- Language: en
First order absorption model with peripheral compartment¶
[Generated automatically as a Fitting summary]
Inputs¶
Description¶
| Name: | builtin_fit_example |
|---|---|
| Title: | First order absorption model with peripheral compartment |
| Author: | J.R. Hartley |
| Abstract: |
A two compartment PK model with bolus dose and
first order absorption, similar to a Nonmem advan4trans4 model.
| Keywords: | fitting; pk; advan4; dep_two_cmp; first order |
|---|---|
| Input Script: | builtin_fit_example.pyml |
| Input Data: | builtin_fit_example_data.csv |
| Diagram: |
Initial fixed effect estimates¶
f[KA] = 1
f[CL] = 1
f[V1] = 20
f[Q] = 0.5
f[V2] = 100
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
[ 0.05, 0.01, 0.01, 0.01, 0.01 ],
[ 0.01, 0.05, 0.01, 0.01, 0.01 ],
[ 0.01, 0.01, 0.05, 0.01, 0.01 ],
[ 0.01, 0.01, 0.01, 0.05, 0.01 ],
[ 0.01, 0.01, 0.01, 0.01, 0.05 ]
]
f[PNOISE] = 0.1
Outputs¶
Final fitted fixed effects¶
f[KA] = 0.23326
f[CL] = 2.2423
f[V1] = 58.107
f[Q] = 0.69961
f[V2] = 114.93
f[KA_isv,CL_isv,V1_isv,Q_isv,V2_isv] = [
[ 0.16704, 0.02277, -0.041913, 0.085272, 0.0053418 ],
[ 0.02277, 0.02969, 0.0082606, 0.010176, 0.0073914 ],
[ -0.041913, 0.0082606, 0.031914, -0.022249, 0.0097421 ],
[ 0.085272, 0.010176, -0.022249, 0.12799, -0.001646 ],
[ 0.0053418, 0.0073914, 0.0097421, -0.001646, 0.052089 ]
]
f[PNOISE] = 0.14935
Fitted parameter .csv files¶
| Fixed Effects: | fx_params.csv (fit) |
|---|---|
| Random Effects: | rx_params.csv (fit) |
| Model params: | mx_params.csv (fit) |
| State values: | sx_params.csv (fit) |
| Predictions: | px_params.csv (fit) |
Plots¶
Comparison¶
Compare Main f[X]¶
| Variable Name | Fitted Value | Starting Value | Prop Change | Abs Change |
|---|---|---|---|---|
| f[KA] | 0.23326 | 1 | 0.76674 | 0.76674 |
| f[CL] | 2.24226 | 1 | 1.24226 | 1.24226 |
| f[V1] | 58.1068 | 20 | 1.90534 | 38.1068 |
| f[Q] | 0.699607 | 0.5 | 0.399213 | 0.199607 |
| f[V2] | 114.934 | 100 | 0.14934 | 14.934 |
Compare Noise f[X]¶
| Variable Name | Fitted Value | Starting Value | Prop Change | Abs Change |
|---|---|---|---|---|
| f[PNOISE] | 0.149348 | 0.1 | 0.493476 | 0.0493476 |
Compare Variance f[X]¶
| Variable Name | Fitted Value | Starting Value | Prop Change | Abs Change |
|---|---|---|---|---|
| f[KA_isv] | 0.167038 | 0.05 | 2.34077 | 0.117038 |
| f[KA_isv;CL_isv] | 0.0227701 | 0.01 | 1.27701 | 0.0127701 |
| f[KA_isv;V1_isv] | -0.0419131 | 0.01 | 5.19131 | 0.0519131 |
| f[KA_isv;Q_isv] | 0.0852715 | 0.01 | 7.52715 | 0.0752715 |
| f[KA_isv;V2_isv] | 0.00534182 | 0.01 | 0.465818 | 0.00465818 |
| f[CL_isv;KA_isv] | 0.0227701 | 0.01 | 1.27701 | 0.0127701 |
| f[CL_isv] | 0.0296897 | 0.05 | 0.406206 | 0.0203103 |
| f[CL_isv;V1_isv] | 0.00826064 | 0.01 | 0.173936 | 0.00173936 |
| f[CL_isv;Q_isv] | 0.0101758 | 0.01 | 0.0175835 | 0.000175835 |
| f[CL_isv;V2_isv] | 0.00739137 | 0.01 | 0.260863 | 0.00260863 |
| f[V1_isv;KA_isv] | -0.0419131 | 0.01 | 5.19131 | 0.0519131 |
| f[V1_isv;CL_isv] | 0.00826064 | 0.01 | 0.173936 | 0.00173936 |
| f[V1_isv] | 0.0319135 | 0.05 | 0.361729 | 0.0180865 |
| f[V1_isv;Q_isv] | -0.0222493 | 0.01 | 3.22493 | 0.0322493 |
| f[V1_isv;V2_isv] | 0.00974212 | 0.01 | 0.0257884 | 0.000257884 |
| f[Q_isv;KA_isv] | 0.0852715 | 0.01 | 7.52715 | 0.0752715 |
| f[Q_isv;CL_isv] | 0.0101758 | 0.01 | 0.0175835 | 0.000175835 |
| f[Q_isv;V1_isv] | -0.0222493 | 0.01 | 3.22493 | 0.0322493 |
| f[Q_isv] | 0.127988 | 0.05 | 1.55977 | 0.0779883 |
| f[Q_isv;V2_isv] | -0.001646 | 0.01 | 1.1646 | 0.011646 |
| f[V2_isv;KA_isv] | 0.00534182 | 0.01 | 0.465818 | 0.00465818 |
| f[V2_isv;CL_isv] | 0.00739137 | 0.01 | 0.260863 | 0.00260863 |
| f[V2_isv;V1_isv] | 0.00974212 | 0.01 | 0.0257884 | 0.000257884 |
| f[V2_isv;Q_isv] | -0.001646 | 0.01 | 1.1646 | 0.011646 |
| f[V2_isv] | 0.0520889 | 0.05 | 0.041777 | 0.00208885 |