• Language: en

One Compartment Model with Absorption and Inter-occasion Variance f[CL_isv]=0.2

[Generated automatically as a Tutorial summary]

Model Description

Name:

d1cmp_cl_iov

Title:

One Compartment Model with Absorption and Inter-occasion Variance f[CL_isv]=0.2

Author:

PoPy for PK/PD

Abstract:

Population one Compartment Model with Absorption and Inter-occasion Variance
Keywords:

one compartment model; dep_one_cmp_cl; iov

Input Script:

d1cmp_cl_iov.pyml

Diagram:

Comparison

True objective value

-344.3936

Final fitted objective value

-353.3355

Compare Main f[X]

Name

Initial

Fitted

True

Abs. Error

Prop. Error

f[KA]

0.5

0.271

0.3

2.89e-02

9.62%

f[CL]

1

2.4

3

5.99e-01

19.97%

f[V]

15

18.4

20

1.61e+00

8.04%

Compare Noise f[X]

Name

Initial

Fitted

True

Abs. Error

Prop. Error

f[PNOISE_STD]

0.2

0.0935

0.1

6.51e-03

6.51%

f[ANOISE_STD]

0.2

0.0487

0.05

1.32e-03

2.64%

Compare Variance f[X]

Name

Initial

Fitted

True

Abs. Error

Prop. Error

f[CL_isv]

0.01

0.0829

0.2

1.17e-01

58.57%

f[CL_iov]

0.01

0.107

0.1

7.31e-03

7.31%

Outputs

Fitted f[X] values (after fitting)

f[KA] = 0.2711
f[CL] = 2.4008
f[V] = 18.3926
f[PNOISE_STD] = 0.0935
f[ANOISE_STD] = 0.0487
f[CL_isv] = 0.0829
f[CL_iov] = 0.1073

Generated data .csv file

Synthetic Data:

synthetic_data.csv

Gen and Fit Summaries

Inputs

True f[X] values (for simulation)

f[KA] = 0.3000
f[CL] = 3.0000
f[V] = 20.0000
f[PNOISE_STD] = 0.1000
f[ANOISE_STD] = 0.0500
f[CL_isv] = 0.2000
f[CL_iov] = 0.1000

Starting f[X] values (before fitting)

f[KA] = 0.5000
f[CL] = 1.0000
f[V] = 15.0000
f[PNOISE_STD] = 0.2000
f[ANOISE_STD] = 0.2000
f[CL_isv] = 0.0100
f[CL_iov] = 0.0100
Back to Top