First order absorption model with peripheral compartment¶
[Generated automatically as a Fitting summary]
Model Description¶
Name: | builtin_tut_example |
---|---|
Title: | First order absorption model with peripheral compartment |
Author: | PoPy for PK/PD |
Abstract: |
A two compartment PK model with bolus dose and
first order absorption, similar to a Nonmem advan4trans4 model.
Keywords: | tutorial; pk; advan4; dep_two_cmp; first order |
---|---|
Input Script: | builtin_tut_example_fit.pyml |
Diagram: |
Comparison¶
Compare Main f[X]¶
Variable Name | Starting Value | Fitted Value | Abs Change | Prop Change |
---|---|---|---|---|
f[KA] | 1.0000 | 0.1105 | 0.8895 | 0.8895 |
f[CL] | 1.0000 | 2.2942 | 1.2942 | 1.2942 |
f[V1] | 20.0000 | 31.0117 | 11.0117 | 0.5506 |
f[Q] | 0.5000 | 1.6599 | 1.1599 | 2.3199 |
f[V2] | 100.0000 | 44.8060 | 55.1940 | 0.5519 |
Compare Noise f[X]¶
Variable Name | Starting Value | Fitted Value | Abs Change | Prop Change |
---|---|---|---|---|
f[PNOISE] | 0.1000 | 0.1411 | 0.0411 | 0.4111 |
Compare Variance f[X]¶
Variable Name | Starting Value | Fitted Value | Abs Change | Prop Change |
---|---|---|---|---|
f[KA_isv] | 0.0500 | 0.0847 | 0.0347 | 0.6949 |
f[KA_isv;CL_isv] | 0.0100 | 0.0348 | 0.0248 | 2.4798 |
f[KA_isv;V1_isv] | 0.0100 | -0.0029 | 0.0129 | 1.2948 |
f[KA_isv;Q_isv] | 0.0100 | -0.0471 | 0.0571 | 5.7063 |
f[KA_isv;V2_isv] | 0.0100 | -0.0914 | 0.1014 | 10.1360 |
f[CL_isv;KA_isv] | 0.0100 | 0.0348 | 0.0248 | 2.4798 |
f[CL_isv] | 0.0500 | 0.0160 | 0.0340 | 0.6808 |
f[CL_isv;V1_isv] | 0.0100 | 0.0065 | 0.0035 | 0.3463 |
f[CL_isv;Q_isv] | 0.0100 | -0.0282 | 0.0382 | 3.8244 |
f[CL_isv;V2_isv] | 0.0100 | -0.0181 | 0.0281 | 2.8052 |
f[V1_isv;KA_isv] | 0.0100 | -0.0029 | 0.0129 | 1.2948 |
f[V1_isv;CL_isv] | 0.0100 | 0.0065 | 0.0035 | 0.3463 |
f[V1_isv] | 0.0500 | 0.1368 | 0.0868 | 1.7354 |
f[V1_isv;Q_isv] | 0.0100 | -0.0275 | 0.0375 | 3.7549 |
f[V1_isv;V2_isv] | 0.0100 | 0.1315 | 0.1215 | 12.1466 |
f[Q_isv;KA_isv] | 0.0100 | -0.0471 | 0.0571 | 5.7063 |
f[Q_isv;CL_isv] | 0.0100 | -0.0282 | 0.0382 | 3.8244 |
f[Q_isv;V1_isv] | 0.0100 | -0.0275 | 0.0375 | 3.7549 |
f[Q_isv] | 0.0500 | 0.0830 | 0.0330 | 0.6602 |
f[Q_isv;V2_isv] | 0.0100 | -0.0602 | 0.0702 | 7.0164 |
f[V2_isv;KA_isv] | 0.0100 | -0.0914 | 0.1014 | 10.1360 |
f[V2_isv;CL_isv] | 0.0100 | -0.0181 | 0.0281 | 2.8052 |
f[V2_isv;V1_isv] | 0.0100 | 0.1315 | 0.1215 | 12.1466 |
f[V2_isv;Q_isv] | 0.0100 | -0.0602 | 0.0702 | 7.0164 |
f[V2_isv] | 0.0500 | 0.3610 | 0.3110 | 6.2208 |
Population simulated (sim) plots¶
(No population graphs were requested.)
Outputs¶
Fitted f[X] values (after fitting)¶
f[KA] = 0.1105
f[CL] = 2.2942
f[V1] = 31.0117
f[Q] = 1.6599
f[V2] = 44.8060
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
[ 0.0847, 0.0348, -0.0029, -0.0471, -0.0914 ],
[ 0.0348, 0.0160, 0.0065, -0.0282, -0.0181 ],
[ -0.0029, 0.0065, 0.1368, -0.0275, 0.1315 ],
[ -0.0471, -0.0282, -0.0275, 0.0830, -0.0602 ],
[ -0.0914, -0.0181, 0.1315, -0.0602, 0.3610 ],
]
f[PNOISE] = 0.1411
Fitted parameter .csv files¶
Fixed Effects: | fx_params.csv (fit) |
---|---|
Random Effects: | rx_params.csv (fit) |
Model params: | mx_params.csv (fit) |
State values: | sx_params.csv (fit) |
Predictions: | px_params.csv (fit) |
Likelihoods: | lx_params.csv (fit) |
Inputs¶
Input Data: | cx_obs_params.csv |
---|
Starting f[X] values (before fitting)¶
f[KA] = 1.0000
f[CL] = 1.0000
f[V1] = 20.0000
f[Q] = 0.5000
f[V2] = 100.0000
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
[ 0.0500, 0.0100, 0.0100, 0.0100, 0.0100 ],
[ 0.0100, 0.0500, 0.0100, 0.0100, 0.0100 ],
[ 0.0100, 0.0100, 0.0500, 0.0100, 0.0100 ],
[ 0.0100, 0.0100, 0.0100, 0.0500, 0.0100 ],
[ 0.0100, 0.0100, 0.0100, 0.0100, 0.0500 ],
]
f[PNOISE] = 0.1000