• Language: en

Body Weight Covariate

[Generated automatically as a Tutorial summary]

Model Description

Name:

weight_covariate

Title:

Body Weight Covariate

Author:

PoPy for PK/PD

Abstract:

One compartment model with absorption compartment and CL/V parametrisation.
There are no random effects here. Each individual just has a different weight.
The weight is a covariate for the m[CL] clearance parameter for each individual.
Only the f[WT_EFFECT] and f[V] fixed effect parameters are estimated, other f[X] are fixed.
Keywords:

one compartment model; dep_one_cmp_cl; weight; covariate effect

Input Script:

weight_covariate.pyml

Diagram:

Comparison

True objective value

-483.3718

Final fitted objective value

-486.0798

Compare Main f[X]

Name

Initial

Fitted

True

Abs. Error

Prop. Error

f[V]

15

20.3

20

2.61e-01

1.31%

f[WT_EFFECT]

1

0.666

0.75

8.43e-02

11.25%

Compare Noise f[X]

No Noise f[X] values to compare.

Compare Variance f[X]

No Variance f[X] values to compare.

Outputs

Fitted f[X] values (after fitting)

f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.2610
f[PNOISE] = 0.1000
f[ANOISE] = 0.0500
f[WT_EFFECT] = 0.6657

Generated data .csv file

Synthetic Data:

synthetic_data.csv

Gen and Fit Summaries

Inputs

True f[X] values (for simulation)

f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE] = 0.1000
f[ANOISE] = 0.0500
f[WT_EFFECT] = 0.7500

Starting f[X] values (before fitting)

f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 15.0000
f[PNOISE] = 0.1000
f[ANOISE] = 0.0500
f[WT_EFFECT] = 1.0000
Back to Top