• Language: en

Depot One Comp PK with BLQ observations set to 0.5*LLQ

[Generated automatically as a Fitting summary]

Model Description

Name:

blq_pk_norm_fit_half

Title:

Depot One Comp PK with BLQ observations set to 0.5*LLQ

Author:

PoPy for PK/PD

Abstract:

Depot One Comp PK model, with BLQ (below level of quantification)
observations set to 0.5*LLQ (lower limit of quantification).
Keywords:

tutorial; pk; advan4; dep_two_cmp; blq

Input Script:

blq_pk_norm_fit_half.pyml

Diagram:

Comparison

Compare Main f[X]

Variable Name

Starting Value

Fitted Value

Abs Change

Prop Change

f[KA]

1.0000

2.6942

1.6942

1.6942

f[CL]

1.0000

1.6544

0.6544

0.6544

f[V1]

20.0000

81.3481

61.3481

3.0674

Compare Noise f[X]

Variable Name

Starting Value

Fitted Value

Abs Change

Prop Change

f[PNOISE]

0.1000

0.3227

0.2227

2.2266

Compare Variance f[X]

Variable Name

Starting Value

Fitted Value

Abs Change

Prop Change

f[KA_isv]

0.0500

0.8662

0.8162

16.3245

f[KA_isv;CL_isv]

0.0100

0.0813

0.0713

7.1277

f[KA_isv;V1_isv]

0.0100

0.1977

0.1877

18.7668

f[CL_isv;KA_isv]

0.0100

0.0813

0.0713

7.1277

f[CL_isv]

0.0500

0.0078

0.0422

0.8436

f[CL_isv;V1_isv]

0.0100

0.0190

0.0090

0.8991

f[V1_isv;KA_isv]

0.0100

0.1977

0.1877

18.7668

f[V1_isv;CL_isv]

0.0100

0.0190

0.0090

0.8991

f[V1_isv]

0.0500

0.0462

0.0038

0.0760

Individual simulated (sim) plots

Alternatively see All simulated_sim graph plots

Population simulated (sim) plots

(No population graphs were requested.)

Outputs

Final objective value

28107.2607

which required 1.30 iterations and took 491.03 seconds

Fitted f[X] values (after fitting)

f[KA] = 2.6942
f[CL] = 1.6544
f[V1] = 81.3481
f[KA_isv,CL_isv,V1_isv] = [
    [ 0.8662, 0.0813, 0.1977 ],
    [ 0.0813, 0.0078, 0.0190 ],
    [ 0.1977, 0.0190, 0.0462 ],
]
f[PNOISE] = 0.3227
f[ANOISE] = 0.0100

Fitted parameter .csv files

Fixed Effects:

fx_params.csv (fit)

Random Effects:

rx_params.csv (fit)

Model params:

mx_params.csv (fit)

State values:

sx_params.csv (fit)

Predictions:

px_params.csv (fit)

Likelihoods:

lx_params.csv (fit)

Inputs

Input Data:

synthetic_data.csv

Starting f[X] values (before fitting)

f[KA] = 1.0000
f[CL] = 1.0000
f[V1] = 20.0000
f[KA_isv,CL_isv,V1_isv] = [
    [ 0.0500, 0.0100, 0.0100 ],
    [ 0.0100, 0.0500, 0.0100 ],
    [ 0.0100, 0.0100, 0.0500 ],
]
f[PNOISE] = 0.1000
f[ANOISE] = 0.0100
Back to Top