• Language: en

Diagonal matrix generation diagonal matrix fit

[Generated automatically as a Tutorial summary]

Model Description

Name:

gen_diag_fit_diag

Title:

Diagonal matrix generation diagonal matrix fit

Author:

PoPy for PK/PD

Abstract:

One compartment model with absorption compartment and CL/V parametrisation.
This script uses a diagonal covariance matrix to generate the data and a diagonal covariance matrix to fit.
Keywords:

one compartment model; dep_one_cmp_cl; diagonal matrix

Input Script:

gen_diag_fit_diag_tut.pyml

Diagram:

Comparison

True objective value

-2170.8804

Final fitted objective value

-2172.8028

Compare Main f[X]

No Main f[X] values to compare.

Compare Noise f[X]

No Noise f[X] values to compare.

Compare Variance f[X]

Name

Initial

Fitted

True

Abs. Error

Prop. Error

f[CL_isv]

0.01

0.178

0.2

2.16e-02

10.79%

f[CL_isv;V_isv]

0

0

0

0.00e+00

inf

f[V_isv;CL_isv]

0

0

0

0.00e+00

inf

f[V_isv]

0.01

0.0881

0.1

1.19e-02

11.91%

Outputs

Fitted f[X] values (after fitting)

f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv,V_isv] = [
    [ 0.1784, 0.0000 ],
    [ 0.0000, 0.0881 ],
]

Generated data .csv file

Synthetic Data:

synthetic_data.csv

Gen and Fit Summaries

Inputs

True f[X] values (for simulation)

f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv,V_isv] = [
    [ 0.2000, 0.0000 ],
    [ 0.0000, 0.1000 ],
]

Starting f[X] values (before fitting)

f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv,V_isv] = [
    [ 0.0100, 0.0000 ],
    [ 0.0000, 0.0100 ],
]
Back to Top