• Language: en

Full matrix generation diagonal matrix fit

[Generated automatically as a Tutorial summary]

Model Description

Name:

gen_full_fit_diag

Title:

Full matrix generation diagonal matrix fit

Author:

PoPy for PK/PD

Abstract:

One compartment model with absorption compartment and CL/V parametrisation.
This script uses a full covariance matrix to generate the data, but a diagonal matrix to fit.
Keywords:

dep_one_cmp_cl; one compartment model; diagonal matrix; full matrix

Input Script:

gen_full_fit_diag_tut.pyml

Diagram:

Comparison

True objective value

-2181.8274

Final fitted objective value

-2188.3227

Compare Main f[X]

No Main f[X] values to compare.

Compare Noise f[X]

No Noise f[X] values to compare.

Compare Variance f[X]

Name

Initial

Fitted

True

Abs. Error

Prop. Error

f[CL_isv]

0.01

0.124

0.15

2.59e-02

17.28%

f[CL_isv;V_isv]

0

0

0.05

5.00e-02

100.00%

f[V_isv;CL_isv]

0

0

0.05

5.00e-02

100.00%

f[V_isv]

0.01

0.119

0.15

3.11e-02

20.74%

Outputs

Fitted f[X] values (after fitting)

f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv,V_isv] = [
    [ 0.1241, 0.0000 ],
    [ 0.0000, 0.1189 ],
]

Generated data .csv file

Synthetic Data:

synthetic_data.csv

Gen and Fit Summaries

Inputs

True f[X] values (for simulation)

f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv,V_isv] = [
    [ 0.1500, 0.0500 ],
    [ 0.0500, 0.1500 ],
]

Starting f[X] values (before fitting)

f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv,V_isv] = [
    [ 0.0100, 0.0000 ],
    [ 0.0000, 0.0100 ],
]
Back to Top