• Language: en

Depot + One compartment PK with BLQ

[Generated automatically as a Tutorial summary]

Model Description

Name:

blq_pk

Title:

Depot + One compartment PK with BLQ

Author:

PoPy for PK/PD

Abstract:

Depot One Comp PK model, with BLQ (below level of quantification) observations.
Keywords:

tutorial; pk; advan4; dep_two_cmp; blq

Input Script:

blq_pk_tut.pyml

Diagram:

Comparison

True objective value

-781.3723

Final fitted objective value

-786.4915

Compare Main f[X]

Name

Initial

Fitted

True

Abs. Error

Prop. Error

f[KA]

1

0.206

0.2

6.37e-03

3.18%

f[CL]

1

2…

2

2.48e-03

0.12%

f[V1]

20

51

50

9.68e-01

1.94%

Compare Noise f[X]

Name

Initial

Fitted

True

Abs. Error

Prop. Error

f[PNOISE]

0.1

0.148

0.15

2.42e-03

1.61%

Compare Variance f[X]

Name

Initial

Fitted

True

Abs. Error

Prop. Error

f[KA_isv]

0.05

0.0474

0.1

5.26e-02

52.58%

f[KA_isv;CL_isv]

0.01

0.012

0.02

7.97e-03

39.86%

f[KA_isv;V1_isv]

0.01

-0.0314

0.01

4.14e-02

413.93%

f[CL_isv;KA_isv]

0.01

0.012

0.02

7.97e-03

39.86%

f[CL_isv]

0.05

0.0287

0.03

1.27e-03

4.24%

f[CL_isv;V1_isv]

0.01

0.0244

0.02

4.38e-03

21.91%

f[V1_isv;KA_isv]

0.01

-0.0314

0.01

4.14e-02

413.93%

f[V1_isv;CL_isv]

0.01

0.0244

0.02

4.38e-03

21.91%

f[V1_isv]

0.05

0.0628

0.09

2.72e-02

30.25%

Outputs

Fitted f[X] values (after fitting)

f[KA] = 0.2064
f[CL] = 1.9975
f[V1] = 50.9682
f[KA_isv,CL_isv,V1_isv] = [
    [ 0.0474, 0.0120, -0.0314 ],
    [ 0.0120, 0.0287, 0.0244 ],
    [ -0.0314, 0.0244, 0.0628 ],
]
f[PNOISE] = 0.1476
f[ANOISE] = 0.0100

Generated data .csv file

Synthetic Data:

synthetic_data.csv

Gen and Fit Summaries

Inputs

True f[X] values (for simulation)

f[KA] = 0.2000
f[CL] = 2.0000
f[V1] = 50.0000
f[KA_isv,CL_isv,V1_isv] = [
    [ 0.1000, 0.0200, 0.0100 ],
    [ 0.0200, 0.0300, 0.0200 ],
    [ 0.0100, 0.0200, 0.0900 ],
]
f[PNOISE] = 0.1500
f[ANOISE] = 0.0100

Starting f[X] values (before fitting)

f[KA] = 1.0000
f[CL] = 1.0000
f[V1] = 20.0000
f[KA_isv,CL_isv,V1_isv] = [
    [ 0.0500, 0.0100, 0.0100 ],
    [ 0.0100, 0.0500, 0.0100 ],
    [ 0.0100, 0.0100, 0.0500 ],
]
f[PNOISE] = 0.1000
f[ANOISE] = 0.0100
Back to Top