First order absorption model with peripheral compartment
[Generated automatically as a Fitting summary]
Model Description
- Name:
builtin_tut_example
- Title:
First order absorption model with peripheral compartment
- Author:
PoPy for PK/PD
- Abstract:
- Keywords:
tutorial; pk; advan4; dep_two_cmp; first order
- Input Script:
- Diagram:
Comparison
Compare Main f[X]
Variable Name |
Starting Value |
Fitted Value |
Abs Change |
Prop Change |
---|---|---|---|---|
f[KA] |
1.0000 |
0.1776 |
0.8224 |
0.8224 |
f[CL] |
1.0000 |
2.0500 |
1.0500 |
1.0500 |
f[V1] |
20.0000 |
46.6326 |
26.6326 |
1.3316 |
f[Q] |
0.5000 |
1.2839 |
0.7839 |
1.5677 |
f[V2] |
100.0000 |
58.2479 |
41.7521 |
0.4175 |
Compare Noise f[X]
Variable Name |
Starting Value |
Fitted Value |
Abs Change |
Prop Change |
---|---|---|---|---|
f[PNOISE] |
0.1000 |
0.1436 |
0.0436 |
0.4358 |
Compare Variance f[X]
Variable Name |
Starting Value |
Fitted Value |
Abs Change |
Prop Change |
---|---|---|---|---|
f[KA_isv] |
0.0500 |
0.0748 |
0.0248 |
0.4950 |
f[KA_isv;CL_isv] |
0.0100 |
0.0819 |
0.0719 |
7.1918 |
f[KA_isv;V1_isv] |
0.0100 |
0.0019 |
0.0081 |
0.8112 |
f[KA_isv;Q_isv] |
0.0100 |
-0.1308 |
0.1408 |
14.0816 |
f[KA_isv;V2_isv] |
0.0100 |
-0.1022 |
0.1122 |
11.2209 |
f[CL_isv;KA_isv] |
0.0100 |
0.0819 |
0.0719 |
7.1918 |
f[CL_isv] |
0.0500 |
0.1456 |
0.0956 |
1.9117 |
f[CL_isv;V1_isv] |
0.0100 |
0.0117 |
0.0017 |
0.1654 |
f[CL_isv;Q_isv] |
0.0100 |
-0.1122 |
0.1222 |
12.2188 |
f[CL_isv;V2_isv] |
0.0100 |
-0.2789 |
0.2889 |
28.8904 |
f[V1_isv;KA_isv] |
0.0100 |
0.0019 |
0.0081 |
0.8112 |
f[V1_isv;CL_isv] |
0.0100 |
0.0117 |
0.0017 |
0.1654 |
f[V1_isv] |
0.0500 |
0.0874 |
0.0374 |
0.7475 |
f[V1_isv;Q_isv] |
0.0100 |
0.0452 |
0.0352 |
3.5171 |
f[V1_isv;V2_isv] |
0.0100 |
0.0315 |
0.0215 |
2.1462 |
f[Q_isv;KA_isv] |
0.0100 |
-0.1308 |
0.1408 |
14.0816 |
f[Q_isv;CL_isv] |
0.0100 |
-0.1122 |
0.1222 |
12.2188 |
f[Q_isv;V1_isv] |
0.0100 |
0.0452 |
0.0352 |
3.5171 |
f[Q_isv] |
0.0500 |
0.2832 |
0.2332 |
4.6640 |
f[Q_isv;V2_isv] |
0.0100 |
0.0825 |
0.0725 |
7.2465 |
f[V2_isv;KA_isv] |
0.0100 |
-0.1022 |
0.1122 |
11.2209 |
f[V2_isv;CL_isv] |
0.0100 |
-0.2789 |
0.2889 |
28.8904 |
f[V2_isv;V1_isv] |
0.0100 |
0.0315 |
0.0215 |
2.1462 |
f[V2_isv;Q_isv] |
0.0100 |
0.0825 |
0.0725 |
7.2465 |
f[V2_isv] |
0.0500 |
0.7724 |
0.7224 |
14.4485 |
Individual simulated (sim) plots
Alternatively see All simulated_sim graph plots
Population simulated (sim) plots
(No population graphs were requested.)
Outputs
Final objective value
-893.4004
which required 1.30 iterations and took 619.78 seconds
Fitted f[X] values (after fitting)
f[KA] = 0.1776
f[CL] = 2.0500
f[V1] = 46.6326
f[Q] = 1.2839
f[V2] = 58.2479
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
[ 0.0748, 0.0819, 0.0019, -0.1308, -0.1022 ],
[ 0.0819, 0.1456, 0.0117, -0.1122, -0.2789 ],
[ 0.0019, 0.0117, 0.0874, 0.0452, 0.0315 ],
[ -0.1308, -0.1122, 0.0452, 0.2832, 0.0825 ],
[ -0.1022, -0.2789, 0.0315, 0.0825, 0.7724 ],
]
f[PNOISE] = 0.1436
Fitted parameter .csv files
- Fixed Effects:
- Random Effects:
- Model params:
- State values:
- Predictions:
- Likelihoods:
Inputs
- Input Data:
Starting f[X] values (before fitting)
f[KA] = 1.0000
f[CL] = 1.0000
f[V1] = 20.0000
f[Q] = 0.5000
f[V2] = 100.0000
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
[ 0.0500, 0.0100, 0.0100, 0.0100, 0.0100 ],
[ 0.0100, 0.0500, 0.0100, 0.0100, 0.0100 ],
[ 0.0100, 0.0100, 0.0500, 0.0100, 0.0100 ],
[ 0.0100, 0.0100, 0.0100, 0.0500, 0.0100 ],
[ 0.0100, 0.0100, 0.0100, 0.0100, 0.0500 ],
]
f[PNOISE] = 0.1000