Depot + One compartment PK with BLQ¶
[Generated automatically as a Fitting summary]
Inputs¶
Description¶
| Name: | blq_pk |
|---|---|
| Title: | Depot + One compartment PK with BLQ |
| Author: | J.R. Hartley |
| Abstract: |
Depot One Comp PK model, with BLQ (below level of quantification) observations.
| Keywords: | tutorial; pk; advan4; dep_two_cmp; blq |
|---|---|
| Input Script: | blq_pk_fit.pyml |
| Input Data: | synthetic_data.csv |
| Diagram: |
Initial fixed effect estimates¶
f[KA] = 1.0000
f[CL] = 1.0000
f[V1] = 20.0000
f[KA_isv,CL_isv,V1_isv] = [
[ 0.0500, 0.0100, 0.0100 ],
[ 0.0100, 0.0500, 0.0100 ],
[ 0.0100, 0.0100, 0.0500 ],
]
f[PNOISE] = 0.1000
f[ANOISE] = 0.0100
Outputs¶
Final fitted fixed effects¶
f[KA] = 0.2185
f[CL] = 1.9944
f[V1] = 50.4071
f[KA_isv,CL_isv,V1_isv] = [
[ 0.0203, 0.0106, 0.0251 ],
[ 0.0106, 0.0126, 0.0145 ],
[ 0.0251, 0.0145, 0.1816 ],
]
f[PNOISE] = 0.1509
f[ANOISE] = 0.0100
Fitted parameter .csv files¶
| Fixed Effects: | fx_params.csv (fit) |
|---|---|
| Random Effects: | rx_params.csv (fit) |
| Model params: | mx_params.csv (fit) |
| State values: | sx_params.csv (fit) |
| Predictions: | px_params.csv (fit) |
Plots¶
Comparison¶
Compare Main f[X]¶
| Variable Name | Fitted Value | Starting Value | Prop Change | Abs Change |
|---|---|---|---|---|
| f[KA] | 0.2185 | 1.0000 | 0.7815 | 0.7815 |
| f[CL] | 1.9944 | 1.0000 | 0.9944 | 0.9944 |
| f[V1] | 50.4071 | 20.0000 | 1.5204 | 30.4071 |
Compare Noise f[X]¶
| Variable Name | Fitted Value | Starting Value | Prop Change | Abs Change |
|---|---|---|---|---|
| f[PNOISE] | 0.1509 | 0.1000 | 0.5089 | 0.0509 |
Compare Variance f[X]¶
| Variable Name | Fitted Value | Starting Value | Prop Change | Abs Change |
|---|---|---|---|---|
| f[KA_isv] | 0.0203 | 0.0500 | 0.5940 | 0.0297 |
| f[KA_isv;CL_isv] | 0.0106 | 0.0100 | 0.0639 | 0.0006 |
| f[KA_isv;V1_isv] | 0.0251 | 0.0100 | 1.5135 | 0.0151 |
| f[CL_isv;KA_isv] | 0.0106 | 0.0100 | 0.0639 | 0.0006 |
| f[CL_isv] | 0.0126 | 0.0500 | 0.7486 | 0.0374 |
| f[CL_isv;V1_isv] | 0.0145 | 0.0100 | 0.4461 | 0.0045 |
| f[V1_isv;KA_isv] | 0.0251 | 0.0100 | 1.5135 | 0.0151 |
| f[V1_isv;CL_isv] | 0.0145 | 0.0100 | 0.4461 | 0.0045 |
| f[V1_isv] | 0.1816 | 0.0500 | 2.6318 | 0.1316 |