• Language: en

First order absorption model with peripheral compartment

[Generated automatically as a Tutorial summary]

Model Description

Name:

builtin_tut_example

Title:

First order absorption model with peripheral compartment

Author:

PoPy for PK/PD

Abstract:

A two compartment PK model with bolus dose and
first order absorption, similar to a Nonmem advan4trans4 model.
Keywords:

tutorial; pk; advan4; dep_two_cmp; first order

Input Script:

builtin_tut_example.pyml

Diagram:

Comparison

True objective value

-873.1410

Final fitted objective value

-893.4004

Compare Main f[X]

Name

Initial

Fitted

True

Abs. Error

Prop. Error

f[KA]

1

0.178

0.2

2.24e-02

11.21%

f[CL]

1

2.05

2

5.00e-02

2.50%

f[V1]

20

46.6

50

3.37e+00

6.73%

f[Q]

0.5

1.28

1

2.84e-01

28.39%

f[V2]

100

58.2

80

2.18e+01

27.19%

Compare Noise f[X]

Name

Initial

Fitted

True

Abs. Error

Prop. Error

f[PNOISE]

0.1

0.144

0.15

6.42e-03

4.28%

Compare Variance f[X]

Name

Initial

Fitted

True

Abs. Error

Prop. Error

f[KA_isv]

0.05

0.0748

0.1

2.52e-02

25.25%

f[KA_isv;CL_isv]

0.01

0.0819

0.01

7.19e-02

719.18%

f[KA_isv;V1_isv]

0.01

0.00189

0.01

8.11e-03

81.12%

f[KA_isv;Q_isv]

0.01

-0.131

0.01

1.41e-01

1408.16%

f[KA_isv;V2_isv]

0.01

-0.102

0.01

1.12e-01

1122.09%

f[CL_isv;KA_isv]

0.01

0.0819

0.01

7.19e-02

719.18%

f[CL_isv]

0.05

0.146

0.03

1.16e-01

385.29%

f[CL_isv;V1_isv]

0.01

0.0117

-0.01

2.17e-02

216.54%

f[CL_isv;Q_isv]

0.01

-0.112

0.02

1.32e-01

660.94%

f[CL_isv;V2_isv]

0.01

-0.279

0.02

2.99e-01

1494.52%

f[V1_isv;KA_isv]

0.01

0.00189

0.01

8.11e-03

81.12%

f[V1_isv;CL_isv]

0.01

0.0117

-0.01

2.17e-02

216.54%

f[V1_isv]

0.05

0.0874

0.09

2.63e-03

2.92%

f[V1_isv;Q_isv]

0.01

0.0452

0.01

3.52e-02

351.71%

f[V1_isv;V2_isv]

0.01

0.0315

0.01

2.15e-02

214.62%

f[Q_isv;KA_isv]

0.01

-0.131

0.01

1.41e-01

1408.16%

f[Q_isv;CL_isv]

0.01

-0.112

0.02

1.32e-01

660.94%

f[Q_isv;V1_isv]

0.01

0.0452

0.01

3.52e-02

351.71%

f[Q_isv]

0.05

0.283

0.07

2.13e-01

304.57%

f[Q_isv;V2_isv]

0.01

0.0825

0.01

7.25e-02

724.65%

f[V2_isv;KA_isv]

0.01

-0.102

0.01

1.12e-01

1122.09%

f[V2_isv;CL_isv]

0.01

-0.279

0.02

2.99e-01

1494.52%

f[V2_isv;V1_isv]

0.01

0.0315

0.01

2.15e-02

214.62%

f[V2_isv;Q_isv]

0.01

0.0825

0.01

7.25e-02

724.65%

f[V2_isv]

0.05

0.772

0.05

7.22e-01

1444.85%

Outputs

Fitted f[X] values (after fitting)

f[KA] = 0.1776
f[CL] = 2.0500
f[V1] = 46.6326
f[Q] = 1.2839
f[V2] = 58.2479
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
    [ 0.0748, 0.0819, 0.0019, -0.1308, -0.1022 ],
    [ 0.0819, 0.1456, 0.0117, -0.1122, -0.2789 ],
    [ 0.0019, 0.0117, 0.0874, 0.0452, 0.0315 ],
    [ -0.1308, -0.1122, 0.0452, 0.2832, 0.0825 ],
    [ -0.1022, -0.2789, 0.0315, 0.0825, 0.7724 ],
]
f[PNOISE] = 0.1436

Generated data .csv file

Synthetic Data:

synthetic_data.csv

Gen and Fit Summaries

Inputs

True f[X] values (for simulation)

f[KA] = 0.2000
f[CL] = 2.0000
f[V1] = 50.0000
f[Q] = 1.0000
f[V2] = 80.0000
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
    [ 0.1000, 0.0100, 0.0100, 0.0100, 0.0100 ],
    [ 0.0100, 0.0300, -0.0100, 0.0200, 0.0200 ],
    [ 0.0100, -0.0100, 0.0900, 0.0100, 0.0100 ],
    [ 0.0100, 0.0200, 0.0100, 0.0700, 0.0100 ],
    [ 0.0100, 0.0200, 0.0100, 0.0100, 0.0500 ],
]
f[PNOISE] = 0.1500

Starting f[X] values (before fitting)

f[KA] = 1.0000
f[CL] = 1.0000
f[V1] = 20.0000
f[Q] = 0.5000
f[V2] = 100.0000
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
    [ 0.0500, 0.0100, 0.0100, 0.0100, 0.0100 ],
    [ 0.0100, 0.0500, 0.0100, 0.0100, 0.0100 ],
    [ 0.0100, 0.0100, 0.0500, 0.0100, 0.0100 ],
    [ 0.0100, 0.0100, 0.0100, 0.0500, 0.0100 ],
    [ 0.0100, 0.0100, 0.0100, 0.0100, 0.0500 ],
]
f[PNOISE] = 0.1000
Back to Top