Depot + One compartment PK with BLQ
[Generated automatically as a Fitting summary]
Model Description
- Name:
blq_pk
- Title:
Depot + One compartment PK with BLQ
- Author:
PoPy for PK/PD
- Abstract:
- Keywords:
tutorial; pk; advan4; dep_two_cmp; blq
- Input Script:
- Diagram:
Comparison
Compare Main f[X]
Variable Name |
Starting Value |
Fitted Value |
Abs Change |
Prop Change |
---|---|---|---|---|
f[KA] |
1.0000 |
0.2064 |
0.7936 |
0.7936 |
f[CL] |
1.0000 |
1.9975 |
0.9975 |
0.9975 |
f[V1] |
20.0000 |
50.9682 |
30.9682 |
1.5484 |
Compare Noise f[X]
Variable Name |
Starting Value |
Fitted Value |
Abs Change |
Prop Change |
---|---|---|---|---|
f[PNOISE] |
0.1000 |
0.1476 |
0.0476 |
0.4758 |
Compare Variance f[X]
Variable Name |
Starting Value |
Fitted Value |
Abs Change |
Prop Change |
---|---|---|---|---|
f[KA_isv] |
0.0500 |
0.0474 |
0.0026 |
0.0516 |
f[KA_isv;CL_isv] |
0.0100 |
0.0120 |
0.0020 |
0.2028 |
f[KA_isv;V1_isv] |
0.0100 |
-0.0314 |
0.0414 |
4.1393 |
f[CL_isv;KA_isv] |
0.0100 |
0.0120 |
0.0020 |
0.2028 |
f[CL_isv] |
0.0500 |
0.0287 |
0.0213 |
0.4254 |
f[CL_isv;V1_isv] |
0.0100 |
0.0244 |
0.0144 |
1.4382 |
f[V1_isv;KA_isv] |
0.0100 |
-0.0314 |
0.0414 |
4.1393 |
f[V1_isv;CL_isv] |
0.0100 |
0.0244 |
0.0144 |
1.4382 |
f[V1_isv] |
0.0500 |
0.0628 |
0.0128 |
0.2555 |
Individual simulated (sim) plots
Alternatively see All simulated_sim graph plots
Population simulated (sim) plots
(No population graphs were requested.)
Outputs
Final objective value
-786.4915
which required 1.18 iterations and took 1421.28 seconds
Fitted f[X] values (after fitting)
f[KA] = 0.2064
f[CL] = 1.9975
f[V1] = 50.9682
f[KA_isv,CL_isv,V1_isv] = [
[ 0.0474, 0.0120, -0.0314 ],
[ 0.0120, 0.0287, 0.0244 ],
[ -0.0314, 0.0244, 0.0628 ],
]
f[PNOISE] = 0.1476
f[ANOISE] = 0.0100
Fitted parameter .csv files
- Fixed Effects:
- Random Effects:
- Model params:
- State values:
- Predictions:
- Likelihoods:
Inputs
- Input Data:
Starting f[X] values (before fitting)
f[KA] = 1.0000
f[CL] = 1.0000
f[V1] = 20.0000
f[KA_isv,CL_isv,V1_isv] = [
[ 0.0500, 0.0100, 0.0100 ],
[ 0.0100, 0.0500, 0.0100 ],
[ 0.0100, 0.0100, 0.0500 ],
]
f[PNOISE] = 0.1000
f[ANOISE] = 0.0100