• Language: en

Simple Tut Example

[Generated automatically as a Fitting summary]

Model Description

Name:tut_example1
Title:Simple Tut Example
Author:PoPy for PK/PD
Abstract:
One compartment model with elimination rate constant KE.
Keywords:one compartment model; iv_one_cmp_k
Input Script:tut_example1_fit.pyml
Diagram:

Comparison

Compare Main f[X]

Variable Name Starting Value Fitted Value Abs Change Prop Change
f[KE] 0.0500 0.0941 0.0441 0.8815

Compare Noise f[X]

Variable Name Starting Value Fitted Value Abs Change Prop Change
f[PNOISE] 0.1000 0.0521 0.0479 0.4788

Compare Variance f[X]

Variable Name Starting Value Fitted Value Abs Change Prop Change
f[KE_isv] 0.1000 0.0128 0.0872 0.8719

Individual simulated (sim) plots

Alternatively see All simulated_sim graph plots

Population simulated (sim) plots

allOBS(DV_CENTRAL)_vs_IPRED(CEN)
allOBS(DV_CENTRAL)_vs_PRED(CEN)
allOBS_vs_TIME
CWRES(DV_CENTRAL)_vs_IPRED(CEN)
IRES(DV_CENTRAL)_vs_IPRED(CEN)
IWRES(DV_CENTRAL)_vs_IPRED(CEN)
WRES(DV_CENTRAL)_vs_PPRED(CEN)

Outputs

Final objective value

23.9852

which required 1.13 iterations and took 59.99 seconds

Fitted f[X] values (after fitting)

f[KE] = 0.0941
f[PNOISE] = 0.0521
f[KE_isv] = 0.0128

Fitted parameter .csv files

Fixed Effects:fx_params.csv (fit)
Random Effects:rx_params.csv (fit)
Model params:mx_params.csv (fit)
State values:sx_params.csv (fit)
Predictions:px_params.csv (fit)
Likelihoods:lx_params.csv (fit)

Inputs

Input Data:cx_obs_params.csv

Starting f[X] values (before fitting)

f[KE] = 0.0500
f[PNOISE] = 0.1000
f[KE_isv] = 0.1000
Back to Top