One Compartment Model with Absorption and Inter-subject Variance f[CL_isv]=0.2
[Generated automatically as a Fitting summary]
Model Description
- Name:
d1cmp_cl_isv
- Title:
One Compartment Model with Absorption and Inter-subject Variance f[CL_isv]=0.2
- Author:
PoPy for PK/PD
- Abstract:
- Keywords:
one compartment model; dep_one_cmp_cl
- Input Script:
- Diagram:
Comparison
Compare Main f[X]
Variable Name |
Starting Value |
Fitted Value |
Abs Change |
Prop Change |
---|---|---|---|---|
f[KA] |
0.5000 |
0.2642 |
0.2358 |
0.4715 |
f[CL] |
1.0000 |
2.7416 |
1.7416 |
1.7416 |
f[V] |
15.0000 |
19.1975 |
4.1975 |
0.2798 |
Compare Noise f[X]
Variable Name |
Starting Value |
Fitted Value |
Abs Change |
Prop Change |
---|---|---|---|---|
f[PNOISE_STD] |
0.2000 |
0.1131 |
0.0869 |
0.4345 |
f[ANOISE_STD] |
0.2000 |
0.0417 |
0.1583 |
0.7916 |
Compare Variance f[X]
Variable Name |
Starting Value |
Fitted Value |
Abs Change |
Prop Change |
---|---|---|---|---|
f[CL_isv] |
0.0100 |
0.1647 |
0.1547 |
15.4697 |
Individual simulated (sim) plots
Alternatively see All simulated_sim graph plots
Population simulated (sim) plots
allOBS_vs_TIME |
Outputs
Final objective value
-371.3278
which required 1.20 iterations and took 413.60 seconds
Fitted f[X] values (after fitting)
f[KA] = 0.2642
f[CL] = 2.7416
f[V] = 19.1975
f[PNOISE_STD] = 0.1131
f[ANOISE_STD] = 0.0417
f[CL_isv] = 0.1647
Fitted parameter .csv files
- Fixed Effects:
- Random Effects:
- Model params:
- State values:
- Predictions:
- Likelihoods:
Inputs
- Input Data:
Starting f[X] values (before fitting)
f[KA] = 0.5000
f[CL] = 1.0000
f[V] = 15.0000
f[PNOISE_STD] = 0.2000
f[ANOISE_STD] = 0.2000
f[CL_isv] = 0.0100