First order absorption model with peripheral compartment
[Generated automatically as a Fitting summary]
Model Description
- Name:
builtin_fit_example
- Title:
First order absorption model with peripheral compartment
- Author:
PoPy for PK/PD
- Abstract:
- Keywords:
fitting; pk; advan4; dep_two_cmp; first order
- Input Script:
- Diagram:
Comparison
Compare Main f[X]
Variable Name |
Starting Value |
Fitted Value |
Abs Change |
Prop Change |
---|---|---|---|---|
f[KA] |
1.0000 |
0.1032 |
0.8968 |
0.8968 |
f[CL] |
1.0000 |
2.1793 |
1.1793 |
1.1793 |
f[V1] |
20.0000 |
25.0475 |
5.0475 |
0.2524 |
f[Q] |
0.5000 |
1.8821 |
1.3821 |
2.7643 |
f[V2] |
100.0000 |
60.2802 |
39.7198 |
0.3972 |
Compare Noise f[X]
Variable Name |
Starting Value |
Fitted Value |
Abs Change |
Prop Change |
---|---|---|---|---|
f[PNOISE] |
0.1000 |
0.1390 |
0.0390 |
0.3904 |
Compare Variance f[X]
Variable Name |
Starting Value |
Fitted Value |
Abs Change |
Prop Change |
---|---|---|---|---|
f[KA_isv] |
0.0500 |
0.0476 |
0.0024 |
0.0473 |
f[KA_isv;CL_isv] |
0.0100 |
0.0265 |
0.0165 |
1.6469 |
f[KA_isv;V1_isv] |
0.0100 |
0.0354 |
0.0254 |
2.5391 |
f[KA_isv;Q_isv] |
0.0100 |
0.0016 |
0.0084 |
0.8389 |
f[KA_isv;V2_isv] |
0.0100 |
-0.0896 |
0.0996 |
9.9573 |
f[CL_isv;KA_isv] |
0.0100 |
0.0265 |
0.0165 |
1.6469 |
f[CL_isv] |
0.0500 |
0.0253 |
0.0247 |
0.4946 |
f[CL_isv;V1_isv] |
0.0100 |
0.0438 |
0.0338 |
3.3823 |
f[CL_isv;Q_isv] |
0.0100 |
0.0015 |
0.0085 |
0.8484 |
f[CL_isv;V2_isv] |
0.0100 |
-0.0546 |
0.0646 |
6.4625 |
f[V1_isv;KA_isv] |
0.0100 |
0.0354 |
0.0254 |
2.5391 |
f[V1_isv;CL_isv] |
0.0100 |
0.0438 |
0.0338 |
3.3823 |
f[V1_isv] |
0.0500 |
0.2507 |
0.2007 |
4.0143 |
f[V1_isv;Q_isv] |
0.0100 |
0.0071 |
0.0029 |
0.2898 |
f[V1_isv;V2_isv] |
0.0100 |
-0.2664 |
0.2764 |
27.6369 |
f[Q_isv;KA_isv] |
0.0100 |
0.0016 |
0.0084 |
0.8389 |
f[Q_isv;CL_isv] |
0.0100 |
0.0015 |
0.0085 |
0.8484 |
f[Q_isv;V1_isv] |
0.0100 |
0.0071 |
0.0029 |
0.2898 |
f[Q_isv] |
0.0500 |
0.0028 |
0.0472 |
0.9438 |
f[Q_isv;V2_isv] |
0.0100 |
0.0116 |
0.0016 |
0.1611 |
f[V2_isv;KA_isv] |
0.0100 |
-0.0896 |
0.0996 |
9.9573 |
f[V2_isv;CL_isv] |
0.0100 |
-0.0546 |
0.0646 |
6.4625 |
f[V2_isv;V1_isv] |
0.0100 |
-0.2664 |
0.2764 |
27.6369 |
f[V2_isv;Q_isv] |
0.0100 |
0.0116 |
0.0016 |
0.1611 |
f[V2_isv] |
0.0500 |
0.6682 |
0.6182 |
12.3631 |
Individual simulated (sim) plots
Alternatively see All simulated_sim graph plots
Population simulated (sim) plots
(No population graphs were requested.)
Outputs
Final objective value
-910.6570
which required 1.30 iterations and took 564.46 seconds
Fitted f[X] values (after fitting)
f[KA] = 0.1032
f[CL] = 2.1793
f[V1] = 25.0475
f[Q] = 1.8821
f[V2] = 60.2802
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
[ 0.0476, 0.0265, 0.0354, 0.0016, -0.0896 ],
[ 0.0265, 0.0253, 0.0438, 0.0015, -0.0546 ],
[ 0.0354, 0.0438, 0.2507, 0.0071, -0.2664 ],
[ 0.0016, 0.0015, 0.0071, 0.0028, 0.0116 ],
[ -0.0896, -0.0546, -0.2664, 0.0116, 0.6682 ],
]
f[PNOISE] = 0.1390
Fitted parameter .csv files
- Fixed Effects:
- Random Effects:
- Model params:
- State values:
- Predictions:
- Likelihoods:
Inputs
- Input Data:
Starting f[X] values (before fitting)
f[KA] = 1.0000
f[CL] = 1.0000
f[V1] = 20.0000
f[Q] = 0.5000
f[V2] = 100.0000
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
[ 0.0500, 0.0100, 0.0100, 0.0100, 0.0100 ],
[ 0.0100, 0.0500, 0.0100, 0.0100, 0.0100 ],
[ 0.0100, 0.0100, 0.0500, 0.0100, 0.0100 ],
[ 0.0100, 0.0100, 0.0100, 0.0500, 0.0100 ],
[ 0.0100, 0.0100, 0.0100, 0.0100, 0.0500 ],
]
f[PNOISE] = 0.1000