• Language: en

One Compartment Model with Absorption and no inter-occasion Variance f[CL_iov]=0

[Generated automatically as a Tutorial summary]

Model Description

Name:

d1cmp_cl_iov_naive

Title:

One Compartment Model with Absorption and no inter-occasion Variance f[CL_iov]=0

Author:

PoPy for PK/PD

Abstract:

Population one Compartment Model with Absorption and Inter-occasion Variance
Here f[CL_iov] is not estimated it is set to zero.
Keywords:

one compartment model; dep_one_cmp_cl; iov

Input Script:

d1cmp_cl_iov_naive.pyml

Diagram:

Comparison

True objective value

242.7372

Final fitted objective value

-203.5525

Compare Main f[X]

Name

Initial

Fitted

True

Abs. Error

Prop. Error

f[KA]

0.5

0.291

0.3

8.69e-03

2.90%

f[CL]

1

2.48

3

5.22e-01

17.40%

f[V]

15

22.5

20

2.51e+00

12.56%

Compare Noise f[X]

Name

Initial

Fitted

True

Abs. Error

Prop. Error

f[PNOISE_STD]

0.2

0.413

0.1

3.13e-01

312.50%

f[ANOISE_STD]

0.2

0.0709

0.05

2.09e-02

41.76%

Compare Variance f[X]

Name

Initial

Fitted

True

Abs. Error

Prop. Error

f[CL_isv]

0.01

0.141

0.2

5.86e-02

29.32%

Outputs

Fitted f[X] values (after fitting)

f[KA] = 0.2913
f[CL] = 2.4780
f[V] = 22.5113
f[PNOISE_STD] = 0.4125
f[ANOISE_STD] = 0.0709
f[CL_isv] = 0.1414
f[CL_iov] = 0.0000

Generated data .csv file

Synthetic Data:

synthetic_data.csv

Gen and Fit Summaries

Inputs

True f[X] values (for simulation)

f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv] = 0.2000
f[CL_iov] = 0.1000

Starting f[X] values (before fitting)

f[KA] = 0.5000
f[CL] = 1.0000
f[V] = 15.0000
f[PNOISE_STD] = 0.2000
f[ANOISE_STD] = 0.2000
f[CL_isv] = 0.0100
f[CL_iov] = 0.0000
Back to Top