 0.01 | 0.00654 | -0.01 | 1.65e-02 | 165.37% |
f[CL_isv;Q_isv] | 0.01 | -0.0282 | 0.02 | 4.82e-02 | 241.22% |
f[CL_isv;V2_isv] | 0.01 | -0.0181 | 0.02 | 3.81e-02 | 190.26% |
f[V1_isv;KA_isv] | 0.01 | -0.00295 | 0.01 | 1.29e-02 | 129.48% |
f[V1_isv;CL_isv] | 0.01 | 0.00654 | -0.01 | 1.65e-02 | 165.37% |
f[V1_isv] | 0.05 | 0.137 | 0.09 | 4.68e-02 | 51.97% |
f[V1_isv;Q_isv] | 0.01 | -0.0275 | 0.01 | 3.75e-02 | 375.49% |
f[V1_isv;V2_isv] | 0.01 | 0.131 | 0.01 | 1.21e-01 | 1214.66% |
f[Q_isv;KA_isv] | 0.01 | -0.0471 | 0.01 | 5.71e-02 | 570.63% |
f[Q_isv;CL_isv] | 0.01 | -0.0282 | 0.02 | 4.82e-02 | 241.22% |
f[Q_isv;V1_isv] | 0.01 | -0.0275 | 0.01 | 3.75e-02 | 375.49% |
f[Q_isv] | 0.05 | 0.083 | 0.07 | 1.30e-02 | 18.58% |
f[Q_isv;V2_isv] | 0.01 | -0.0602 | 0.01 | 7.02e-02 | 701.64% |
f[V2_isv;KA_isv] | 0.01 | -0.0914 | 0.01 | 1.01e-01 | 1013.60% |
f[V2_isv;CL_isv] | 0.01 | -0.0181 | 0.02 | 3.81e-02 | 190.26% |
f[V2_isv;V1_isv] | 0.01 | 0.131 | 0.01 | 1.21e-01 | 1214.66% |
f[V2_isv;Q_isv] | 0.01 | -0.0602 | 0.01 | 7.02e-02 | 701.64% |
f[V2_isv] | 0.05 | 0.361 | 0.05 | 3.11e-01 | 622.08% |
Outputs¶
Fitted f[X] values (after fitting)¶
f[KA] = 0.1105
f[CL] = 2.2942
f[V1] = 31.0117
f[Q] = 1.6599
f[V2] = 44.8060
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
[ 0.0847, 0.0348, -0.0029, -0.0471, -0.0914 ],
[ 0.0348, 0.0160, 0.0065, -0.0282, -0.0181 ],
[ -0.0029, 0.0065, 0.1368, -0.0275, 0.1315 ],
[ -0.0471, -0.0282, -0.0275, 0.0830, -0.0602 ],
[ -0.0914, -0.0181, 0.1315, -0.0602, 0.3610 ],
]
f[PNOISE] = 0.1411
Generated data .csv file¶
Synthetic Data: | synthetic_data.csv |
---|
Gen and Fit Summaries¶
Inputs¶
True f[X] values (for simulation)¶
f[KA] = 0.2000
f[CL] = 2.0000
f[V1] = 50.0000
f[Q] = 1.0000
f[V2] = 80.0000
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
[ 0.1000, 0.0100, 0.0100, 0.0100, 0.0100 ],
[ 0.0100, 0.0300, -0.0100, 0.0200, 0.0200 ],
[ 0.0100, -0.0100, 0.0900, 0.0100, 0.0100 ],
[ 0.0100, 0.0200, 0.0100, 0.0700, 0.0100 ],
[ 0.0100, 0.0200, 0.0100, 0.0100, 0.0500 ],
]
f[PNOISE] = 0.1500
Starting f[X] values (before fitting)¶
f[KA] = 1.0000
f[CL] = 1.0000
f[V1] = 20.0000
f[Q] = 0.5000
f[V2] = 100.0000
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
[ 0.0500, 0.0100, 0.0100, 0.0100, 0.0100 ],
[ 0.0100, 0.0500, 0.0100, 0.0100, 0.0100 ],
[ 0.0100, 0.0100, 0.0500, 0.0100, 0.0100 ],
[ 0.0100, 0.0100, 0.0100, 0.0500, 0.0100 ],
[ 0.0100, 0.0100, 0.0100, 0.0100, 0.0500 ],
]
f[PNOISE] = 0.1000