Depot + One compartment PK with BLQ¶
[Generated automatically as a Fitting summary]
Model Description¶
Name: | blq_pk |
---|---|
Title: | Depot + One compartment PK with BLQ |
Author: | PoPy for PK/PD |
Abstract: |
Depot One Comp PK model, with BLQ (below level of quantification) observations.
Keywords: | tutorial; pk; advan4; dep_two_cmp; blq |
---|---|
Input Script: | blq_pk_fit.pyml |
Diagram: |
Comparison¶
Compare Main f[X]¶
Variable Name | Starting Value | Fitted Value | Abs Change | Prop Change |
---|---|---|---|---|
f[KA] | 1.0000 | 0.2104 | 0.7896 | 0.7896 |
f[CL] | 1.0000 | 2.0601 | 1.0601 | 1.0601 |
f[V1] | 20.0000 | 47.8386 | 27.8386 | 1.3919 |
Compare Noise f[X]¶
Variable Name | Starting Value | Fitted Value | Abs Change | Prop Change |
---|---|---|---|---|
f[PNOISE] | 0.1000 | 0.1513 | 0.0513 | 0.5128 |
Compare Variance f[X]¶
Variable Name | Starting Value | Fitted Value | Abs Change | Prop Change |
---|---|---|---|---|
f[KA_isv] | 0.0500 | 0.0597 | 0.0097 | 0.1944 |
f[KA_isv;CL_isv] | 0.0100 | 0.0033 | 0.0067 | 0.6730 |
f[KA_isv;V1_isv] | 0.0100 | 0.0142 | 0.0042 | 0.4177 |
f[CL_isv;KA_isv] | 0.0100 | 0.0033 | 0.0067 | 0.6730 |
f[CL_isv] | 0.0500 | 0.0319 | 0.0181 | 0.3614 |
f[CL_isv;V1_isv] | 0.0100 | 0.0093 | 0.0007 | 0.0663 |
f[V1_isv;KA_isv] | 0.0100 | 0.0142 | 0.0042 | 0.4177 |
f[V1_isv;CL_isv] | 0.0100 | 0.0093 | 0.0007 | 0.0663 |
f[V1_isv] | 0.0500 | 0.1106 | 0.0606 | 1.2122 |
Population simulated (sim) plots¶
(No population graphs were requested.)
Outputs¶
Fitted f[X] values (after fitting)¶
f[KA] = 0.2104
f[CL] = 2.0601
f[V1] = 47.8386
f[KA_isv,CL_isv,V1_isv] = [
[ 0.0597, 0.0033, 0.0142 ],
[ 0.0033, 0.0319, 0.0093 ],
[ 0.0142, 0.0093, 0.1106 ],
]
f[PNOISE] = 0.1513
f[ANOISE] = 0.0100
Fitted parameter .csv files¶
Fixed Effects: | fx_params.csv (fit) |
---|---|
Random Effects: | rx_params.csv (fit) |
Model params: | mx_params.csv (fit) |
State values: | sx_params.csv (fit) |
Predictions: | px_params.csv (fit) |
Likelihoods: | lx_params.csv (fit) |
Inputs¶
Input Data: | cx_obs_params.csv |
---|
Starting f[X] values (before fitting)¶
f[KA] = 1.0000
f[CL] = 1.0000
f[V1] = 20.0000
f[KA_isv,CL_isv,V1_isv] = [
[ 0.0500, 0.0100, 0.0100 ],
[ 0.0100, 0.0500, 0.0100 ],
[ 0.0100, 0.0100, 0.0500 ],
]
f[PNOISE] = 0.1000
f[ANOISE] = 0.0100