• Language: en

Diagonal matrix generation diagonal matrix fit using separate univariate normals

[Generated automatically as a Tutorial summary]

Model Description

Name:

gen_indep_fit_indep

Title:

Diagonal matrix generation diagonal matrix fit using separate univariate normals

Author:

PoPy for PK/PD

Abstract:

One compartment model with absorption compartment and CL/V parametrisation.
This script uses a diagonal covariance matrix to generate the data and a diagonal covariance matrix to fit.
Note here the ‘diagonal matrix’ is implemented as two separate univariate normal distributions, which is equivalent.
Keywords:

dep_one_cmp_cl; one compartment model; diagonal matrix

Input Script:

gen_indep_fit_indep_tut.pyml

Diagram:

Comparison

True objective value

-2170.8804

Final fitted objective value

-2172.8028

Compare Main f[X]

No Main f[X] values to compare.

Compare Noise f[X]

No Noise f[X] values to compare.

Compare Variance f[X]

Name

Initial

Fitted

True

Abs. Error

Prop. Error

f[CL_isv]

0.01

0.178

0.2

2.16e-02

10.79%

f[V_isv]

0.01

0.0881

0.1

1.19e-02

11.91%

Outputs

Fitted f[X] values (after fitting)

f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv] = 0.1784
f[V_isv] = 0.0881

Generated data .csv file

Synthetic Data:

synthetic_data.csv

Gen and Fit Summaries

Inputs

True f[X] values (for simulation)

f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv] = 0.2000
f[V_isv] = 0.1000

Starting f[X] values (before fitting)

f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv] = 0.0100
f[V_isv] = 0.0100
Back to Top