Body Weight Covariate
[Generated automatically as a Fitting summary]
Model Description
- Name:
weight_covariate
- Title:
Body Weight Covariate
- Author:
PoPy for PK/PD
- Abstract:
One compartment model with absorption compartment and CL/V parametrisation.
There are no random effects here. Each individual just has a different weight.
The weight is a covariate for the m[CL] clearance parameter for each individual.
Only the f[WT_EFFECT] and f[V] fixed effect parameters are estimated, other f[X] are fixed.
- Keywords:
one compartment model; dep_one_cmp_cl; weight; covariate effect
- Input Script:
- Diagram:
Comparison
Compare Main f[X]
Variable Name |
Starting Value |
Fitted Value |
Abs Change |
Prop Change |
---|---|---|---|---|
f[V] |
15.0000 |
20.2610 |
5.2610 |
0.3507 |
f[WT_EFFECT] |
1.0000 |
0.6657 |
0.3343 |
0.3343 |
Compare Noise f[X]
Compare Variance f[X]
Individual simulated (sim) plots
Alternatively see All simulated_sim graph plots
Population simulated (sim) plots
allOBS_vs_TIME |
Outputs
Final objective value
-486.0798
which required 1.6 iterations and took 4.23 seconds
Fitted f[X] values (after fitting)
f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.2610
f[PNOISE] = 0.1000
f[ANOISE] = 0.0500
f[WT_EFFECT] = 0.6657
Fitted parameter .csv files
- Fixed Effects:
- Random Effects:
- Model params:
- State values:
- Predictions:
- Likelihoods:
Inputs
- Input Data:
Starting f[X] values (before fitting)
f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 15.0000
f[PNOISE] = 0.1000
f[ANOISE] = 0.0500
f[WT_EFFECT] = 1.0000